

Reasoning with Inconsistent and Uncertain Ontologies

Guilin Qi

Southeast University

China gqi@seu.edu.cn

Reasoning Web 2012 September 05, 2012

Motivation

Ontologies are not always perfect

□ Challenging problem

- Deal with both uncertainty and inconsistency
 - Ontology learning, ontology matching
 - Application domain: medicine and biology

□ Solutions: probabilistic or possibilistic description logics

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- **Possibilistic description logics and its extension**
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

Probabilistic logic vs possibilistic logic

- □ Probabilistic description logics
- **Possibilistic description logics and its extension**
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

Probabilistic Logic

- □ There are several versions of probabilistic logic
- □ We consider Nilsson's probabilistic logic (AI'86)
- \Box Consider a set of sentences ${\mathcal L}$
 - Each sentence S is attached with two sets of *possible worlds*

Worlds in which S is true and worlds in which S is false

- \Box Probability of a sentence **S**
 - Ω is the set of all possible worlds
 - $P(S)=P(\{\omega \in \Omega \mid S \text{ is true in } \omega\})$
- □ Formula: (S,*a*)
 - $\mathbf{P}(\mathbf{S}) = a$
 - Usually, we only know probabilities of some sentences

Probabilistic Logic (Cont.)

Example

Consider $\{p, p \rightarrow q, q\}$, there are four worlds

	ω_1	ω ₂	ω ₃	ω ₄
р	true	true	false	false
p→q	true	false	true	true
q	true	false	true	false

Probabilistic Logic (Cont.)

Probabilistic entailment

- Given: probabilities of sentences in a set of sentences ${\mathcal B}$
- Determine: probability of a sentence \boldsymbol{S}
- \Box Special case: $\mathscr{B}=\{p, p \rightarrow q\}$ and S=q

 $P(p \rightarrow q) + P(p) - I \leq P(q) \leq P(p \rightarrow q)$

The probabilistic entailment problem can be solved by linear programming methods

Probabilistic Logic (Cont.)

Properties

- P(Ω)=1, Ω is the set of all possible worlds
- P(⊥)=0
- If $Mod(S \land T) = \emptyset$, then $P(S \lor T) = P(S) + P(T)$
- $P(S \lor T) = P(S) + P(T) P(S \land T)$
- $P(\neg S)=1-P(S)$
- Conditional probability
 - $P(T | S) = P(S \land T) \setminus P(S)$

Events

- A set of basic events $\Phi = \{p_1, \dots, p_l\}$
- $-\rho_i \mid \bot, \top \mid \neg \phi \mid \phi \land \psi$
- \Box Conditional constraint: $(\psi|\phi)$ [I,u], I, $u \in [0,1]$
 - E.g. (fly|bird)[0.95,1]
- Probabilistic formula
 - (ψ | ϕ) [I,u] | $\neg \phi$ | $\phi \land \psi$
 - E.g. ¬(bird|ostrich)[1,1]
- $\square \text{ Logical constraint: } \psi \Leftarrow \phi$
- \Box Probabilistic knowledge base KB=(*L*,*P*)
 - L is a finite set of logical constraints
 - P is a finite set of conditional constraints
 - $\varepsilon_1 \neq \varepsilon_2$ for any two distinct $(\varepsilon_1)[I_1,u_1], (\varepsilon_2)[I_2,u_2] \in P$

Example

- KB=({bird \leftarrow eagle, feathers \leftarrow bird},{(fly|bird)[0.95,1]})
- − bird ⇐ eagle: all eagles are birds
- feathers ⇐ bird: all birds have feathers
- (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95

 $\hfill \Box$ World: a truth assignment to the basic events

- Associates with every basic event a binary truth value
- Can be extended to all events by induction as usual
- $I_{\!\Phi}$ denotes the set of all worlds for Φ
- □ Model: *I* is a model of ϕ iff *I*(ϕ)=true
 - Denoted as $I \vDash \phi$
 - *I* is a model of a set of events $L(I \models L)$ iff I is a model of all $\phi \in L$
- \Box Satisfiability: ϕ is satisfiable iff a model of ϕ exists
- □ Logical consequence: $\phi \models \psi$ iff $I(\phi)$ =true implies $I(\psi)$ =true

