
Reasoning with Inconsistent and 
Uncertain Ontologies 

 

Guilin Qi 

Southeast University 

China 

gqi@seu.edu.cn 

Reasoning Web 2012        September 05, 2012 



Motivation 

 Ontologies are not always perfect 
 

 

 

 

 Challenging problem 

‒ Deal with both uncertainty and inconsistency 

Ontology learning, ontology matching 

Application domain: medicine and biology 

 Solutions: probabilistic or possibilistic description logics 
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Probabilistic Logic 

 There are several versions of probabilistic logic 

 We consider Nilsson′s probabilistic logic (AI′86) 

 Consider a set of sentences ℒ 

‒ Each sentence S is attached with two sets of possible worlds  

Worlds in which S is true and worlds in which S is false 

 Probability of a sentence S 

‒  is the set of all possible worlds 

‒ P(S)=P({ |S is true in }) 

 Formula: (S,a) 
‒ P(S)=a 

‒ Usually, we only know probabilities of some sentences 



Probabilistic Logic (Cont.) 

 Example 

   Consider {p, pq, q}, there are four worlds 

                   1            2        3        4 

    p            true       true       false      false 

    pq      true       false      true       true 

    q            true       false      true       false 

 



Probabilistic Logic (Cont.) 

 Probabilistic entailment 
‒ Given: probabilities of sentences in a set of sentences ℬ   

‒ Determine: probability of a sentence S  

 Special case: ℬ={p, pq}  and S=q 

                      

                   P(pq)+ P(p)-l ≤P(q) ≤ P(pq) 

 

 The probabilistic entailment problem can be solved by linear 
programming methods 

 

                   



Probabilistic Logic (Cont.) 

 Properties 
‒ P( )=1,  is the set of all possible worlds 

‒ P()=0 

‒ If Mod(S ∧T )=, then P(S ∨T )=P(S )+P(T )  

‒ P(S ∨T )=P(S )+P(T ) -P(S ∧T ) 

‒ P(¬S )=1-P(S ) 

 Conditional probability 
‒ P(T  |S )=P(S ∧T ) \ P(S ) 

 

 

                   



Interval Probabilistic Logic 

 Events 
‒ A set of basic events ={p1,…,pl } 

‒ pi | ⊥, ⊤ | ¬  | ∧  

 Conditional constraint: (|) [l,u], l, u∈ [0,1] 

‒ E.g. (fly|bird)[0.95,1] 

 Probabilistic formula 
‒ (|) [l,u]  | ¬  | ∧  

‒ E.g. ¬ (bird|ostrich)[1,1] 

 Logical constraint:  ⇐  

 Probabilistic knowledge base KB=(L,P ) 
‒ L is a finite set of logical constraints 

‒ P is a finite set of conditional constraints 

‒ 1 2 for any two distinct (1)[l1,u1], (2)[l2,u2]∊P 

 

                   



Interval Probabilistic Logic 

 Example 
‒ KB=({bird ⇐ eagle, feathers ⇐ bird},{(fly|bird)[0.95,1]}) 

‒ bird ⇐ eagle: all eagles are birds 

‒ feathers ⇐ bird: all birds have feathers 

‒ (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95 

 

                   



Interval Probabilistic Logic 

 World: a truth assignment to the basic events 
‒ Associates with every basic event a binary truth value 

‒ Can be extended to all events by induction as usual 

‒ I denotes the set of all worlds for  

  Model: I is a model of  iff I ()=true 
‒ Denoted as I ⊨  

‒ I  is a model of a set of events L (I ⊨ L) iff I is a model of all ∈L 

 Satisfiability:  is satisfiable iff a model of  exists 

 Logical consequence:  ⊨  iff I ()=true implies I ()=true 

 

                   



Interval Probabilistic Logic 

 Probabilistic interpretation Pr: a probability function on I  
‒ Pr(): sum of all Pr (I ) such that I ⊨  

  Conditioning:   
‒ Pr( | ): Pr (∧)/Pr () with Pr ()0 

‒ Pr (I ): Pr (I )/Pr ()  with I ⊨  and 0 for other I 

 Truth of logical constraints and probabilistic formulas 
‒ Pr ⊨  ⇐  iff Pr ()=Pr (∧) iff Pr ⊨ ( | )[1,1]  

