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Motivation

C Ontologiesare not always perfect
Uncertainty ﬂ

Document Ontology
classification enrichment

Ontology
matching

C Challenging problem

Deal with both uncertainty and inconsistency
x Ontology learning, ontology matching

x Application domain: medicine and biology

C Solutions: probabilistic opossibilisticdescription logics



Outline

C Probabilistic logicvs possibilisticlogic

C Probabilistic description logics

C Possibilisticdescription logics and its extension
C Revisingontologiesin description logics

C Mapping repair in description logics
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Probabilistic Logic

C There are several versions of probabilistic logic
C We consider Nilssaomsjprobabilistic logic (A6)
C Consider a set of sentenced?
Each sentencesS is attached with two sets of possible worlds

x Worlds in which S is true and worlds in whicis false

C Probability of a sentenceS
Wis the set of all possible worlds

P(S)=P(fM W S is true in w})
C Formula: §,3)
P(S)=a
Usually, we only know probabilities of some sentences




Probabilistic Logic (Cont.)

C Example
Consider p, p- g, q}, there are four worlds
W, W, W, W,
P true true false false
p- q true false  true true
q true false  true false




Probabilistic Logic (Cont.)

C Probabilistic entailment
Given: probabilities of sentences in a set of sentences

Determine: probability of a sentenc8&
C Special casermy={p, p- g} andS=q

P(p- g)+ P(p)-1 OP(q) O P(p- q)

C The probabilistic entailment problem can be solved by linear
programming methods



Probabilistic Logic (Cont.)

C Properties
P(W)=1,Wis the set of all possible worlds

P(*)=0

If Mod(S T)=A,thenP(S T)=P(S)+P(T)
P(S T)=P@S)+P(T)-P(S T)
P(-S)=1P(S)

C Conditional probability
P(T |S)=P(S T)\P(S)



Interval Probabilistic Logic

¢ Events
A set of basic eventsF={p, pn}

A MI-f]fy
C Conditional constraint: |f ) [I,u], I, uW[0,1]
E.qg. {ly|bird)[0.95,1]

C Probabilistic formula

If) [hul |-f [f.y
E.g.~ (bird|ostrich[1,1]

C Logical constrainty f

C Probabilistic knowledge base KBEP)

L is a finite set of logical constraints
Pis a finite set of conditional constraints

e, & for any two distinct(e)[l,,u], ()[l,,w] P




Interval Probabilistic Logic

C Example
KB=({birdd eagle, featherH bird},{{ly|bird[0.95,1]})
bird4 eagle: all eagles are birds
feathersY bird: all birds have feathers

(fly|bird)[0.95,1]: birds fly with a probability of at least 0.95



Interval Probabilistic Logic

C World: a truth assignment to the basic events
Associates with every basic event a binary truth value
Can be extended to all events by induction as usual

/- denotes the set of all worlds for

C Model:/is a model off iff /(f )=true
Denoted as/8 f
/ is a model of a set of eventsL (/8 L) iff | is a model of allf WL

C Satisfiability f is satisfiableiff a model off exists
C Logical consequencef. 8 vy iff /(f )=true implies/(y )=true



Interval Probabilistic Logic

C Probabilistic interpretationPr. a probability function on/;
Pr(f). sum of allPr(/) such that /8 f

C Conditioning:
Py | f): Pr(y, f)! Pr(f) with Pr(f)>0
Pr. (1): Pr(/)! Pr(f) with /8 f and O for other/

C Truth of logical constraints and probabilistic formulas
Pre y fiff Pr(f)=Pr(y. f)iff Pre (y | f)[1,1]
Pre (y | D)Ll iff Pr)=0orPr(y |f LU
Pr8 - Fiff not Pré F
Pr8 F Giff Pr8 FandPrs G

C Satisfiabilityand logical consequences can be defined as
usual



Interval Probabilistic Logic

C Tightest logical consequence: KBy, (y | f)[l,u] iff
Every model ofL P isa modelof ¢ | f)[l,u and
| is the infimumof Pr(y | f) subject to all modelsPr of L P with
Pr(f)>0
u is the supremunof Pr(y | f) subjectto all modelsPr of L P
with Pr(f)>0