- \square Probabilistic interpretation $\it Pr$ a probability function on $\it I_{\Phi}$
 - $Pr(\phi)$: sum of all Pr(I) such that $I \models \phi$
- Conditioning:
 - $Pr(\psi \mid \phi)$: $Pr(\psi \land \phi) / Pr(\phi)$ with $Pr(\phi) > 0$
 - $Pr_{\phi}(I)$: $Pr(I)/Pr(\phi)$ with $I \vDash \phi$ and 0 for other I
- □ Truth of logical constraints and probabilistic formulas
 - $Pr \models \psi \Leftarrow \phi$ iff $Pr(\phi) = Pr(\psi \land \phi)$ iff $Pr \models (\psi \mid \phi)[1,1]$
 - $Pr \models (\psi \mid \phi)[I,u]$ iff $Pr(\phi)=0$ or $Pr(\psi \mid \phi) \in [I,u]$
 - $Pr \vDash \neg \mathsf{F} \text{ iff not } Pr \vDash \mathsf{F}$
 - $Pr \vDash F \land G \text{ iff } Pr \vDash F \text{ and } Pr \vDash G$
- Satisfiability and logical consequences can be defined as usual

- □ Tightest logical consequence: KB $\models_{tight} (\psi | \phi)[I,u]$ iff
 - Every model of $L \cup P$ is a model of $(\psi \mid \phi)[I,u]$ and
 - I is the infimum of $Pr(\psi | \phi)$ subject to all models Pr of $L \cup P$ with $Pr(\phi) > 0$
 - u is the supremum of $Pr(\psi \mid \phi)$ subject to all models Pr of $L \cup P$ with $Pr(\phi) > 0$
- □ Note: when $L \cup P \Vdash \bot \leftarrow \phi$ then [l,u] is [1,0]
- □ Property 1: a logical constraint $\psi \in \phi$ has the same meaning as the conditional constraints $(\psi \mid \phi)[1,1]$
- Property 2: model-theoretical logical entailment in probabilistic logic generalizes model-theoretical entailment in ordinary propositional logic

- $\Box KB = (\{bird \leftarrow eagle, feathers \leftarrow bird\}, \{(fly|bird)[0.95, 1]\})$
 - − bird ⇐ eagle: all eagles are birds
 - feathers ⇐ bird: all birds have feathers
 - (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95
- □ Logical consequences of KB
 - KB ⊫ (feathers | bird)[1,1]
 - KB ⊫ (fly|bird)[0.95,1]
 - KB ⊫ (feathers | eagle)[1,1]
 - KB ⊫ (fly | eagle)[0,1]

Probabilistic properties of being able to fly is not inherited from birds to eagles

- □ KB=({bird ← ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], (fly|ostrich)[0,0.05])
 - $(\psi \mid \phi)[1,1]$ is interpreted as $\psi \leftarrow \phi$
- □ Logical consequences of KB
 - KB ⊫ (legs|bird)[1,1]
 - KB ⊫ (fly|bird)[1,1]
 - KB ⊫ (legs|ostrich)[1,0]
 - KB ⊫ (fly ostrich)[1,0]

There is a local inconsistency

5.T U 東南大學 1902 1902 1902

- \Box Solution: interpret ($\psi \mid \phi$)[1,1] as a default rule
 - Define probability rankings
- \Box Probability ranking κ maps Pr to $\{0,1,...\} \cup \{\infty\}$
 - $\kappa(Pr)=0$ for at least one Pr
 - If F is satisfiable, $\kappa(F) = \min\{\kappa(Pr) \mid Pr \models F\}$
 - Otherwise, $\kappa(F) = \infty$
- \Box *Pr* verifies ($\psi \mid \phi$)[l,u] iff *Pr*(ϕ)>0 and *Pr* \models ($\psi \mid \phi$)[l,u]
 - *Pr* falsifies $(\psi \mid \phi)[l,u]$ iff *Pr*(ϕ)>0 and *Pr* \neq $(\psi \mid \phi)[l,u]$
- \Box P tolerates C under L: LUP has a model that verifies C
 - P is under L in conflict C with iff no model of $L \cup P$ verifies C

- \Box κ is admissible with *KB* =(*L*,*P*)
 - $\kappa(\neg(\psi | \phi)[1,1]) = ∞$ for all $\psi \leftarrow \phi \in L$ and
 - $\kappa(\phi > 0) < \infty \text{ and } \kappa(\phi > 0 \land (\psi | \phi)[l,u]) < \kappa(\phi > 0 \land \neg(\psi | \phi)[l,u]) \text{ for all}$ $(\psi | \phi)[l,u] \in P \qquad \qquad \text{Minimal } \kappa(Pr) \text{ of all } Pr \text{ verifying } (\psi | \phi)[l,u]$

