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Motivation

[ Ontologies are not always perfect

Uncertainty

Document Ontology
classification enrichment

Ontology
matching

 Challenging problem

— Deal with both uncertainty and inconsistency
+** Ontology learning, ontology matching

¢ Application domain: medicine and biology

1 Solutions: probabilistic or possibilistic description logics
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Probabilistic Logic

[ There are several versions of probabilistic logic
] We consider Nilsson’s probabilistic logic (Al’86)
(1 Consider a set of sentences £
— Each sentence S is attached with two sets of possible worlds

+* Worlds in which S is true and worlds in which S is false

] Probability of a sentence S

— Q is the set of all possible worlds

— P(S)=P(lwe Q|S is true in ®})
3 Formula: (S,a)

— P(S)=a

— Usually, we only know probabilities of some sentences




Probabilistic Logic (Cont.)

1 Example
Consider {p, p—q, g}, there are four worlds
®4 ®, ®3 g4
P true true false false

P—( true false true true
q true false  true false




Probabilistic Logic (Cont.)

[ Probabilistic entailment
— Given: probabilities of sentences in a set of sentences B

— Determine: probability of a sentence S

 Special case: B={p, p—q} and S=q

P(p—q)+ P(p)-l <P(q) = P(p—0q)

] The probabilistic entailment problem can be solved by linear
programming methods



Probabilistic Logic (Cont.)

J Properties
— P(Q )=1, Q is the set of all possible worlds

— P(L)=0

— If Mod(S A T)=0, then P(S V T)=P(S)+P(T)
— P(SVT)=P(SHP(T)-P(SAT)

— P(—=8)=1-P(S)

] Conditional probability
— P(T |S)=P(SAT)\P(S)



Interval Probabilistic Logic

] Events
— A set of basic events ®={p,,"*-,p}
- ol L, T]-¢]dAw

[ Conditional constraint: (y|d) [l,ul, I, ue [0,1]
— E.g. (fly|bird)[0.95,1]

(] Probabilistic formula

— (ylp) DLul | =d | dAY
— E.g. —(bird|ostrich)[1,1]

[ Logical constraint: y < ¢
] Probabilistic knowledge base KB=(L,P)

— L is a finite set of logical constraints
— Pis a finite set of conditional constraints
— g# &, for any two distinct (¢,)[l,,u,], (&,)l,,u,JEP




Interval Probabilistic Logic

1 Example
— KB=(]bird < eagle, feathers < bird}{(fly|bird)[0.95,1]})

— bird < eagle: all eagles are birds
— feathers < bird: all birds have feathers

— (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95



Interval Probabilistic Logic

J World: a truth assignment to the basic events
— Associates with every basic event a binary truth value
— (Can be extended to all events by induction as usual

— Iy, denotes the set of all worlds for @

[ Model: /is a model of ¢ iff /($p)=true
— Denoted as /= ¢
— I is a model of a set of events L (/= L) iff | is a model of all €L

U Satisfiability: ¢ is satisfiable iff a model of ¢ exists
 Logical consequence: ¢ = v iff /(d)=true implies /(y)=true



Interval Probabilistic Logic

 Probabilistic interpretation Pr. a probability function on [;
— PA$): sum of all Pr(/) such that /= ¢

d Conditioning:
— PAy | 0): Pr(yAd)/ Pr(d) with Pr($)>0
— Pry (I): Pr(I)/Pr(¢) with /= ¢ and O for other /

d Truth of logical constraints and probabilistic formulas
— Prie vy € ¢ iff Pr(9)=Pr(yAd) iff Pr= (y | $)[1,1]
— Pri= (y | §)ILul iff Pr($)=0 or Pry | d)E[l,ul
— PrE —-Fiffnot Pre F
— PreE FAGIiff Pre Fand Pre= G

1 Satisfiability and logical consequences can be defined as
usual



Interval Probabilistic Logic

[ Tightest logical consequence: KB Iy, (w | $)IIul iff
— Every model of LU P is a model of (y | ¢)[l,u] and

