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Motivation 

ÇOntologies are not always perfect 
 

 

 

 

ÇChallenging problem 

Deal with both uncertainty and inconsistency 

×Ontology learning, ontology matching 

×Application domain: medicine and biology 

ÇSolutions: probabilistic or possibilistic description logics 
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ÇProbabilistic logic vs possibilistic logic 

ÇProbabilistic description logics 

ÇPossibilistic description logics and its extension 

ÇRevising ontologies in description logics 

ÇMapping repair in description logics 
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Probabilistic Logic 

ÇThere are several versions of probabilistic logic 

ÇWe consider Nilssonǋs probabilistic logic (AIǋ86) 

ÇConsider a set of sentences Ҏ 

Each sentence S is attached with two sets of possible worlds  

×Worlds in which S is true and worlds in which S is false 

ÇProbability of a sentence S 

W is the set of all possible worlds 

P(S)=P({wÍ W| S is true in w}) 

ÇFormula: (S,a) 
P(S)=a 

Usually, we only know probabilities of some sentences 



Probabilistic Logic (Cont.) 

ÇExample 

   Consider {p, pq, q}, there are four worlds 

                   w1            w2         w3         w4  

    p            true       true       false      false 

    pq      true       false      true       true 

    q            true       false      true       false 

 



Probabilistic Logic (Cont.) 

ÇProbabilistic entailment 
Given: probabilities of sentences in a set of sentences ҧ   

Determine: probability of a sentence S  

ÇSpecial case: ҧ={p, pq}  and S=q 

                      

                   P(pq)+ P(p)-l ÒP(q) Ò P(pq) 

 

ÇThe probabilistic entailment problem can be solved by linear 
programming methods 

 

                   



Probabilistic Logic (Cont.) 

ÇProperties 
P(W )=1, W is the set of all possible worlds 

P(̂ )=0 

If Mod(S T )=Å, then P(S T )=P(S )+P(T )  

P(S T )=P(S )+P(T ) - P(S T ) 

P(¬S )=1- P(S ) 

ÇConditional probability 
P(T  |S )=P(S T ) \ P(S ) 

 

 

                   



Interval Probabilistic Logic 

ÇEvents 
A set of basic events F={p1 pl } 

pi , M  | ¬f | f֧ y  

ÇConditional constraint: (y|f) [l,u], l, uԜ [0,1] 

E.g. (fly|bird)[0.95,1] 

ÇProbabilistic formula 
(y|f) [l,u]  | ¬f | f֧ y  

E.g. ¬ (bird|ostrich)[1,1] 

ÇLogical constraint: y f 

ÇProbabilistic knowledge base KB=(L,P ) 
L is a finite set of logical constraints 

P is a finite set of conditional constraints 

e1  ̧e2 for any two distinct (e1)[l1,u1], (e2)[l2,u2] P 

 

                   



Interval Probabilistic Logic 

ÇExample 
KB=({bird Ӵ eagle, feathers Ӵ bird},{(fly|bird)[0.95,1]}) 

bird Ӵ eagle: all eagles are birds 

feathers Ӵ bird: all birds have feathers 

(fly|bird)[0.95,1]: birds fly with a probability of at least 0.95 

 

                   



Interval Probabilistic Logic 

ÇWorld: a truth assignment to the basic events 
Associates with every basic event a binary truth value 

Can be extended to all events by induction as usual 

IF denotes the set of all worlds for F 

Ç  Model: I is a model of f iff I (f)=true 
Denoted as I ᴽ f 

I  is a model of a set of events L (I ᴽ L) iff I is a model of all fԜL 

ÇSatisfiability: f is satisfiable iff a model of f exists 

ÇLogical consequence: f ᴽ y iff I (f)=true implies I (y)=true 

 

                   



Interval Probabilistic Logic 

ÇProbabilistic interpretation Pr: a probability function on IF  
Pr(f): sum of all Pr (I ) such that I ᴽ f 

Ç  Conditioning:   
Pr(y | f): Pr (y֧ f)/ Pr (f) with Pr (f)>0 

Prf (I ): Pr (I )/ Pr (f)  with I ᴽ f and 0 for other I 

ÇTruth of logical constraints and probabilistic formulas 
Pr ᴽ y f iff Pr (f)=Pr (y֧ f) iff Pr ᴽ (y | f)[1,1]  

Pr ᴽ (y | f)[l,u] iff Pr (f)=0 or Pr (y | f l,u] 

Pr  Ȣ¬ F iff not Pr  ȢF  

Pr  ȢF G֧ iff Pr  ȢF and Pr  ȢG 

ÇSatisfiability and logical consequences can be defined as 
usual 



Interval Probabilistic Logic 

ÇTightest logical consequence: KB Ttight (y | f)[l,u] iff 

Every model of L P  is a model of (y | f)[l,u]  and 

l is the infimum of Pr (y | f) subject to all models Pr  of L P  with 

Pr (f)>0 

u is the supremum of Pr (y | f) subject to all models Pr  of L P 

with Pr (f)>0 

ÇNote: when L P  T  ̂ f then [l,u] is [1,0] 