 \Box z-partition of *KB*: unique ordered partition (P_0, \dots, P_k) of P

SI *F* in a higher rank is more specific and preferred

- Each P_i , $0 \le i \le k$, is the set of all $C \in \bigcup_{j=i}^k P_j$ tolerated under L by $\bigcup_{j=i}^k P_j$
- \Box *Pr* is lex-preferable to *Pr* ' iff some *i* exists such that
 - $|\{C \in P_i \mid Pr \models C\}| > |\{C \in P_i \mid Pr' \models C\}| \text{ and }$
 - $|\{C \in P_j | Pr \models C\}| = |Pr' \models C| \text{ for all } i < j \le k$
- Lex-minimal model *Pr* of *P*. del of *F* is lex-preferable to *Pr Pr* satisfies more constraints in rank i than

Pr satisfies more constraints in rank i than and Pr ' and satisfies the same constraints in ranks higher than i as Pr '

- Lex-entailment: (ψ | φ)[l,u] is a lex-consequence of KB, denoted KB ⊫^{lex} (ψ | φ)[l,u] iff
 - Each lex-minimal model of $L \cup \{\phi > 0\}$ satisfies $(\psi \mid \phi)[I,u]$
- □ Tight lex-entailment: (ψ | φ)[l,u] is a tight lex-consequence of KB, denoted as KB ⊫^{lex,tight} (ψ | φ)[l,u] iff
 - l=inf $Pr(\psi | \phi)$ (resp., u=sup $Pr(\psi | \phi)$) subject to all lex-minimal models Pr of $LU\{\phi>0\}$

- □ KB=({bird ← ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], (fly|ostrich)[0,0.05])
 - $(\psi \mid \phi)[1,1]$ is interpreted as $\psi \leftarrow \phi$ (default rule)
- □ Logical consequences of KB
 - KB ⊫ (legs|ostrich)[1,0]
 - KB ⊫ (fly| ostrich)[1,0]

Lex-consequences of KB

- KB ⊫ (legs|ostrich)[1,1]
- KB ⊫ (fly ostrich)[0,0.05]

Possibility Theory

\Box Possibility distribution $\pi: \Omega \rightarrow L$

- Ω represents universe of discourse
- $(L_r <)$ is a bounded total ordered scale
- $-\pi(\omega)$ ≥ π(ω')means ω is a priori more plausible than ω'
- Possibility measure and necessity measure

 $\Pi(A) = \sup\{\pi(\omega) \colon \omega \in A\}$

 $N(A)=1-\Pi(\neg A)$

Property

- $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$
- $\mathsf{N}(\mathcal{A} \cap \mathcal{B}) = \min(\mathsf{N}(\mathcal{A}), \mathsf{N}(\mathcal{B}))$

Possibilistic Logic

Syntax

- Possibilistic formula: (ϕ ,*a*) denotes *certainty degree* of $\phi \ge a$
 - Example: (eat_fish(Tweety), 0.46) We are somewhat certain that Tweety eats fish
- Possibilistic knowledge base: a set of possibilistic formulae B= $\{(\phi_i, a_i) : i=1, \dots, n\}$

Example

- p: there were human beings in Mars before
- q: scientists have detected some strange signals from outer space
- r: there are aliens in other planets
- s: the ancestors of human are gorillas
- B={(p, 0.4), (q→r, 1), (s, 0.8), (¬s→¬r, 0.9)}

Possibilistic Logic (Cont.)

□ Inconsistency degree of B

- B*: classical base of B
- $B_{\geq a} = \{ \phi \in B^* | (\phi, b) \in B, B \geq a \}$
- Inc(B)=max{a: $B_{\geq a}$ is inconsistent}

What is Inc(B)?

Possibilistic Logic

Possibilistic inference

- − ϕ is a plausible consequence of B, denoted B⊢_P ϕ iff B_{>inc(B)}⊢ ϕ
- (ϕ , *a*) is a consequence of B, denoted B⊢(ϕ , *a*) iff *a*>Inc(B), and B_{≥ a} ⊢ ϕ
- ϕ is a possibilistic consequence of B to degree a, denoted $B \vdash_{\pi} (\phi, a)$ iff
 - $\bigstar \mathbf{B}_{\geq a} \text{ is consistent}$
 - $\mathbf{A} \mathbf{B}_{\geq a} \vdash \mathbf{\phi}$
 - ♦ For all b > a, $\mathsf{B}_{\geq b} \nvDash \phi$

Only formulas whose weights are greater than or equal to the inconsistency degree are used

Possibilistic Logic (Cont.)