— |is the infimum of Pr(y | ¢) subject to all models Pr of LU P with
Pr($)>0

— u is the supremum of Pr(y | ¢) subject to all models Pr of LUP
with Pr($)>0

3 Note: when LUP I L € ¢ then [l,u] is [1,0]

(] Property 1: a logical constraint y < ¢ has the same meaning
as the conditional constraints (y | $)[1,1]

J Property 2: model—theoretical logical entailment in
probabilistic logic generalizes model—theoretical entailment
in ordinary propositional logic



Interval Probabilistic Logic

O KB=({bird < eagle, feathers < bird} {(fly|bird)[0.95,11})

— bird < eagle: all eagles are birds
— feathers < bird: all birds have feathers

— (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95

1 Logical consequences of KB
— KB I (feathers | bird)[1,1]

— KB Ik (fly|bird)[0.95,1]
— KB Ik (feathers | eagle)[1,1]
— KB Ik (fly | eagle)[0,1]

Probabilistic properties of
being able to fly is not
inherited from birds to eagles



Interval Probabilistic Logic

0 KB=({bird < ostrich}{(legs|bird)[1,1], (fly|bird)[1,1],

(flylostrich)[0,0.05])
- (y | ¢)[1,1] is interpreted as y < ¢

[ Logical consequences of KB
— KB Ik (legs|bird)[1,1]
— KB Ik (fly|bird)[1,1]
— KB Ik (legs|ostrich)[1,0]
— KB Ik (fly| ostrich)[1,0]

There is a local inconsistency



Interval Probabilistic Logic

O Solution: interpret (y | $)[1,1] as a default rule
— Define probability rankings
[ Probability ranking ¥ maps Pr to {0,1,...}u{}

— «(Pr)=0 for at least one Pr
— If Fis satisfiable, k(F )=min{x(Pr) | Pr=F}

— Otherwise, k(F )=

Q Pr verifies (y | )[Lul iff Pr($)>0 and Pr = (y | $)l,ul
— Pr falsifies (y | ¢)[L,ul iff Pr(¢)>0 and Pr = (y | ®)[,ul

J Ptolerates Cunder L: LU P has a model that verifies C
— Pis under L in conflict C with iff no model of LU P verifies C



Interval Probabilistic Logic

d « is admissible with KB =(L,P)
— «(=(y | $)[1,1] )=co for all y & ¢ €L and
— k(¢>0)<00 and k(>0 A (v | ®[ILul) < k(d>0 A =y | ®)[I,ul) for all
(v | »[lul EP§' Minimal «(Pr) of all Pr verifying (y | $)[I,ul

[ z—partition of KB unique ordered partitio%Po,...,Pk) of P

sl Fin a higher rank is more specific and preferred

K

— Each P, 0<i<k, is the set of all C€ |J P tolerated under L by Uk P,

j=i j=i
d Pr is lex—preferable to Pr ' iff some I exists such that
- licer| Precl>licer| Pr'=cC) and
- fcer| Precl = | Pr' =) for all i<j<k

J Lex—minimal model Pr of | of Fis lex—preferable

to Pr Pr satisfies more constraints in rank i than
and Pr'and satisfies the same constraints in
ranks higher than i as Pr’




Interval Probabilistic Logic

O Lex—entailment: (y | )[l,u] is a lex-consequence of KB,
denoted KB I='*x (y | $)[1,u] iff
— Each lex—minimal model of LU{$>0} satisfies (y | $)[I,ul

O Tight lex—entailment: (y | $)[I,u] is a tight lex—consequence
of KB, denoted as KB IElextient (ys | $)[1,u] iff

— I=inf Pr(y | ¢) (resp., u=supPr(y | ¢) ) subject to all lex—minimal
models Pr of LU{$>0}



Interval Probabilistic Logic

0 KB=({bird < ostrich}{(legs|bird)[1,1], (fly|bird)[1,1],

(fly|ostrich)[0,0.05])
— (y | §)[1,1] is interpreted as y « ¢ (default rule)

[ Logical consequences of KB
— KB Ik (legs|ostrich)[1,0]
— KB I (fly| ostrich)[1,0]

