Reasoning with Inconsistent and Uncertain Ontologies

Guilin Qi
Southeast University
China
gqi@seu.edu.cn

Reasoning Web 2012 September 05, 2012
Motivation

- Ontologies are not always perfect

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Inconsistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document classification</td>
<td>Ontology enrichment</td>
</tr>
<tr>
<td>Ontology matching</td>
<td></td>
</tr>
</tbody>
</table>

- Challenging problem
 - Deal with both uncertainty and inconsistency
 - Ontology learning, ontology matching
 - Application domain: medicine and biology

- Solutions: probabilistic or possibilistic description logics
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Probabilistic Logic

- There are several versions of probabilistic logic
- We consider Nilsson’s probabilistic logic (AI’86)
- Consider a set of sentences \mathcal{L}
 - Each sentence S is attached with two sets of possible worlds
 - Worlds in which S is true and worlds in which S is false

- Probability of a sentence S
 - Ω is the set of all possible worlds
 - $P(S) = P(\{\omega \in \Omega \mid S \text{ is true in } \omega\})$

- Formula: (S,a)
 - $P(S) = a$
 - Usually, we only know probabilities of some sentences
Example

Consider \{p, p\rightarrow q, q\}, there are four worlds

<table>
<thead>
<tr>
<th></th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(\omega_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>p\rightarrow q</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>q</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>
Probabilistic Logic (Cont.)

- **Probabilistic entailment**
 - Given: probabilities of sentences in a set of sentences \mathcal{B}
 - Determine: probability of a sentence S

- **Special case:** $\mathcal{B} = \{p, p \rightarrow q\}$ and $S = q$

 \[
 P(p \rightarrow q) + P(p) - 1 \leq P(q) \leq P(p \rightarrow q)
 \]

- The probabilistic entailment problem can be solved by linear programming methods
Probabilistic Logic (Cont.)

- **Properties**
 - $P(\Omega) = 1$, Ω is the set of all possible worlds
 - $P(\bot) = 0$
 - If $\text{Mod}(S \land T) = \emptyset$, then $P(S \lor T) = P(S) + P(T)$
 - $P(S \lor T) = P(S) + P(T) - P(S \land T)$
 - $P(\neg S) = 1 - P(S)$

- **Conditional probability**
 - $P(T | S) = \frac{P(S \land T)}{P(S)}$
Interval Probabilistic Logic

Events
- A set of basic events $\Phi = \{\rho_1, \ldots, \rho_i\}$
- $\rho_i | \bot, \top | \neg \phi | \phi \land \psi$

Conditional constraint: $(\psi | \phi) [l,u], l, u \in [0,1]$
- E.g. $(\text{fly} | \text{bird})[0.95,1]$

Probabilistic formula
- $(\psi | \phi) [l,u] | \neg \phi | \phi \land \psi$
- E.g. $\neg(\text{bird} | \text{ostrich})[1,1]$

Logical constraint: $\psi \iff \phi$

Probabilistic knowledge base $\text{KB} = (L, P)$
- L is a finite set of logical constraints
- P is a finite set of conditional constraints
- $\varepsilon_1 \neq \varepsilon_2$ for any two distinct $(\varepsilon_1)[l_1, u_1], (\varepsilon_2)[l_2, u_2] \in P$
Interval Probabilistic Logic

Example

- $KB=\{\text{bird} \iff \text{eagle}, \text{feathers} \iff \text{bird}\},\{(\text{fly} \mid \text{bird})[0.95,1]\})$
- bird \iff eagle: all eagles are birds
- feathers \iff bird: all birds have feathers
- $(\text{fly} \mid \text{bird})[0.95,1]$: birds fly with a probability of at least 0.95
Interval Probabilistic Logic

- **World:** a truth assignment to the basic events
 - Associates with every basic event a binary truth value
 - Can be extended to all events by induction as usual
 - I_Φ denotes the set of all worlds for Φ

- **Model:** I is a model of ϕ iff $I(\phi)=$true
 - Denoted as $I \models \phi$
 - I is a model of a set of events \mathcal{L} ($I \models \mathcal{L}$) iff I is a model of all $\phi \in \mathcal{L}$

- **Satisfiability:** ϕ is satisfiable iff a model of ϕ exists

- **Logical consequence:** $\phi \models \psi$ iff $I(\phi)=$true implies $I(\psi)=$true
Interval Probabilistic Logic

- Probabilistic interpretation Pr: a probability function on I_Φ
 - $Pr(\phi)$: sum of all $Pr(I)$ such that $I \models \phi$

- Conditioning:
 - $Pr(\psi \mid \phi)$: $Pr(\psi \land \phi)/Pr(\phi)$ with $Pr(\phi) > 0$
 - $Pr_\phi(I)$: $Pr(I)/Pr(\phi)$ with $I \models \phi$ and 0 for other I