‒ Pr ⊨ ( | )[l,u] iff Pr ()=0 or Pr ( | )∈[l,u] 

‒ Pr ⊨ ¬ F iff not Pr ⊨ F  

‒ Pr ⊨ F∧G iff Pr ⊨ F and Pr ⊨ G 

 Satisfiability and logical consequences can be defined as 
usual 



Interval Probabilistic Logic 

 Tightest logical consequence: KB ⊫tight ( | )[l,u] iff 

‒ Every model of L∪P  is a model of ( | )[l,u]  and 

‒ l is the infimum of Pr ( | ) subject to all models Pr  of L∪P  with 

Pr ()0 

‒ u is the supremum of Pr ( | ) subject to all models Pr  of L∪P 

with Pr ()0 

 Note: when L∪P ⊫  ⇐  then [l,u] is [1,0] 

 Property 1: a logical constraint  ⇐  has the same meaning 
as the conditional constraints ( | )[1,1] 

 Property 2: model-theoretical logical entailment in 
probabilistic logic generalizes model-theoretical entailment 
in ordinary propositional logic 



Interval Probabilistic Logic 

 KB=({bird ⇐ eagle, feathers ⇐ bird},{(fly|bird)[0.95,1]}) 

‒ bird ⇐ eagle: all eagles are birds 

‒ feathers ⇐ bird: all birds have feathers 

‒ (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95 

 Logical consequences of KB 
‒ KB ⊫ (feathers | bird)[1,1] 

‒ KB ⊫ (fly|bird)[0.95,1] 

‒ KB ⊫ (feathers | eagle)[1,1] 

‒ KB ⊫ (fly | eagle)[0,1] 

 

 

 

                   

Probabilistic properties of 
being able to fly is not 
inherited from birds to eagles 



Interval Probabilistic Logic 

 KB=({bird ⇐ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], 

(fly|ostrich)[0,0.05]) 
‒ ( | )[1,1] is interpreted as  ⇐   

 Logical consequences of KB 
‒ KB ⊫ (legs|bird)[1,1] 

‒ KB ⊫ (fly|bird)[1,1] 

‒ KB ⊫ (legs|ostrich)[1,0] 

‒ KB ⊫ (fly| ostrich)[1,0] 

 

 

 

                   

There is a local inconsistency 



Interval Probabilistic Logic 

 Solution: interpret ( | )[1,1] as a default rule 

‒ Define probability rankings 

 Probability ranking  maps Pr  to {0,1,...}∪{} 

‒ (Pr )=0 for at least one Pr 

‒ If F is satisfiable, (F )=min{(Pr ) | Pr ⊨F } 

‒ Otherwise, (F )= 

 Pr  verifies ( | )[l,u]  iff Pr ()0 and Pr ⊨ ( | )[l,u]  

‒ Pr  falsifies ( | )[l,u]  iff Pr ()0 and Pr ⊭ ( | )[l,u]  

 P tolerates C under L: L∪P  has a model that verifies C 
‒ P is under L in conflict C  with iff no model of L∪P  verifies C 

 



Interval Probabilistic Logic 

  is admissible with KB =(L,P ) 
‒ (( | )[1,1] )= for all  ⇐  ∈L and  

‒ (0) and (0 ∧ ( | )[l,u])  (0 ∧ ( | )[l,u]) for all  

    ( | )[l,u] ∈P 

 z-partition of KB: unique ordered partition (P0,...,Pk) of P 
such that 

‒ Each Pi, 0≤i≤k, is the set of all C∈         tolerated under L by  

 Pr  is lex-preferable to Pr ′ iff some i exists such that 

‒ |{C ∈Pi | Pr ⊨C }|  |{C ∈Pi | Pr ′ ⊨C }|  and 

‒ |{C ∈Pj | Pr ⊨C }| = |{C ∈Pj | Pr ′ ⊨C }| for all ij≤k 

 Lex-minimal model Pr  of F : no model of F is lex-preferable 
to Pr 

k
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Minimal (Pr ) of all Pr  verifying ( | )[l,u]    