Example

- $B=\{(q,1), (q \rightarrow r, 1), (\neg s \rightarrow \neg r, 0.9), (s, 0.9), (p, 0.4)\}$
- B⊢_π(q, 1)
- B⊢_π(q→r, 1)
- Β⊭_π(p, 0.4)

Drowning effect

Possibilistic Logic

Semantics

- Possibility distribution $\pi: \Omega \rightarrow [0,1]$
 - $\pi(\omega)=1: \omega$ is totally possible
 - $\pi(\omega)=0: \omega$ is impossible
 - $\pi(\omega)>0: \omega$ is possible
- □ Normal possibility distribution π : there exists one world ω such that $\pi(\omega)=1$
- □ Satisfaction: π satisfies (ϕ ,*a*), denoted $\pi \models (\phi,a)$, iff N(ϕ)≥*a*
 - π⊨ B iff π⊨(ϕ ,*a*), for all (ϕ ,*a*)∈ B
 - $B \models (\phi, a)$ iff for every $\pi \models B$, we have $\pi \models (\phi, a)$

Possibilistic Logic (Cont.)

□ Possibilistic knowledge base B={(ϕ_1, a_1), ..., (ϕ_n, a_n)} ⇒ *a* unique possibility distribution

 \Box A possibility distribution \Rightarrow a possibilistic knowledge base

- Π(φ)=max{π(ω): ω ⊨φ}
- N(φ)=1−Π(¬φ)

Possibilistic Logic

□ Soundness and completeness

- − B⊢(ϕ , *a*) iff B⊨(ϕ ,*a*)
- B⊢_Pφ iff N_B(φ)>Inc(B)
- B⊢_π(φ, *a*) iff N_B(φ)≥*a* and *a* > Inc(B)

Generalizations of Possibilistic Logic

Linear-order inference

- B is stratified as $(S_1, ..., S_k)$
 - \clubsuit Formulas in S_i have the same weights
 - ***** The weight of formulas in S_i is greater than that of formulas in S_j with i<j
 - $\bigstar \mathsf{K}_{\mathsf{LO},\mathsf{B}} = \cup \mathsf{S'}_{\mathsf{i}} \text{ with } \mathsf{S'}_{\mathsf{i}} = \mathsf{S}_{\mathsf{i}} \text{ if } \mathsf{S'}_1 \cup \ldots \cup \mathsf{S'}_{\mathsf{n-1}} \cup \mathsf{S}_{\mathsf{i}} \text{ is consistent}$
 - and S' $_i$ =Ø otherwse
 - $\bigstar B \vdash_{\mathsf{LO}} \phi \text{ iff } \mathsf{K}_{\mathsf{LO},\mathsf{B}} \vdash \phi$

$\Box \text{ Example: B=} \{(q,1), (q \rightarrow r, 1), (s \rightarrow \neg r, 0.9), (s, 0.9), (t,0.9), (p, 0.4)\}$

- B⊢_{LO} p
- B⊬_{LO}t

Generalizations of Possibilistic Logic

Lexicographic inference

- B is stratified as $(S_1, ..., S_k)$
- For $(S'_{1},...,S'_{k})$ and $(S''_{1},...,S''_{k})$ which are subsets of $(S_{1},...,S_{k})$
- $(S'_1,...,S'_k)$ is preferred to $(S''_1,...,S''_k)$ iff some i exists such that $|S'_i| > |S''_i|$ and $|S'_j| = |S''_j|$ for all $i < j \le k$
- $B \vdash_{lex} \phi$ iff $S'_1 \cup ... \cup S'_k \vdash \phi$ for all lexi-preferred subset $(S'_1, ..., S'_k)$ of $(S_1, ..., S_k)$

□ Example: B={(q,1), (q→r, 1), (s→¬r, 0.9), (s, 0.9), (t,0.9), (p, 0.4)}

- B⊢_{Lex} p
- B⊢_{Lex}t

What are lexi-preferred subsets of $(S_1,..., S_k)$?

Comparison

Properties

- Probabilistic logic
 - ♦ If Mod(S \land T)=Ø, then P(S \lor T)=P(S)+P(T)
 - $\mathbf{P}(\mathbf{S} \setminus \mathbf{T}) = \mathbf{P}(\mathbf{S}) + \mathbf{P}(\mathbf{T}) \mathbf{P}(\mathbf{S} \wedge \mathbf{T})$
 - ♦ P(¬S)=1-P(S)
- Possbilistic logic
 - $+ \Pi(A \cup B) = \max(\Pi(A), \Pi(B))$
 - $\bigstar N(A \cap B) = min(N(A), N(B))$

Types of uncertainty

- Probabilistic logic: quantitative
- Possibilistic logic: qualitative

Comparison

ST UN 東南大学 1905 1907 東京大学

Inconsistency

- Probabilistic logic
 - Use probabilistic semantics
- Possbilistic logic
 - Use standard first-order semantics