J Lex—consequences of KB
— KB Ik (legs|ostrich)[1,1]
— KB I (fly| ostrich)[0,0.05]



Possibility Theory

1 Possibility distribution ©: Q—>L
— Q represents universe of discourse
— (L,<) is a bounded total ordered scale

— n(w)2 n(®")means w is a priori more plausible than &’

J Possibility measure and necessity measure

I(A)=sup{n(w): e A} N(A)=1-TI(-A)
J Property
— II(AUB)=max(II(A), II(5B))
— N(AN B)=min(N(A), N(B))



Possibilistic Logic
J Syntax

— Possibilistic formula: ($,a) denotes certainty degree of ¢=>a

» Example: (eat_fish(Tweety), 0.46) We are somewhat certain that Tweety eats
fish

— Possibilistic knowledge base: a set of possibilistic formulae
B={(¢; , a)) : i=1,---,n}
J Example
— p: there were human beings in Mars before
— (: scientists have detected some strange signals from outer space
— I: there are aliens in other planets

— S: the ancestors of human are gorillas
- B={(p1 0-4)1 (q_)rv 1)1 (Sv 0-8)1 (_IS_)_Irv 0-9)}



Possibilistic Logic (Cont.)

[ Inconsistency degree of B

— B™ classical base of B
— B.,={¢eB* (¢,b)eB,B=a}

— Inc(B)=maxfa: B, , is inconsistent}

‘1) ¢2 (|)3 S d)n-l ¢n

o, Oy O

\j: T

Inc(B)=a,
a B={(q,1), (g—r, 1), (s—™r, 0.9), (s, 0.8) ,(p, 0.4)}

What is Inc(B)?



Possibilistic Logic

(] Possibilistic inference

— ¢ is a plausible consequence of B, denoted B¢ iff B, ;.50
— (¢, a) is a consequence of B, denoted B-(¢, a) iff a>Inc(B), and B, , +¢
— ¢ is a possibilistic consequence of B to degree a, denoted Bl-n(d), a) iff
“» B, is consistent
“B.. ¢

< For all b>a, B, *¢

Only formulas whose weights
are greater than or equal to the
Inconsistency degree are used



Possibilistic Logic (Cont.)
1 Example
B={(q,1), (q—r, 1), (-s—r, 0.9), (s, 0.9) ,(p, 0.4)}
— Br(q, 1)
— Br(q—r, 1)
— B¥_(p, 0.4)

Drowning effect



Possibilistic Logic

] Semantics
— Possibility distribution ©t: Q—[0,1]
% (w)=1: o is totally possible
< 7(®)=0: o is impossible
< 1(w)>0: » is possible
. Normal possibility distribution 7t: there exists one world @ such
that 7t(w)=1
Q Satisfaction: & satisfies (¢,a), denoted ww=(¢,a), iff N(p)>a
— nk= B iff n=(¢,), for all (p,a)€ B
— BE(¢,a) iff for every = B, we have t=(¢,a)



Possibilistic Logic (Cont.)

o - O - 04 : Op - Qg

T
T(®)=1-a., @ @ @

1 A possibility distribution =a possibilistic knowledge base
— N(¢)=max{n(w): w =}

— N(9)=1-TI(—9)




Possibilistic Logic

J Soundness and completeness
— BH(¢, a) iff BE=(¢,a)
— Brp¢ iff Ng(d)>Inc(B)
— B+ (¢, @) iff Ng($)> a and a > Inc(B)



Generalizations of Possibilistic Logic

] Linear—order inference
— B is stratified as (S;,..., S,)

¢ Formulas in S, have the same weights
¢ The weight of formulas in S, is greater than that of formulas in S; with i
*K o=V S'; with S’ =§; if §";U...U §',_; U S, is consistent
and S’ = otherwse
B o ¢ iff KiogHo
d Example: B={(q,1), (q—r, 1), (s——r, 0.9), (s, 0.9) ,(£,0.9), (p, 0.4)}
— Brop