F in a higher rank is more specific and preferred 

Pr  satisfies more constraints in rank i than 
and Pr ′ and satisfies the same constraints in 
ranks higher than i as Pr ′  



Interval Probabilistic Logic 

 Lex-entailment: ( | )[l,u]  is a lex-consequence of KB, 
denoted KB ⊫lex ( | )[l,u] iff 

‒ Each lex-minimal model of L∪{0} satisfies ( | )[l,u]  

 

 Tight lex-entailment: ( | )[l,u] is a tight lex-consequence 
of KB, denoted as KB ⊫lex,tight ( | )[l,u] iff 

‒ l=inf Pr ( | ) (resp., u=supPr ( | ) ) subject to all lex-minimal 

models Pr  of L∪{0} 



Interval Probabilistic Logic 

 KB=({bird ⇐ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], 

(fly|ostrich)[0,0.05]) 
‒ ( | )[1,1] is interpreted as    (default rule) 

 Logical consequences of KB   
‒ KB ⊫ (legs|ostrich)[1,0] 

‒ KB ⊫ (fly| ostrich)[1,0] 

 Lex-consequences of KB 
‒ KB ⊫ (legs|ostrich)[1,1] 

‒ KB ⊫ (fly| ostrich)[0,0.05] 

 

 

 

                   



 Possibility distribution : L 

–  represents universe of discourse 

– (L,<) is a bounded total ordered scale  

– ()≥ (’)means  is a priori more plausible than ’ 

 Possibility measure and necessity measure 

 

 Property 

– П(A∪B)=max(П(A), П(B)) 

– N(A∩B)=min(N(A), N(B)) 

 

 

 Possibility Theory 

П(A)=sup{(ω): ω A} N(A)=1П(A) 



Possibilistic Logic 
 Syntax 

‒ Possibilistic formula: (,a) denotes certainty degree of ≥a 

Example: (eat_fish(Tweety), 0.46) We are somewhat certain that Tweety eats 
fish 

‒ Possibilistic knowledge base: a set of possibilistic formulae 

    B={(i , ai) : i=1,…,n} 

 Example 

‒ p: there were human beings in Mars before 

‒ q: scientists have detected some strange signals from outer space 

‒ r: there are aliens in other planets 

‒ s: the ancestors of human are gorillas 

‒ B={(p, 0.4), (q→r, 1), (s, 0.8), (¬s→¬r, 0.9)} 



Possibilistic Logic (Cont.) 
 Inconsistency degree of B 

‒ B*: classical base of B 

‒ B≥a={B*| (,b)B,B≥a} 

‒ Inc(B)=max{a: B≥a is inconsistent} 

 

 

 

 B={(q,1), (q→r, 1), (s→¬r, 0.9) , (s, 0.8) ,(p, 0.4)} 

                      

 

 

 

1 2 3 … n-1 n 

1 2 3 n1 n · · · · 

Inc(B)=a3 

What is Inc(B)? 



Possibilistic Logic 
 Possibilistic inference 

‒  is a plausible consequence of B, denoted B⊢P iff Binc(B)⊢ 

‒ (, a) is a consequence of B, denoted B⊢(, a) iff aInc(B), and B a ⊢ 

‒  is a possibilistic consequence of B to degree a, denoted B⊢(, a) iff  

Ba is consistent 

Ba⊢ 

For all ba, Bb⊬ 

Only formulas whose weights 

are greater than or equal to the 

inconsistency degree are used 



Possibilistic Logic (Cont.) 
 Example 

B={(q,1), (q→r, 1), (¬s→¬r, 0.9) , (s, 0.9) ,(p, 0.4)} 

‒ B⊢(q, 1) 

‒ B⊢(q→r, 1) 

‒ B⊬(p, 0.4) 

 

 

                      

 

 

 

 

Drowning effect 



Possibilistic Logic 
 Semantics 

‒ Possibility distribution : [0,1] 