Example

- KB=({bird ⇐ ostrich},{(legs|bird)[1,1], (fly|bird)[1,1], (fly|ostrich)[0,0.05]) is inconsistent under probabilistic semantics
 - (fly|ostrich)[0,0.05] can be inferred under probabilistic default semantics
- KB'={(ostrich→bird, 1),(bird→legs,1), (bird→fly, 1), (ostrichfly→fly, 0.05) is not inconsistent under possibilistic semantics
 - (ostrich \rightarrow fly,1) can be inferred under possibilistic semantics

Probabilistic logic vs possibilistic logic

Probabilistic description logics

- Description logics
- Probabilistic description logics
- □ Possibilistic description logics and its extension
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

Probabilistic logic vs possibilistic logic

Probabilistic description logics

- Description logics
- Probabilistic description logics
- □ Possibilistic description logics and its extension
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

STUN 東南大學 1902 1902 東京大学

Description logics

- Are (mostly) decidable fragments of first-order predicate logic
- Provide logical underpinning of W3C standard OWL
- Building blocks
 - Concepts (unary predicates/formulae with one free variable)
 - ✤ E.g., Person, Lawer ⊔ Doctor
 - Roles (binary predicates/formulae with two free variables)
 - ✤ E.g., hasChild
 - Individuals (constants)
 - ✤ E.g., John, Mary

Description Logics (Syntax)

Description languages

- Defining complex concepts: sets of individuals
- Defining complex roles: binary relations on individuals
- Complex concepts are built by
 - Atomic concepts: Tissue, Heart
 - Constructors: Tissue⊓∃part-of.Heart

Complex roles are built by

- Atomic roles: part-of, has-location
- Constructors: HasFather

Description Logics (Semantics)

- □ Interpretation: $I=(\Delta^{I}, I)$
 - Domain: Δ^{I}
 - Assignment function .^I

Description Logics (Cont.)

\Box Interpretation: I=(Δ^{I} ,.^I)

Construct	Syntax	Example	Semantics
Atomic concept	Α	Heart	$A^{I} \subseteq \Delta^{I}$
Atomic role	R	part-of	$\mathbf{R}^{\mathbf{I}} \subseteq \Delta^{\mathbf{I}} \times \Delta^{\mathbf{I}}$
Negation	¬ C	– Heart	$\Delta^{\mathbf{I}} \setminus \mathbf{C}^{\mathbf{I}}$
Conjunction	C ⊓ D	LawyernDoctor	
Value restriction	∀ R.C	∀ part-of.Wood	{a ∀b. (a,b) ∈R ^I , (a,b) ∈C ^I }
•••	•••	•••	•••

Description Logics (Ontology)

- □ TBox T: defining terminology of application domain
 - Inclusion assertion on concept : $C \sqsubseteq D$

Pericardium ⊑ Tissue ⊓ ∃ **part-of.Heart**

- Inclusion assertion on roles: $R \sqsubseteq S$

```
Part-of ⊑ has-location
```

□ ABox A: stating facts about a specific "world"

- membership assertion: C(a) or R(a,b)

HappyMan(Bob), HasChild(Bob, Mary)

Description Logics(Semantics)

- Given an interpretation I
- □ Semantics of TBox axioms
 - $\mathbf{I} \vDash C \sqsubseteq D \text{ if } C^{\mathsf{I}} \subseteq D^{\mathsf{I}}$
 - $\mathbf{I} \vDash R \sqsubseteq S \text{ if } R^{\mathsf{I}} \subseteq S^{\mathsf{I}}$
- □ Semantics of ABox assertions
 - $\mathbf{I} \models C(a) \text{ if } a^{\mathbf{I}} \in C^{\mathbf{I}}$
 - $I \models R(a,b) \text{ if } (a^{I},b^{I}) \in R^{I}$

Description Logics(Semantics)

- \Box Model of an ontology $O = \langle T, A \rangle$
 - I is a model of O if it satisfies all axioms in T and all assertions in A
- □ Concept satisfiability
 - Concept C is satisfiable in O if C^{I} is nonempty for some model I of O
- Ontology Entailment
 - $O \models \phi$ iff $I \models \phi$ for all models I of O

Description Logics (Semantics)

Incoherent ontology: ontology with at least one unsatisfiable concept

- Example: {PhDStudent \sqsubseteq Student,

PhDStudent \sqsubseteq Employee,

Student ⊑¬Employee

□ Inconsistent ontology: ontology without a model

- Example: {PhDStudent \sqsubseteq Student,

PhDStudent \sqsubseteq Employee,

Student ⊑¬Employee,

PhDStudent(John)}

Incoherent ontology can be consistent!