~ Bkt



Generalizations of Possibilistic Logic

[ Lexicographic inference
— B is stratified as (S;,.., S,)
— For (8'4,..., S') and (S"';,..., S"',) which are subsets of (S,...., S,)

- (S8'4,..., S'}) is preferred to (S'';,..., S”',) iff some i exists such that

| S'i| > | S”i| and
% | S'j| = | S”j| for all i<j<k
— Br_, ¢ iff S",U... US’, ¢ for all lexi—preferred subest (S',,..., S',)

of (S;,... S})
O Example: B={(q,1), (g—r, 1), (s—r, 0.9), (s, 0.9) ,(£,0.9), (p, 0.4)}
- BI_Lexp
_ B~ t What are lexi—preferred

Lex subsets of (S;,..., S,)?




Comparison
J Properties

— Probabilistic logic
% If Mod(S AT)=, then P(SV T)=P(S)+P(T)
+P(SVT)=P(S)+P(T) -P(SAT)
<+ P(=S)=1-P(S)
— Possbilistic logic
< M(AUB)=max((A), MN(B))
< N(A N B)=min(N(A), N(B))

1 Types of uncertainty

— Probabilistic logic: quantitative

— Possibilistic logic: qualitative



Comparison

 Inconsistency

— Probabilistic logic
+»» Use probabilistic semantics
— Possbilistic logic

*» Use standard first—order semantics

J Example

— KB=(Ibird < ostrich}{(legs|bird)[1,1], (fly|bird)[1,1], (flylostrich)[0,0.05]) is
inconsistent under probabilistic semantics

— (fly|ostrich)[0,0.05] can be inferred under probabilistic default semantics

— KB'={(ostrich—bird, 1),(bird—legs,1), (bird—fly, 1), (ostrichfly—fly, 0.05)
is not inconsistent under possibilistic semantics

— (ostrich—fly,1) can be inferred under possibilistic semantics
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Description Logics

] Description logics

— Are (mostly) decidable fragments of first—order predicate logic
— Provide logical underpinning of W3C standard OWL

1 Building blocks

— Concepts (unary predicates/formulae with one free variable)
*»E.g., Person, Lawer | Doctor

— Roles (binary predicates/formulae with two free variables)
+*E.g., hasChild

— Individuals (constants)
< E.g., John, Mary



Description Logics (Syntax)

[ Description languages

— Defining complex concepts: sets of individuals

— Defining complex roles: binary relations on individuals
J Complex concepts are built by

— Atomic concepts: Tissue, Heart

— Constructors: Tissuerdpart—of .Heart
(J Complex roles are built by

— Atomic roles: part—of, has—location

— Constructors: HasFather




Description Logics (Semantics)

O Interpretation:; I=(AL.D
— Domain: Al

— Assignment function .

Individual names Concepts Roles
a C R

AI




Description Logics (Cont.)

O Interpretation: I=(Al D)

Construct Syntax Example Semantics
Atomic concept A Heart Al c AL
Atomic role R part-of RI C AI x Al
Negation - C — Heart A\ CI
Conjunction CnD LawyerriDoctor CI\ D!

Value restriction V R.C v part-of.Wood {a|vb. (a,b) <R,

(a,b) C'}




Description Logics (Ontology)

J TBox T: defining terminology of application domain

— Inclusion assertion on concept :CE D

Pericardium E Tissue N 3 part-of.Heart

— Inclusion assertion on roles: R S

Part-of C has-location

(1 ABox A: stating facts about a specific “world”

— membership assertion: C(a) or R (a,b)

HappyMan(Bob), HasChild(Bob, Mary)




Description Logics(Semantics)

[ Given an interpretation I

] Semantics of TBox axioms
— IFCEDif C'c D!
— IERE Sif Rlc S!

] Semantics of ABox assertions
—~IFc@)ifal e C!

— IE R(ab)if (alb) e R!