(ω)=1: ω is totally possible     

(ω)=0: ω is impossible 

(ω)>0: ω  is possible 

 Normal possibility distribution : there exists one world ω such 
that (ω)=1 

 Satisfaction:  satisfies (,a), denoted ⊨(,a), iff N()a 

‒ ⊨ B iff ⊨(,a), for all (,a)∈ B 

‒ B⊨(,a) iff for every ⊨ B, we have ⊨(,a) 



Possibilistic Logic (Cont.) 
 Possibilistic knowledge base B={(1,a1),…,(n,an)}⇒ a unique 

possibility distribution 

 

                                                       

 

 

 A possibility distribution ⇒a possibilistic knowledge base 

‒ П()=max{(ω): ω ⊨} 

‒ N()=1П()                                                                                  

1 2 3 … n-1 n 

1 2 3 n1 n 

 

· · · · 

  
()=1-3 



Possibilistic Logic 
 Soundness and completeness 

‒ B⊢(, a) iff B⊨(,a) 

‒ B⊢P iff NB()Inc(B) 

‒ B⊢(, a) iff NB() a and a  Inc(B) 

 

 



Generalizations of Possibilistic Logic 
 Linear-order inference 

‒ B is stratified as (S1,..., Sk) 

Formulas in Si have the same weights 

The weight of formulas in Si is greater than that of formulas in Sj with ij 

KLO,B=∪ S′ i with S′ i=Si if S′1∪...∪ S′n-1 ∪ Si is consistent 

and S′ i= otherwse 

B⊢LO  iff KLO,B ⊢ 

 Example: B={(q,1), (q→r, 1), (s→¬r, 0.9) , (s, 0.9) ,(t,0.9), (p, 0.4)} 

‒ B⊢LO p 

‒ B⊬LO t 

 

 

 



Generalizations of Possibilistic Logic 
 Lexicographic inference 

‒ B is stratified as (S1,..., Sk) 

‒ For (S′1,..., S′k) and (S′′1,..., S′′k) which are subsets of (S1,..., Sk) 

‒ (S′1,..., S′k) is preferred to (S′′1,..., S′′k) iff some i exists such that 

 | S′i|  | S′′i| and 

 | S′ j| = | S′′j| for all ij≤k 

‒ B⊢lex  iff S′1∪... ∪S′k ⊢ for all lexi-preferred subest (S′1,..., S′k) 

of (S1,..., Sk) 

 Example: B={(q,1), (q→r, 1), (s→¬r, 0.9) , (s, 0.9) ,(t,0.9), (p, 0.4)} 

‒ B⊢Lex p 

‒ B⊢Lex t 

 

What are lexi-preferred 
subsets of (S1,..., Sk)? 



Comparison 
 Properties 

‒ Probabilistic logic 

 If Mod(S∧T)=, then P(S∨T)=P(S)+P(T) 

P(S∨T)=P(S)+P(T) -P(S∧T) 

P(¬S)=1-P(S) 

‒ Possbilistic logic 

П(A∪B)=max(П(A), П(B)) 

N(A∩B)=min(N(A), N(B)) 

 Types of uncertainty 

‒ Probabilistic logic: quantitative  

‒ Possibilistic logic: qualitative  

 



Comparison 
 Inconsistency 

‒ Probabilistic logic 

Use probabilistic semantics 

‒ Possbilistic logic 

Use standard first-order semantics 

 Example 

‒ KB=({bird ⇐ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], (fly|ostrich)[0,0.05]) is 

inconsistent under probabilistic semantics 

‒ (fly|ostrich)[0,0.05] can be inferred under probabilistic default semantics 

‒ KB′={(ostrichbird, 1),(birdlegs,1), (birdfly, 1), (ostrichflyfly, 0.05) 

is not inconsistent under possibilistic semantics 

‒ (ostrichfly,1) can be inferred under possibilistic semantics 
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Description Logics 

 Description logics  

– Are (mostly) decidable fragments of first-order predicate logic 

– Provide logical underpinning of W3C standard OWL 

 Building blocks 

– Concepts (unary predicates/formulae with one free variable) 

E.g., Person, Lawer ⊔ Doctor 

– Roles (binary predicates/formulae with two free variables) 

E.g., hasChild 

– Individuals (constants) 

E.g., John, Mary 



 Description Logics (Syntax) 