□ Example: DICE ontology

- Brain⊑CentralNervousSystem □ ∃systempart.NervousSystem □
 BodyPart □ ∃ region.HeadAndNeck □ ∀region.HeadAndNeck
- CentralNervousSystem⊑NervousSystem
- BodyPart ⊑¬NervousSystem or

DisjointWith(BodyPart,NervousSystem)

Example from Foaf

- Person(timbl)
- Homepage(timbl, <u>http://w3.org/</u>)
- Homepage(w3c, <u>http://w3.org/</u>)
- Organization(w3c)
- InverseFunctionalProperty(Homepage)
- DisjointWith(Organization, Person)

Example from OpenCyc

- ArtifactualFeatureType(PopulatedPlace)
- ExistingStuffType(PopulatedPlace)
- DisjointWith(ExistingObjectType,ExistingStuffType)
- ArtifactualFeatureType
 ExistingObjectType

Deficiency of DLs

- Cannot express uncertain information

I am quite sure that a heart patient has a private health insurance

I am a little certain that Tom is a heart patient

- Cannot deal with inconsistency

Syntax and semantics of DLs need to be extended

Probabilistic logic vs possibilistic logic

Probabilistic description logics

- Description logics
- Probabilistic description logics
- **Possibilistic description logics and its extension**
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

Probabilistic Description Logics -Syntax

- \Box Classification of individuals: a set of classical individuals $\mathbf{I}_{\mathcal{C}}$ and a finite set of probabilistic individuals $\mathbf{I}_{\mathcal{P}}$
- □ Basic classification concept (basic c-concept): DL concepts that are free of probabilistic individuals from \mathbf{I}_P
- □ c-concept:
 - Every basic concept is a c-concept
 - If C and D are C-concept, $\neg C$ and $C \neg D$ are c-concepts
- \Box Conditional constraint: (D | C)[I,u]
 - C and D are c-concepts
 - Meaning: probability of D given C lies between I and u

Example

A terminological probabilistic knowledge base

ax₁: (HighBloodPressure | Heartpatient) [1,1]

ax₂: (¬HasHighBloodPressure | PacemakerPatient) [1,1]

ax₃: (MalePacemakerPatient | PacemakerPatient) [0.4,1]

ax₄: (Male | PacemakerPatient) [0.4,1]

 ax_5 : PacemakerPatient \sqsubseteq Heartpatient

Probabilistic Description Logics -Syntax

□ PTBox *PT*=(*T,P*)

- T: classical DL knowledge base
- P: is a finite set of conditional constraints

□ PABox P_o

- o is a probabilistic individual in \mathbf{I}_{P}
- $-P_o$ is a finite set of conditional constraints

 - $(D \mid T)[I,u] \in P_o: D(o)$ holds with a probability between I and u
 - $(∃R{o'}] | C)[I,u] ∈ P_o: if C(o) holds then R(o,o') holds with a probability between I and u$

Example

A terminological probabilistic knowledge base

ax₁: (HighBloodPressure | Heartpatient) [1,1]

ax₂: (¬HasHighBloodPressure | PacemakerPatient) [1,1]

ax₃: (MalePacemakerPatient | PacemakerPatient) [0.4,1]

ax₄: (Male | PacemakerPatient) [0.4,1]

A PABox for the probabilistic individual Tom

 ax_6 : (PacemakerPatient | \top) [0.8,1]

Probabilistic Description Logics -Syntax

□ Probabilistic knowledge base KB=(*T*,*P*, (P_o)_{o∈**I**_P})

- *P*: probabilistic knowledge about randomly chosen individuals
 Conditional constraints in P are default statements
- $-P_o$ probabilistic knowledge about the concrete individual o
 - * Conditional constraints in every P_o with $o \in \mathbf{I}_P$ are strict statements

- □ World *I*: a set of basic c-concepts $C \in C$ such that $\{C(i) \mid C \in I\}$ U $\{\neg C(i) \mid C \in C \setminus I\}$ is satisfiable
 - \mathcal{C} is the set of all basic c-concepts
 - *i* is a new individual
 - $\mathcal{F}_{\mathcal{C}}$ denotes the set of all worlds relative to \mathcal{C}
- □ Model of a TBox: *I* is a model of $T(I \models T)$ iff $T \cup \{C(i) \mid C \in I\} \cup \{\neg C(i) \mid C \in C \setminus I\}$ is satisfiable
- \Box Model of a c-concept: $I \models C$
 - $I \models C$ iff $C \in I$, C is a basic c-concept
 - $-I \models \neg C$ iff $I \models C$ does not hold
 - $-I \models C \sqcap D \text{ iff } I \models C \text{ and } I \models D$