ÇProperty 1: a logical constraint y f has the same meaning 
as the conditional constraints (y | f)[1,1] 

ÇProperty 2: model- theoretical logical entailment in 
probabilistic logic generalizes model- theoretical entailment 
in ordinary propositional logic 



Interval Probabilistic Logic 

ÇKB=({bird Ӵ eagle, feathers Ӵ bird},{(fly|bird)[0.95,1]}) 

bird Ӵ eagle: all eagles are birds 

feathers Ӵ bird: all birds have feathers 

(fly|bird)[0.95,1]: birds fly with a probability of at least 0.95 

ÇLogical consequences of KB 
KB T  (feathers | bird)[1,1] 

KB T  (fly|bird)[0.95,1] 

KB T  (feathers | eagle)[1,1] 

KB T  (fly | eagle)[0,1] 

 

 

 

                   

Probabilistic properties of 
being able to fly is not 
inherited from birds to eagles 



Interval Probabilistic Logic 

ÇKB=({bird Ӵ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], 

(fly|ostrich)[0,0.05]) 
(y | f)[1,1] is interpreted as y f  

ÇLogical consequences of KB 
KB T  (legs|bird)[1,1] 

KB T  (fly|bird)[1,1] 

KB T  (legs|ostrich)[1,0] 

KB T  (fly| ostrich)[1,0] 

 

 

 

                   

There is a local inconsistency 



Interval Probabilistic Logic 

ÇSolution: interpret (y | f)[1,1] as a default rule 

Define probability rankings 

ÇProbability ranking k maps Pr  to {0,1,...}֪ {¤} 

k(Pr )=0 for at least one Pr 

If F is satisfiable, k(F )=min{k(Pr ) | Pr FȢ } 

Otherwise, k(F )=¤ 

ÇPr  verifies (y | f)[l,u]  iff Pr (f)>0 and Pr ᴽ (y | f)[l,u]  

Pr  falsifies (y | f)[l,u]  iff Pr (f)>0 and Pr ᵂ (y | f)[l,u]  

ÇP tolerates C under L: L P  has a model that verifies C 
P is under L in conflict C  with iff no model of L P  verifies C 

 



Interval Probabilistic Logic 

Çk is admissible with KB =(L,P ) 
k(×(y | f)[1,1] )=¤ for all y f ԜL and  

k(f>0)<¤ and k(f>0 ֧ (y | f)[l,u]) < k(f>0 ֧ ×(y | f)[l,u]) for all  

    (y | f)[l,u] ԜP 

Çz- partition of KB: unique ordered partition (P0,...,Pk) of P 
such that 

Each Pi, 0ÒiÒk, is the set of all CԜ         tolerated under L by  

ÇPr  is lex- preferable to Pr ǋ iff some i exists such that 

|{C ԜPi | Pr CȢ }| > |{C ԜPi | Pr ǋ CȢ }|  and 

|{C ԜPj | Pr CȢ }| = |{C ԜPj | Pr ǋ CȢ }| for all i<jÒk 

ÇLex- minimal model Pr  of F : no model of F is lex- preferable 
to Pr 

k

jj i
P

=

k

jj i
P

=

Minimal k(Pr ) of all Pr  verifying (y | f)[l,u]    

F in a higher rank is more specific and preferred 

Pr  satisfies more constraints in rank i than 
and Pr ǋ and satisfies the same constraints in 
ranks higher than i as Pr ǋ  



Interval Probabilistic Logic 

ÇLex- entailment: (y | f)[l,u]  is a lex- consequence of KB, 
denoted KB T lex (y | f)[l,u] iff 

Each lex- minimal model of L f>0} satisfies (y | f)[l,u]  

 

ÇTight lex- entailment: (y | f)[l,u] is a tight lex- consequence 
of KB, denoted as KB T lex,tight (y | f)[l,u] iff 

l=inf Pr (y | f) (resp., u=supPr (y | f) ) subject to all lex- minimal 

models Pr  of L f>0} 



Interval Probabilistic Logic 

ÇKB=({bird Ӵ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], 

(fly|ostrich)[0,0.05]) 
(y | f)[1,1] is interpreted as y « f (default rule) 

ÇLogical consequences of KB   
KB T  (legs|ostrich)[1,0] 

KB T  (fly| ostrich)[1,0] 

ÇLex- consequences of KB 
KB T  (legs|ostrich)[1,1] 

KB T  (fly| ostrich)[0,0.05] 

 

 

 

                   



ÇPossibility distribution p: WL 

ïW represents universe of discourse 

ï ( L,<) is a bounded total ordered scale  

ïp(w)Ó p(wô) means w is a priori more plausible than wô 

ÇPossibility measure and necessity measure 

 

ÇProperty 

ïʇ(A B֪)=max(ʇ(A), ʇ(B)) 

ïN(A B֩)=min(N(A), N(B)) 