 Description languages  

– Defining complex concepts: sets of individuals 

– Defining complex roles: binary relations on individuals 

 Complex concepts are built by 

– Atomic concepts: Tissue, Heart 

– Constructors: Tissue⊓part-of.Heart 

Complex roles are built by 

– Atomic roles: part-of, has-location 

– Constructors: HasFatherˉ 



 Description Logics (Semantics) 

  Interpretation: I=(I,.I)  

– Domain: I 

– Assignment function .I  

 

 

 

 

 

 

 

Individual names 
a 

Concepts 
C 

Roles 
R 

I 

aI 

C I 

… 

RI I 



 Description Logics (Cont.) 

 Interpretation: I=(I,.I) 
 

  Construct     Syntax      Example     Semantics 

Atomic concept         A       Heart      AI  I 

Atomic role          R       part-of      RI  I  I 

Negation          C        Heart       I \ CI 

Conjunction       C ⊓ D Lawyer⊓Doctor      CI \ DI 

Value restriction         R.C   part-of.Wood 
{a|b. (a,b) RI, 
(a,b) CI} 

… … … … 



 Description Logics (Ontology) 

 TBox T: defining terminology of application domain  

– Inclusion assertion on concept :C ⊑ D 

 

– Inclusion assertion on roles: R ⊑ S 

 

 ABox A: stating facts about a specific “world” 

–  membership assertion: C (a) or R (a,b) 
 

Pericardium ⊑ Tissue ⊓  part-of.Heart 

Part-of ⊑ has-location 

HappyMan(Bob), HasChild(Bob, Mary)  



 Given an interpretation I 

 Semantics of TBox axioms  

– I ⊨ C ⊑ D if C I  D I 

– I ⊨ R ⊑ S if R I  S I 

 Semantics of ABox assertions 

– I ⊨ C (a) if aI  C I  

– I ⊨ R (a,b) if (aI,bI)  R I 

 
 

Description Logics(Semantics) 



 Model of an ontology O=<T, A> 

– I is a model of O if it satisfies all axioms in T and all assertions 
in A 

 Concept satisfiability 

– Concept C is satisfiable in O if C I is nonempty for some model 
I of O 

 Ontology Entailment 

– O ⊨  iff  I⊨  for all models I of O 
 

Description Logics(Semantics) 



 Incoherent ontology: ontology with at least one 
unsatisfiable concept 

– Example: {PhDStudent ⊑ Student,      

                   PhDStudent ⊑ Employee,      

                   Student ⊑Employee 

 Inconsistent ontology: ontology without a model 

– Example: {PhDStudent ⊑ Student,      

                   PhDStudent ⊑ Employee,      

                   Student ⊑Employee,     

                   PhDStudent(John)} 

Incoherent ontology can be consistent! 

Description Logics (Semantics) 



 Example: DICE ontology 

‒ Brain⊑CentralNervousSystem ⊓ systempart.NervousSystem ⊓ 
BodyPart ⊓  region.HeadAndNeck ⊓ region.HeadAndNeck 

 

‒ CentralNervousSystem⊑NervousSystem 

 

‒ BodyPart ⊑NervousSystem or  

    DisjointWith(BodyPart,NervousSystem) 

 

 

Description Logics 



 Example from Foaf: 
‒ Person(timbl) 

‒ Homepage(timbl, http://w3.org/) 

‒ Homepage(w3c, http://w3.org/) 

‒ Organization(w3c) 

‒  InverseFunctionalProperty(Homepage) 

‒ DisjointWith(Organization, Person) 

 Example from OpenCyc: 
‒ ArtifactualFeatureType(PopulatedPlace) 

‒ ExistingStuffType(PopulatedPlace) 

‒ DisjointWith(ExistingObjectType,ExistingStuffType) 

‒ ArtifactualFeatureType ⊑ ExistingObjectType 

 

 

Description Logics 

http://w3.org/
http://w3.org/


Description Logics  

 Deficiency of DLs 

‒ Cannot express uncertain information 

 

 

 

‒ Cannot deal with inconsistency 

 Syntax and semantics of DLs need to be extended 

I am quite sure that a heart patient has a private 
health insurance 

I am a little certain that Tom is a heart patient  
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Probabilistic Description Logics 
-Syntax 