Probabilistic Description Logics -Semantics

 \Box Probabilistic interpretation *Pr*: a probability function on \mathcal{Y}_c

- \mathcal{F}_c denotes the set of all worlds relative to \mathcal{C}
- Pr(C): sum of all Pr(I) such that $I \models C$
- $\Box Pr \models T: I \models T \text{ for every } I \in \mathcal{G}_{\mathcal{C}} \text{ such that } Pr(I) > 0$
- $\Box Pr \models (D | C)[l,u]: Pr(C)=0 \text{ or } Pr(D | C) \in [l,u]:$
 - $Pr(D|C) = Pr(D \sqcap C) / Pr(C)$
- $\Box Pr \vDash \mathcal{F} : I \vDash F \text{ for every } F \in \mathcal{F}$
 - \mathcal{F} is a set of conditional constraints

Probabilistic Description Logics -Semantics

- $\Box Pr \text{ verifies } (D | C)[l,u] \text{ iff } Pr(C)=1 \text{ and } Pr \vDash (D | C)[l,u]$
 - Pr falsifies (D|C)[I,u] iff Pr(C)=1 and $Pr \not\models (D|C)[I,u]$
- $\Box \mathcal{F}$ tolerates (D|C)[l,u] under $T: T \cup \mathcal{F}$ has a model that verifies (D|C)[l,u]
- □ Consistency of a PTBox *PT*=(*T*,*P*)
 - T is satisfiable
 - There exists an ordered partition $(P_0, ..., P_k)$ of P such that
 - ♦ Each P_i , $0 \le i \le k$, is the set of all $F \in P_i \cup ... \cup P_k$ tolerated under T by $P_i \cup ... \cup P_k$
 - Idea of the partition: when in conflict, remove conditional constraints in the lower strata
 - $\boldsymbol{\bigstar}$ The partition follows the rule of maximum specificity
 - ✤ Called z-partition of PT

Example

Probabilistic Description Logics -Semantics

- \Box *Pr* is lex-preferable to *Pr* ' iff some *i* exists such that
 - $|\{F \in P_i \mid Pr \models F\}| > |\{F \in P_i \mid Pr' \models F\}| \text{ and }$
 - $|\{F \in P_i | Pr \models F\}| = |\{F \in P_i | Pr' \models F\}| \text{ for all } j < i \le k$
- Lex-minimal model *Pr* of *F*: no model of *F* is lex-preferable to *Pr*
- □ Lex-entailment: (D | C)[I,u] is a lex-consequence of \mathcal{F} under *PT*, denoted $\mathcal{F} \models^{Iex} (D | C)[I,u]$ iff
 - Each lex-minimal model of $T \cup \mathcal{F} \cup \{(C \mid \top)[1,1]\}$ satisfies $(D \mid C)[1,u]$
- □ Tight lex-entailment: (D | C)[l,u] is a tight lex-consequence of \mathcal{F} under *PT*, denoted as $\mathcal{F} \models^{\text{lex,tight}} (D | C)$ [l,u] iff
 - l=inf $Pr(\psi | \phi)$ (resp., u=sup $Pr(\psi | \phi)$) subject to all lex-minimal models Pr of $L \cup \{\phi > 0\}$

Probabilistic Description Logics

\Box Example: the following are tight lex-consequence of *PT*

A terminological probabilistic knowledge base ax₁: (HighBloodPressure | Heartpatient) [1,1]

ax₂: (¬HasHighBloodPressure | PacemakerPatient) [1,1]

ax₃: (MalePacemakerPatient | PacemakerPatient) [0.4,1]

 P_0

 ax_5 : PacemakerPatient \sqsubseteq Heartpatient

- (HighBloodPressure | Male □ Heartpatient) [1,1]
- (MalePacemakerPatient | PacemakerPatient) [0.4,1]

But (HasHighBloodPressure | PacemakerPatient) [1,1] is not inferred

Log-linear Description Logics

□ Knowledge base K=(K^D, K^U)

- K^D: a classical DL knowledge base
- K^U : a set of weighted axioms (like possibilistic DLs)

Semantics

- Based on probability distributions over consistent knowledge bases

$$K^{D} \subseteq K' \subseteq K^{D} \bigcup \{c : (c, w_{c} \in K^{U})\}$$
$$\Pr_{K}(K') = \begin{cases} \frac{1}{Z} \exp(\sum_{\{c \in K' \setminus K^{D}\}} w_{c}) & \text{if } K' \text{ consistent} \\ 0 & \text{otherwise} \end{cases}$$