C Note:whenL PT A f then|l,uis [1,0]

C Property 1: alogical constrainy f has the same meaning
as the conditional constraintgy | f)[1,1]

C Property 2. modeltheoretical logical entailment in
probabilistic logic generalizes modé¢heoretical entailment
In ordinary propositional logic



Interval Probabilistic Logic

C KB=({bird4 eagle, featherdH bird},{{ly|bird)[0.95,1]})
bird4 eagle: all eagles are birds
feathersU bird: all birds have feathers

(fly|bird)[0.95,1]: birds fly with a probability of at least 0.95

C Logical consequences of KB
KBT (feathers | bird)[1,1]
KBT (fly|bird[0.95,1]
KBT (feathers | eagle)[1,1]
KBT (fly | eagle)[0,1]

Probabilistic properties of
being able to fly is not
inherited from birds to eagles



Interval Probabilistic Logic

C KB=({bird4 ostrich}.{legs|bird[1,1], fly|bird)[1,1],
(fly|ostrich)[0,0.05])
(y | f)[1,1] is interpreted asy f
C Logical consequences of KB
KBT (legs|bird[1,1]
KBT (fly|bird[1,1]
KBT (legs|ostrich[1,0]
KBT (fly] ostrich)[1,0]

There is a local inconsistency



Interval Probabilistic Logic

C Solution: interpret(y | f)[1,1] as a default rule
Define probability rankings

C Probability rankindk maps/r to {0,1,...} £}
K(Pr)=0 for at least onePr
If Fis satisfiable k(F)=mink(Pr) | Prd F}
Otherwise k(F)=o

C Pr verifies(y | f)[l,u iff Pr(f)>0andPrd (y | f)[l,u
Pr falsifies(y | f)[l,u] iff Pr{f)>0andPrw (y | f)[lul

C Ptolerates CunderL: L P has a model that verifiesC
Pis underL in conflict C with iff no model ofL P verifies C



Interval Probabilistic Logic

C k is admissible withKB=(L,P)
k(x(y | )[1,1])= forally f WL and
k(f ®)<a andk(f 8, (y [f)[L,U) <k B, x(y |)[,u]) forall
v | O, wpﬁ Minimak(Pr) of all Pr verifying(y | f)[l,u

C z-partition of KB unique ordered partition®,,...A) of P
S| Fin a higher rank is more specific and preferred
Each P, 00iOk, is the set of all CW | J _ P tolerated under L byUT:i P

C Pr is lex- preferable to PrNiff somei exists such that
{CWP| Prs C}|> {CWP| PrNi C}| and

HCWR| Pr8 C}| = |_PrN§ C} for alli<jOk
C Lex- minimal modePr of el ofFis lex- preferable
to Pr Pr satisfies more constraints in rank than

and PrNand satisfies the same constraints in
ranks higher than as PrN;j




Interval Probabilistic Logic

C Lex-entailment:(y | f)[l,u] is a lex-consequence oKB,
denoted KBT lex (y | f)[l,u] iff

Eachlex-minimal model oL f 8} satisfies(y | f)[l,ul

C Tightlex- entailment:(y | f)[l,u] is a tight lex- consequence
of KB, denoted aKB T 'extight (y | f)[[, 4] iff

|I=inf Pr(y | f) (resp., u=supr(y | f) ) subject to alllex- minimal
modelsPr of L f 8}



Interval Probabilistic Logic

C KB=({bird4 ostrich}.{legs|bird[1,1], fly|bird)[1,1],
(fly|ostrich)[0,0.05])
(y | f)[1,1] is interpreted asy « f (default rule)

C Logical consequences of KB
KBT (legs|ostrich[1,0]
KBT (fly| ostrich)[1,0]

C Lex-consequences of KB
KBT (legs|ostrich[1,1]
KBT (fly| ostrich)[0,0.09



Possibility Theory

C Possibility distributionp: W= L
i Wrepresents universe of discourse

i (L,<) Iisabounded total ordered scale
i p( W) Op( wd meanswis a priori more plausible thamo