 Classification of individuals: a set of classical individuals IC 
and a finite set of probabilistic individuals IP 

 Basic classification concept (basic c-concept): DL 
concepts that are free of probabilistic individuals from IP 

 c-concept:  

‒ Every basic concept is a c-concept 

‒ If C and D are C-concept, C and C⊓D are c-concepts 

 Conditional constraint: (D |C )[l,u]  

‒ C and D are c-concepts 

‒ Meaning: probability of D given C lies between l and u  



Probabilistic Description Logics 

 Example 

 

 

 

 

 

  

ax1: (HighBloodPressure | Heartpatient) [1,1] 

ax2: (HasHighBloodPressure | PacemakerPatient) [1,1] 

ax3: (MalePacemakerPatient | PacemakerPatient) [0.4,1] 

ax4: (Male | PacemakerPatient) [0.4,1] 

ax5: PacemakerPatient ⊑ Heartpatient 

A terminological probabilistic knowledge base 



Probabilistic Description Logics 
-Syntax 

 PTBox PT=(T,P) 

‒ T : classical DL knowledge base 

‒ P : is a finite set of conditional constraints 

 PABox Po 

‒ o is a probabilistic individual in IP 

‒ Po is a finite set of conditional constraints 

 (D |C)[l,u]Po : if C (o) holds then D (o) holds with a probability 
between l and u 

 (D |⊤)[l,u]Po : D (o) holds with a probability between l and u 

 (R.{o′} |C)[l,u]Po : if C (o) holds then R (o,o′) holds with a probability 

between l and u 

 

 



Probabilistic Description Logics 

 Example 

 

 

 

 

 

  

ax1: (HighBloodPressure | Heartpatient) [1,1] 

ax2: (HasHighBloodPressure | PacemakerPatient) [1,1] 

ax3: (MalePacemakerPatient | PacemakerPatient) [0.4,1] 

ax4: (Male | PacemakerPatient) [0.4,1] 

ax5: PacemakerPatient ⊑ Heartpatient 

A terminological probabilistic knowledge base 

ax6: (PacemakerPatient | ⊤) [0.8,1] 

A PABox for the probabilistic individual Tom 



Probabilistic Description Logics 
-Syntax 

 Probabilistic knowledge base KB=(T,P, (Po)oIP 
) 

‒ P : probabilistic knowledge about randomly chosen individuals 

Conditional constraints in P are default statements 

‒ Po: probabilistic knowledge about the concrete individual o 

Conditional constraints in every Po with o IP  are strict statements 

 

 

 



Probabilistic Description Logics 
-Semantics 

 World I : a set of basic c-concepts CC such that {C (i) | 
C I} ∪ {C (i) | C C \ I } is satisfiable 

‒ C is the set of all basic c-concepts 

‒ i is a new individual 

‒ ℐC denotes the set of all worlds relative to C  

 Model of a TBox: I  is a model of T (I ⊨T ) iff T∪ {C (i) | 
C I } ∪ {C (i) | C C \ I } is satisfiable   

 Model of a c-concept: I ⊨C 

‒ I ⊨C iff CI , C is a basic c-concept 

‒ I ⊨C iff I ⊨C  does not hold 

‒ I ⊨ C ⊓ D iff I ⊨C  and I ⊨D 

 



Probabilistic Description Logics 
-Semantics 

 Probabilistic interpretation Pr : a probability function on ℐC  

‒ ℐC denotes the set of all worlds relative to C  

‒ Pr (C): sum of all Pr(I ) such that I ⊨ C 

 Pr ⊨T : I ⊨T for every I ℐC such that Pr(I )0 

 Pr ⊨(D |C )[l,u]: Pr (C)=0 or Pr (D |C )[l,u]:  

‒ Pr (D |C )= Pr (D ⊓C ) / Pr (C ) 

 Pr ⊨ℱ: I ⊨F for every Fℱ 

‒ ℱ  is a set of conditional constraints 

 



 Pr  verifies (D |C )[l,u]iff Pr(C )=1and Pr ⊨ (D |C )[l,u] 