Description Logics(Semantics)

(1 Model of an ontology O=<X7, A>

— l'is a model of O if it satisfies all axioms in 7 and all assertions
in A
[ Concept satisfiability

— Concept Cis satisfiable in O if C!is nonempty for some model
I of O

[ Ontology Entailment
— O k¢ iff I= ¢ for all models I of O



Description Logics (Semantics)

1 Incoherent ontology: ontology with at least one
unsatisfiable concept

— Example: {PhDStudent = Student,
PhDStudent E Employee,

Student E—Employee

[ Inconsistent ontology: ontology without a model
— Example: {PhDStudent = Student,
PhDStudent E Employee,
Student E—Employee,

PhDStudent(John)}

Incoherent ontology can be consistent!




Description Logics

 Example: DICE ontology

— BrainECentralNervousSystem M Isystempart.NervousSystem M
BodyPart M 3 region.HeadAndNeck M Vregion.HeadAndNeck

— CentralNervousSystem=NervousSystem

— BodyPart =—NervousSystem or
DisjointWith(BodyPart,NervousSystem)



Description Logics

1 Example from Foaf
— Person(timbl)
— Homepage(timbl, )
— Homepage(w3c, )
— Organization(w3c)
— InverseFunctionalProperty(Homepage)
— DisjointWith(Organization, Person)
1 Example from OpenCyc
— ArtifactualFeatureType(PopulatedPlace)
— ExistingStuffType(PopulatedPlace)
— DisjointWith(ExistingObjectType,ExistingStuffType)
— ArtifactualFeatureType = ExistingObjectType


http://w3.org/
http://w3.org/

Description Logics

U Deficiency of DLs
— Cannot express uncertain information

I am quite sure that a heart patient has a private
health insurance

I am a little certain that Tom is a heart patient

— GCannot deal with inconsistency

[ Syntax and semantics of DLs need to be extended
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Probabilistic Description Logics
—Syntax

 Classification of individuals: a set of classical individuals I,
and a finite set of probabilistic individuals I,

[ Basic classification concept (basic c—concept): DL
concepts that are free of probabilistic individuals from I,

J c—concept:

— Every basic concept is a c—concept

— If Cand D are C—concept, —C and CT1D are c—concepts
O Conditional constraint: (D |C )[I,u]

— Cand D are c—concepts

— Meaning: probability of D given C lies between | and u



Probabilistic Description Logics

(1 Example

A terminological probabilistic knowledge base

ax,: (HighBloodPressure | Heartpatient) [1,1]

ax,: (wHasHighBloodPressure | PacemakerPatient) [1,1]
ax,: (MalePacemakerPatient | PacemakerPatient) [0.4,1]
ax,: (Male | PacemakerPatient) [0.4,1]

axs: PacemakerPatient = Heartpatient




Probabilistic Description Logics
—Syntax

O PTBox PT=(T,P)

— T : classical DL knowledge base

— P:is a finite set of conditional constraints

0 PABox P,

— o is a probabilistic individual in I,
— P, is a finite set of conditional constraints

+(D|OMl,uleP,: if C(o) holds then D (o) holds with a probability
between | and u

(D |T),uleP,: D (o) holds with a probability between | and u

@R[} |OuleP,: if C(0) holds then R(0,0') holds with a probability
between | and u



Probabilistic Description Logics

(1 Example

A terminological probabilistic knowledge base

ax,: (HighBloodPressure | Heartpatient) [1,1]
ax,: (wHasHighBloodPressure | PacemakerPatient) [1,1]

ax,: (MalePacemakerPatient | PacemakerPatient) [0.4,1]
ax,: (Male | PacemakerPatient) [0.4,1]

axs: PacemakerPatient = Heartpatient

A PABox for the probabilistic individual Tom

ax,: (PacemakerPatient | T) [0.8,1]




Probabilistic Description Logics
—Syntax

O Probabilistic knowledge base KB=(T,P, (P.)