 

 

 Possibility Theory 

ʇ(A)=sup {p(ɤ): ɤÍ A} N(A)=1-ʇ(×A) 



Possibilistic Logic 
ÇSyntax 

Possibilistic formula: (f,a) denotes certainty degree of fÓa 

×Example: (eat_fish(Tweety), 0.46) We are somewhat certain that Tweety eats 
fish 

Possibilistic knowledge base: a set of possibilistic formulae 

    B={(fi , ai) : i  

ÇExample 

p: there were human beings in Mars before 

q: scientists have detected some strange signals from outer space 

r: there are aliens in other planets 

s: the ancestors of human are gorillas 

B={(p, 0.4), (q r, 1), (s, 0.8), (¬s r, 0.9)} 



Possibilistic Logic (Cont.) 
Ç Inconsistency degree of B 

B*: classical base of B 

BÓa={fÍB* | (f,b)ÍB,BÓa} 

Inc(B)=max{a: BÓa is inconsistent} 

 

 

 

ÇB={(q,1),  

                      

 

 

 

f1 f2 f3  fn-1 fn 

a1 a2 a3 an-1 an · · · · 

Inc(B)=a3 

What is Inc(B)? 



Possibilistic Logic 
ÇPossibilistic inference 

f Pf iff B>inc(B) f 

(f, a f, a) iff a>Inc(B), and B² a f 

f is a possibilistic consequence of B to degree a p(f, a) iff  

×B²a is consistent 

×B²a f 

×For all b>a, B²b f 

Only formulas whose weights 

are greater than or equal to the 

inconsistency degree are used 



Possibilistic Logic (Cont.) 
ÇExample 

B={(q,1),  

p(q, 1) 

p( , 1) 

p(p, 0.4) 

 

 

                      

 

 

 

 

Drowning effect 



Possibilistic Logic 
ÇSemantics 

Possibility distribution p: W[0,1] 

×p(ɤ)=1: ɤ is totally possible     

×p(ɤ)=0: ɤ is impossible 

×p(ɤ)>0: ɤ  is possible 

ÇNormal possibility distribution p: there exists one world ɤ such 
that p(ɤ)=1 

ÇSatisfaction: p satisfies (f,a), denoted pȢ (f,a), iff N(f)²a 

pȢ  B iff pȢ (f,a), for all (f,a)Ԝ B 

B (Ȣf,a) iff for every pȢ  B, we have pȢ (f,a) 



Possibilistic Logic (Cont.) 
ÇPossibilistic knowledge base B={(f1,a1 fn,an a unique 

possibility distribution 

 

                                                       

 

 

ÇA possibility distribution Ӷa possibilistic knowledge base 

ʇ(f)=max{p(ɤ): ɤ Ṻf} 

N(f)=1-ʇ(×f)                                                                                  

f1 f2 f3  fn-1 fn 

a1 a2 a3 an-1 an 

w 

· · · · 

w w 
p(w)=1-a3 



Possibilistic Logic 
ÇSoundness and completeness 

f, a) iff B (Ȣf,a) 

Pf iff NB(f)>Inc(B) 

p(f, a) iff NB(f)² a and a > Inc(B) 

 

 



Generalizations of Possibilistic Logic 
ÇLinear- order inference 

B is stratified as (S1,..., Sk) 

×Formulas in Si have the same weights 

×The weight of formulas in Si is greater than that of formulas in Sj with i<j 

×KLO,B=  ֪Sǋ i with Sǋ i=Si if Sǋ1֪...֪ Sǋn- 1 ֪ Si is consistent 

and Sǋ i=Å otherwse 

× LO f iff KLO,B f 

ÇExample: B={(q,1), , (p, 0.4)} 

LO p 

LO t 

 

 

 



Generalizations of Possibilistic Logic 
ÇLexicographic inference 

B is stratified as (S1,..., Sk) 

For (Sǋ1,..., Sǋk) and (Sǋǋ1,..., Sǋǋk) which are subsets of (S1,..., Sk) 

(Sǋ1,..., Sǋk) is preferred to (Sǋǋ1,..., Sǋǋk) iff some i exists such that 

×| Sǋi| > | Sǋǋi| and 

×| Sǋ j| = | Sǋǋj| for all i<jÒk 

lex f iff Sǋ1 .֪.. S֪ǋk f for all lexi- preferred subest (Sǋ1,..., Sǋk) 

of (S1,..., Sk) 

ÇExample: B={(q,1),  

Lex p 

Lex t 

 

What are lexi- preferred 
subsets of (S1,..., Sk)? 



Comparison 
ÇProperties 

Probabilistic logic 

×If Mod(S T)=Å, then P(S T)=P(S)+P(T) 

×P(S T)=P(S)+P(T) - P(S T) 

×P(¬S)=1- P(S) 

Possbilistic logic 

× (A), (B)) 

×  

ÇTypes of uncertainty 

Probabilistic logic: quantitative  

Possibilistic logic: qualitative  

 