‒ Pr  falsifies (D |C )[l,u] iff Pr(C )=1 and Pr ⊭ (D |C )[l,u] 

ℱ tolerates (D |C )[l,u] under T : T ∪ℱ  has a model that 

verifies (D |C )[l,u] 

 Consistency of a PTBox PT=(T,P )  
‒ T  is satisfiable 

‒ There exists an ordered partition (P0,...,Pk) of P such that 

Each Pi, 0≤i≤k, is the set of all F ∈ Pi∪...∪Pk tolerated under T by  

Pi∪...∪Pk  

 Idea of the partition: when in conflict, remove conditional constraints in 
the lower strata 

The partition follows the rule of maximum specificity 

Called z-partition of PT 

 

 

Probabilistic Description Logics 
-Semantics 



Probabilistic Description Logics 

 Example 

 

 

 

 

 

  

ax1: (HighBloodPressure | Heartpatient) [1,1] 

ax2: (HasHighBloodPressure | PacemakerPatient) [1,1] 

ax3: (MalePacemakerPatient | PacemakerPatient) [0.4,1] 

ax4: (Male | PacemakerPatient) [0.4,1] 

ax5: PacemakerPatient ⊑ Heartpatient 

A terminological probabilistic knowledge base 

ax6: (PacemakerPatient | ⊤) [0.8,1] 

A PABox for the probabilistic individual Tom 

P0 

P1 



 Pr  is lex-preferable to Pr ′ iff some i exists such that 

‒ |{F∈Pi | Pr ⊨F }|  |{F ∈Pi | Pr ′ ⊨F }|  and 

‒ |{F∈Pi | Pr ⊨F }| = |{F ∈Pi | Pr ′ ⊨F }| for all ji≤k 

 Lex-minimal model Pr  of F: no model of F is lex-preferable 
to Pr 

 Lex-entailment: (D |C )[l,u] is a lex-consequence of ℱ 
underPT, denoted ℱ ⊫lex (D |C )[l,u] iff 

‒ Each lex-minimal model of T∪ℱ ∪{(C | ⊤)[1,1]} satisfies (D |C )[l,u] 

 Tight lex-entailment: (D |C )[l,u] is a tight lex-consequence 
of ℱ underPT, denoted as ℱ ⊫lex,tight (D |C )[l,u] iff 

‒ l=inf Pr ( | ) (resp., u=supPr ( | ) ) subject to all lex-minimal 

models Pr  of L∪{0} 

 

Probabilistic Description Logics 
-Semantics 



Probabilistic Description Logics 

 Example: the following are tight lex-consequence of PT 

 

 

 

 

 

‒ (HighBloodPressure | Male ⊓ Heartpatient) [1,1] 

‒ (MalePacemakerPatient | PacemakerPatient) [0.4,1] 

 But (HasHighBloodPressure | PacemakerPatient) [1,1] is 
not inferred 

 

 

ax1: (HighBloodPressure | Heartpatient) [1,1] 

ax2: (HasHighBloodPressure | PacemakerPatient) [1,1] 

ax3: (MalePacemakerPatient | PacemakerPatient) [0.4,1] 

ax4: (Male | PacemakerPatient) [0.4,1] 

ax5: PacemakerPatient ⊑ Heartpatient 

A terminological probabilistic knowledge base 

P0 

P1 



Log-linear Description Logics  

 Knowledge base K=(KD, KU) 

– KD: a classical DL knowledge base 

– KU : a set of weighted axioms (like possibilistic DLs) 

 Semantics 

– Based on probability distributions over consistent knowledge bases 

 

 

 

 

– Marginal probability of an axiom: sum of the probabilities of 
theconsistent knowledge bases containing it 
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Outline  

Probabilistic logic vs possibilistic logic 

Probabilistic description logics 

Possibilistic description logics and its extension 

Revising ontologies in description logics 

Mapping repair in description logics 



Possibilistic Description Logics 

Tool(amilcare): 1.0 
Tool(cavido): 0.46 
Application(cavido): 0.46 
Tool ⊑ Application : 0.3 