— P: probabilistic knowledge about randomly chosen individuals

oeIp

+* Conditional constraints in P are default statements

— P, probabilistic knowledge about the concrete individual o

¢ Conditional constraints in every P, with o €I are strict statements



Probabilistic Description Logics
—Semantics

O World 7: a set of basic c—concepts Ce( such that {C (i) |
Ce I} U {—=C(i)| Ce @\ Ilis satisfiable

— Cis the set of all basic c—concepts
— 1 is a new individual

— 4, denotes the set of all worlds relative to C

0 Model of a TBox: / is a model of T(/E=T)iff TU {C() |
Ce I} U [—cC (i) | Ce @\ Ilis satisfiable
(1 Model of a c—concept: /T=C

— IE=CIiff Cel, Cis a basic c—concept
— IE—CIiff ITEC does not hold
—IECNDiffI=EC and TED



Probabilistic Description Logics
—Semantics

[ Probabilistic interpretation Pr: a probability function on ¢,

— 9. denotes the set of all worlds relative to C
— Pr(C): sum of all P{/) such that /= C

Q Pri=T: I=Tfor every I €4,such that P{/)>0
A Pr=(D|C)ul: Pr(0=0or Pr(D|C)ellul:

— Pr(D|C)=Pr(DC)/ Pr(C)
A Pr=F I=Ffor every FeF

— K is a set of conditional constraints



Probabilistic Description Logics
—Semantics
Q Pr verifies (D |C)[Luliff PLC)=1and Pr= (D|C)[l,u]
— Pr falsifies (D |C)[Lul iff PLC)=1 and Pr (D|C)I,ul
O Ftolerates (D|C)[l,u] under 7: T UF has a model that
verifies (D |C)[I,u]
 Consistency of a PTBox PT=(T,P)

— T is satisfiable
— There exists an ordered partition (A,,...,P,) of P such that

“»Each P, 0<i<Kk; is the set of all F€ P,U...U P, tolerated under 7 by
PU..UPR,

+»» Idea of the partition: when in conflict, remove conditional constraints in
the lower strata

¥ The partition follows the rule of maximum specificity
+»» Called z—partition of PT



Probabilistic Description Logics

(1 Example

A terminological probabilistic knowledge base

Py | ax,: (HighBloodPressure | Heartpatient) [1,1]
ax,: (wHasHighBloodPressure | PacemakerPatient) [1,1]

ax,: (MalePacemakerPatient | PacemakerPatient) [0.4,1]
Py ax,: (Male | PacemakerPatient) [0.4,1]

axs: PacemakerPatient = Heartpatient

A PABox for the probabilistic individual Tom

ax,: (PacemakerPatient | T) [0.8,1]




Probabilistic Description Logics
—Semantics

d Pr is lex—preferable to Pr ' iff some I exists such that
- lFer| PreFll > [[FerR| Pr' =F) and
— [Fer| PreFN =llFePr]| Pr' =F] for all j<i<k
d Lex—minimal model Pr of F. no model of Fis lex—preferable
to Pr
d Lex—entailment: (D |C)[l,u] is a lex-consequence of F
underPT, denoted F IE'* (D |C)[l,u] iff
— Each lex—minimal model of 7U & U{(C | T)[1,1]} satisfies (D |C)[I,u]

O Tight lex—entailment: (D |C)[l,u] is a tight lex—consequence
of F underPT, denoted as F I='extisht (D |C)[I,u] iff

— I=inf Pr(y | ¢) (resp., u=supPr(y | ¢) ) subject to all lex—minimal
models Pr of LU{¢p>0}



Probabilistic Description Logics

1 Example: the following are tight lex—consequence of PT

A terminological probabilistic knowledge base

P, |ax;: (HighBloodPressure | Heartpatient) [1,1]

ax,: (—HasHighBloodPressure | PacemakerPatient) [1,1]
ax,: (MalePacemakerPatient | PacemakerPatient) [0.4,1]
P, | ax,: (Male | PacemakerPatient) [0.4,1]

axs;: PacemakerPatient = Heartpatient

— (HighBloodPressure | Male I Heartpatient) [1,1]
— (MalePacemakerPatient | PacemakerPatient) [0.4,1]

O But (HasHighBloodPressure | PacemakerPatient) [1,1] is
not inferred



Log—linear Description Logics

[ Knowledge base K=(KP, KY)

— KP: a classical DL knowledge base
— KY: a set of weighted axioms (like possibilistic DLs)
(J Semantics