C Possibility measure and necessity measure

1 (A)=sup {p(¥): ¥i A} N(A)=1-1 (xA)
¢ Property
i1 (4 B=max (A),} (B)
i N(A B=min{(A), N(B)




PossibilisticLogic

¢ Syntax
Possibilistic formula:f(,a) denotes certainty degreeof f Ca
X Fxr?mple:eéat_fismweety), 0.46) We are somewhat certain thdtweety eats
IS
Possibilistic knowledge base: a set of possibilistic formulae
B={f,, &) :i
C Example
p: there were human beings in Mars before

g: scientists have detected some strange signals from outer space

r: there are aliens in other planets
s: the ancestors of human are gorillas

B={(0,0.4),q r,1),6,0.8),(s r,0.9)}



PossibilisticLogic (Cont.)
C Inconsistency degree of B
B*: classical base of B
B, ={f IB*| (f,b)i B,BO &
Inc(B)=max{aB ,is inconsistent}
f, f, fg foi T,

a, a1t Q

Inc(B)a,

¢ B={(a,1),

What is Inc(B)?



PossibilisticLogic

C Possibilisticinference

f of iff Boinogey T
(f,a f,a) iff a>Inc(B),and B , f
f is a possibilistic consequence of B to degrea o(f, ) Iff
x B, Is consistent
x B, f

x For allb>a, B., f

Only formulas whose weights
are greater than or equal to the
inconsistency degree are used



PossibilisticLogic (Cont.)
C Example
B={(q,1),
o(d, 1)
o 1)
o(P, 0.4)

Drowning effect



PossibilisticLogic

C Semantics
Possibility distributionp: W- [0,1]

x p(¥)=1: ¥ is totally possible

x p(¥)=0: ¥ is impossible

x p(¥)>0: ¥ is possible

C Normal possibility distributiom: there exists one worldy such
that p(¥)=1

C Satisfaction:p satisfies ( ,a), denotedp? (f ,a), iff N(f )2 a
ps B iff p8 (f,a), for all f ,a)\WB
B8 (f ,a) iff for everyp® B, we havepd (f,a)



PossibilisticLogic (Cont.)

C Possibilisticknowledge base B-{(.a, f.,.a, a unigue
possibility distribution

8.1 * a2 a.3 * a 1 a

p(w)=1-a, @ @ @

C A possibility distribution[" a possibilisticknowledge base
1 (F)=max{p(¥): ¥ Uf}
N(f)=1-1 (xf)




PossibilisticLogic
C Soundness and completeness
f,a) iff BS (f,a)
of iff Ng(f)>Inc(B)
o(f, @) iff Ng(f)2 a anda > Inc(B)




Generalizations ofPossibilisticLogic §

C Linear order inference
B is stratified as (S,...,

x Formulas in $have the same weights

x The weight of formulas in Ss greater than that of formulas in Pwith i<
X Kogs SNjwith SNFSifSNj . . SNj;, S is consistent
and S\FA otherwse
x of iffKgg f
C ExampleB={(q,1), , (p, 0.4}

LoP

LOt



Generalizations ofPossibilisticLogic

C Lexicographic inference
B is stratified as (S,..., )
For (SN;..., &) and (S\jNj, SINyvhich are subsets of ($..., )
(SN..., B)) is preferred to (S\jN}, YNJf some i exists such that

x | SNi> | SN]rand
x | SN| =| SNNgr all i<jOk
exT SN ..., SNj f for all lexi preferred subest ($;..., S
of (S, Q)

C ExampleB={(q,1),

Lex p

t What arelext preferred
Lex subsets of (S,,..., 9?




Comparison

C Properties
Probabilistic logic
x fModS T)=A,then P6 T)=PE)+P(I)
x PSS T)=PE)+P(M)-P(S T)
x P(=S)=1-P(S)
Posshbilistic logic
X (A), (B))
x
C Types of uncertainty
Probabilistic logic: quantitative
Possibilistic logic: qualitative