A possibilistic DL knowledge base 

Tool(cavido): 0.46        Tool ⊑ Application : 0.3 

 Note : Inference is non-trivial when inconsistency exists  
           Certainty degree is attached to inferred axiom 



Possibilistic Description Logics 
-Syntax 

 Possibilistic axiom: (, a),  is a DL axiom 

 Possibilistic DL knowledge base B={(i, ai): i=1,…,n} 

 Classical DL Base B*={: (, a)∈B} 

 -cut of B: B={∈B*: (, b)∈B, and ba} 

 Inconsistency degree: Inc(B)=max{a: Ba is inconsistent} 

 Example:  

    B={(Tool(amilcare), 1), (Application(cavido), 0.46), 

        (Tool(cavido), 0.46), (disjoint(Tool, Application), 0.3)} 



Possibilistic Description Logics 
-Semantics 

 Possibility distribution : I → [0,1], I is the set of all 
interpretations 

–  (I) represents the degree of compatibility of I with available 
information 

– (I1)>(I2): I1 is preferred to I2  

 Possibility measure  

       ()=max{(I): I I, I ⊨ } 

 Necessity Measure N:  

      N()=1-max{(I): I⊭} 



Possibilistic Description Logics 

 Example 

 

 

 

 

 

  

 

ax1: (Heartpatient ⊑ HighBloodPressure, 1.0) 

ax2: (PacemakerPatient ⊑ ¬HighBloodPressure, 1.0) 

ax3: (HeartPatient ⊑ HasHealthInsurance.PrivateHealth,0.9) 

ax4: (PacemakerPatient(Tom), 0.8) 

ax5:  (HeartPatient(Tom),0.5) 

ax6: (HeartPatient v MalePacemakerPatient, 0.4) 

A possibilistic DL knowledge base 



Possibilistic Description Logics 

 Inference services: instance checking 

 

 

 

 

 

 

ax1: (Heartpatient ⊑ HighBloodPressure, 1) 

ax2: (PacemakerPatient ⊑ ¬HighBloodPressure, 1) 

ax3: (HeartPatient ⊑ HasHealthInsurance.PrivateHealth,0.9) 

ax4: (PacemakerPatient(Tom), 0.8) 

ax5:  (HeartPatient(Tom),0.5) 

ax6: (HeartPatient ⊑ MalePacemakerPatient, 0.4) 

A possibilistic DL knowledge base 

¬ HighBloodPressure(Tom) 



Possibilistic Description Logics 

 Inference services: instance checking with weight 

 

 

 

 

 

 

ax1: (Heartpatient ⊑ HighBloodPressure, 1) 

ax2: (PacemakerPatient ⊑ ¬HighBloodPressure, 1) 

ax3: (HeartPatient ⊑ HasHealthInsurance.PrivateHealth,0.9) 

ax4: (PacemakerPatient(Tom), 0.8) 

ax5:  (HeartPatient(Tom),0.5) 

ax6: (HeartPatient ⊑ MalePacemakerPatient, 0.4) 

A possibilistic DL knowledge base 

¬ HighBloodPressure(Tom): 0.8 



Reduction 

Inference services 

Computing inconsistency degree 



Algorithms 

 A black-box algorithm (Qi et.al. ECSQARU2007, IJIS 2011) 

‒ Idea: search the weights by a binary search 

Call a standard DL reasoner to check inconsistency 

‒ A system called PossDL has been implemented  

 A tableaux algorithm (Qi and Pan ASWC 2008) 

‒ Idea: extending classical tableaux algorithm for DL ALC 

A weight is attached to a concept name or a role name 

‒ No implementation is done 

 

 

 

 



Generalizations of Possibilistic 
Description Logics 

 Linear order inference (Qi et.al. ECSQARU2007, IJIS 2011) 

‒ Algorithm idea: compute the inconsistency degree and remove 
axioms whose weights are equal to it 

Call a standard DL reasoner to check inconsistency 

‒ PossDL provides functionalities to compute consequences of linear 
order inference 

 Lexicographic inference (Du and Qi RR 2008) 

‒ Algorithm idea: compile the DL axioms to propositional programs 

‒ No implementation has been done 

 

 

 

 