— Based on probability distributions over consistent knowledge bases

K°PcK'cK”U{c:(c,w, e K"}

1 - . .
PrK (KI) _ {Zexp(Z(CeK'\KD}WC) if K'consistent

0 otherwise

— Marginal probability of an axiom: sum of the probabilities of
theconsistent knowledge bases containing it
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Possibilistic Description Logics

A possibilistic DL knowledge base

Tool(amilcare): 1.0
Tool(cavido): 0.46
Application(cavido): 0.46
Tool = Ar\PpIication : 0.3

I

Tool(cavido): 0.46 Tool = Application : 0.3

Note : Inference is non—trivial when inconsistency exists
Certainty degree is attached to inferred axiom




Possibilistic Description Logics
—Syntax

O Possibilistic axiom: (¢, a), ¢ is a DL axiom
Q Possibilistic DL knowledge base B={(¢; a): i=1,---,n}
A Classical DL Base B*={¢: (¢, a)€B}
d a—cut of B: B«={¢p €B*: (¢, b)EB, and b>a}
O Inconsistency degree: Inc(B)=max{a: B:a is inconsistent}
J Example:
B={(Tool(amilcare), 1), (Application(cavido), 0.46),
(Tool(cavido), 0.46), (disjoint(Tool, Application), 0.3)}



Possibilistic Description Logics
—Semantics

[ Possibility distribution ©: | — [0,1], | is the set of all
interpretations

— 7(l) represents the degree of compatibility of I with available
information

— n(l1)>n(l2): I1 is preferred to I
] Possibility measure 11
T1(¢)=max{r(l): le I, | & ¢}
(] Necessity Measure N:
N(d)=1-max{r(l): I#d}



Possibilistic Description Logics

(1 Example

A possibilistic DL knowledge base
ax,: (Heartpatient .= HighBloodPressure, 1.0)

ax,: (PacemakerPatient .= —HighBloodPressure, 1.0)

ax,: (HeartPatient = JHasHealthInsurance.PrivateHealth,0.9)
ax,: (PacemakerPatient(Tom), 0.8)




Possibilistic Description Logics

1 Inference services: instance checking

A possibilistic DL knowledge base
ax,: (Heartpatient .= HighBloodPressure, 1)

ax,: (PacemakerPatient .= —HighBloodPressure, 1)

ax,: (HeartPatient = JHasHealthlnsurance.PrivateHealth,0.9)
ax,: (PacemakerPatient(Tom), 0.8)

axs: (HeartPatient(Tom),0.5)

axg: (HeartPatient C MalePacemakerPatient, 0.4)

l

— HighBloodPressure(Tom)




Possibilistic Description Logics

 Inference services: instance checking with weight

A possibilistic DL knowledge base

ax,: (Heartpatient = HighBloodPressure, 1)

ax,: (PacemakerPatient C ~HighBloodPressure, 1)

ax,: (HeartPatient C JHasHealthlnsurance.PrivateHealth,0.9)
ax,: (PacemakerPatient(Tom), 0.8)

axs: (HeartPatient(Tom),0.5)

axq: (HeartPatient C MalePacemakerPatient, 0.4)

{

= HighBloodPressure(Tom): 0.8




Reduction




Algorithms

] A black—box algorithm (Qi et.al. ECSQARU2007, IJIS 2011)

— Idea: search the weights by a binary search

+»» Call a standard DL reasoner to check inconsistency

— A system called PossDL has been implemented

] A tableaux algorithm (Qi and Pan ASWC 2008)

— Idea: extending classical tableaux algorithm for DL ALC

* A weight is attached to a concept name or a role name

— No implementation is done



Generalizations of Possibilistic
Description Logics
A Linear order inference (Qi et.al. ECSQARU2007, IJIS 2011)

— Algorithm idea: compute the inconsistency degree and remove
axioms whose weights are equal to it

+»» Call a standard DL reasoner to check inconsistency

— PossDL provides functionalities to compute consequences of linear
order inference

[ Lexicographic inference (Du and Qi RR 2008)

— Algorithm idea: compile the DL axioms to propositional programs

— No implementation has been done