 Marginal probability of an axiom: sum of the probabilities of theconsistent knowledge bases containing it

Probabilistic logic vs possibilistic logic

□ Probabilistic description logics

Possibilistic description logics and its extension

Revising ontologies in description logics

□ Mapping repair in description logics

Possibilistic Description Logics

Note : Inference is non-trivial when inconsistency exists Certainty degree is attached to inferred axiom

Possibilistic Description Logics

- \Box Possibilistic axiom: (ϕ , *a*), ϕ is a DL axiom
- \Box Possibilistic DL knowledge base B={(ϕ_i, a_i): i=1,...,n}
- □ Classical DL Base B*={ ϕ : (ϕ , *a*)∈B}
- $\Box \alpha$ -cut of B: B_{$\geq\alpha$}={ $\phi \in B^*$: (ϕ, b) $\in B$, and $b \geq a$ }
- \Box Inconsistency degree: Inc(B)=max{ $a: B \ge a$ is inconsistent}
- **Example:**

-Syntax

- B={(Tool(amilcare), 1), (Application(cavido), 0.46),
 - (Tool(cavido), 0.46), (disjoint(Tool, Application), 0.3)

Possibilistic Description Logics -Semantics

- **D** Possibility distribution π : $I \rightarrow [0,1]$, I is the set of all interpretations
 - $\pi(\textbf{\textit{I}})$ represents the degree of compatibility of I with available information
 - $\pi(I_1) > \pi(I_2)$: It is preferred to I_2

 \Box Possibility measure Π

 $\Pi(\phi) = \max\{\pi(I): I \in I, I \vDash \phi\}$

□ Necessity Measure N:

 $N(\phi)=1-\max\{\pi(I): I \nvDash \phi\}$

Example

A possibilistic DL knowledge base $ax_1:$ (Heartpatient \sqsubseteq HighBloodPressure, 1.0) $ax_2:$ (PacemakerPatient $\sqsubseteq \neg$ HighBloodPressure, 1.0) $ax_3:$ (HeartPatient $\sqsubseteq \exists$ HasHealthInsurance.PrivateHealth,0.9) $ax_4:$ (PacemakerPatient(Tom), 0.8)

□ Inference services: instance checking

```
A possibilistic DL knowledge base
ax_1: (Heartpatient \sqsubseteq HighBloodPressure, 1)
ax_2: (PacemakerPatient \sqsubseteq \negHighBloodPressure, 1)
ax_3: (HeartPatient \sqsubseteq \existsHasHealthInsurance.PrivateHealth,0.9)
ax<sub>4</sub>: (PacemakerPatient(Tom), 0.8)
ax_5: (HeartPatient(Tom),0.5)
ax_6: (HeartPatient \sqsubseteq MalePacemakerPatient, 0.4)
```

HighBloodPressure(Tom)

Possibilistic Description Logics

□ Inference services: instance checking with weight

A possibilistic DL knowledge base

```
ax_1: (Heartpatient \sqsubseteq HighBloodPressure, 1)
```

```
ax_2: (PacemakerPatient \Box \negHighBloodPressure, 1)
```

```
ax_3: (HeartPatient \sqsubseteq \exists HasHealthInsurance.PrivateHealth,0.9)
```

```
ax<sub>4</sub>: (PacemakerPatient(Tom), 0.8)
```

```
ax<sub>5</sub>: (HeartPatient(Tom),0.5)
```

```
ax_6: (HeartPatient \sqsubseteq MalePacemakerPatient, 0.4)
```

¬ HighBloodPressure(Tom): 0.8

Reduction

Algorithms

A black-box algorithm (Qi et.al. ECSQARU2007, IJIS 2011)

- Idea: search the weights by a binary search
 - Call a standard DL reasoner to check inconsistency
- A system called PossDL has been implemented
- □ A tableaux algorithm (Qi and Pan ASWC 2008)
 - Idea: extending classical tableaux algorithm for DL ALC
 - **A weight is attached to a concept name or a role name**
 - No implementation is done

Generalizations of Possibilistic Description Logics

Linear order inference (Qi et.al. ECSQARU2007, IJIS 2011)

- Algorithm idea: compute the inconsistency degree and remove axioms whose weights are equal to it
 - ✤ Call a standard DL reasoner to check inconsistency
- PossDL provides functionalities to compute consequences of linear order inference
- Lexicographic inference (Du and Qi RR 2008)
 - Algorithm idea: compile the DL axioms to propositional programs
 - No implementation has been done