- Truth of logical constraints and probabilistic formulas
 - $Pr \models \psi \iff \phi$ iff $Pr(\phi) = Pr(\psi \land \phi)$ iff $Pr \models (\psi \mid \phi)[1,1]$
 - $Pr \models (\psi \mid \phi)[1,u]$ iff $Pr(\phi) = 0$ or $Pr(\psi \mid \phi) \in [1,u]$
 - $Pr \models \neg F$ iff not $Pr \models F$
 - $Pr \models F \land G$ iff $Pr \models F$ and $Pr \models G$

- Satisfiability and logical consequences can be defined as usual
Interval Probabilistic Logic

- Tightest logical consequence: $\text{KB} \models_{\text{tight}} (\psi \mid \phi)[l,u]$ iff
 - Every model of $L \cup P$ is a model of $(\psi \mid \phi)[l,u]$ and
 - l is the infimum of $Pr(\psi \mid \phi)$ subject to all models Pr of $L \cup P$ with $Pr(\phi)>0$
 - u is the supremum of $Pr(\psi \mid \phi)$ subject to all models Pr of $L \cup P$ with $Pr(\phi)>0$

- Note: when $L \cup P \models \perp \iff \phi$ then $[l,u]$ is $[1,0]$

- Property 1: a logical constraint $\psi \iff \phi$ has the same meaning as the conditional constraints $(\psi \mid \phi)[1,1]$

- Property 2: model–theoretical logical entailment in probabilistic logic generalizes model–theoretical entailment in ordinary propositional logic
Interval Probabilistic Logic

- KB = ({bird ⇐ eagle, feathers ⇐ bird}, {(fly|bird)[0.95,1]})
 - bird ⇐ eagle: all eagles are birds
 - feathers ⇐ bird: all birds have feathers
 - (fly|bird)[0.95,1]: birds fly with a probability of at least 0.95

 Logical consequences of KB
 - KB ⊨ (feathers | bird)[1,1]
 - KB ⊨ (fly|bird)[0.95,1]
 - KB ⊨ (feathers | eagle)[1,1]
 - KB ⊨ (fly | eagle)[0,1]

Probabilistic properties of being able to fly is not inherited from birds to eagles
Interval Probabilistic Logic

- $\text{KB} = \{\text{bird} \leftrightarrow \text{ostrich}, \{(\text{legs} | \text{bird})[1,1], (\text{fly} | \text{bird})[1,1],
(\text{fly} | \text{ostrich})[0,0.05]\}\}$
 - $(\psi | \phi)[1,1]$ is interpreted as $\psi \leftrightarrow \phi$

- Logical consequences of KB
 - KB $\not\vdash (\text{legs} | \text{bird})[1,1]$
 - KB $\not\vdash (\text{fly} | \text{bird})[1,1]$
 - KB $\not\vdash (\text{legs} | \text{ostrich})[1,0]$
 - KB $\not\vdash (\text{fly} | \text{ostrich})[1,0]$

There is a local inconsistency
Interval Probabilistic Logic

- Solution: interpret \((\psi \mid \phi)[1,1]\) as a default rule
 - Define probability rankings

- Probability ranking \(\kappa\) maps \(Pr\) to \(\{0,1,\ldots\} \cup \{\infty\}\)
 - \(\kappa(Pr)=0\) for at least one \(Pr\)
 - If \(F\) is satisfiable, \(\kappa(F)=\min\{\kappa(Pr) \mid Pr \models F\}\)
 - Otherwise, \(\kappa(F)=\infty\)

- \(Pr\) verifies \((\psi \mid \phi)[l,u]\) iff \(Pr(\phi)>0\) and \(Pr \models (\psi \mid \phi)[l,u]\)
 - \(Pr\) falsifies \((\psi \mid \phi)[l,u]\) iff \(Pr(\phi)>0\) and \(Pr \nvdash (\psi \mid \phi)[l,u]\)

- \(P\) tolerates \(C\) under \(L\): \(L \cup P\) has a model that verifies \(C\)
 - \(P\) is under \(L\) in conflict \(C\) with iff no model of \(L \cup P\) verifies \(C\)
Interval Probabilistic Logic

- \(\kappa \) is admissible with \(KB = (L, P) \)
 - \(\kappa(\neg(\psi \mid \phi)[1,1]) = \infty \) for all \(\psi \leftarrow \phi \in L \) and
 - \(\kappa(\phi > 0) < \infty \) and \(\kappa(\phi > 0 \land (\psi \mid \phi)[l, u]) < \kappa(\phi > 0 \land \neg(\psi \mid \phi)[l, u]) \) for all
 \((\psi \mid \phi)[l, u] \in P \)

- \(z \)-partition of \(KB \): unique ordered partition \((P_0, \ldots, P_k)\) of \(P \)
 - Each \(P_i, 0 \leq i \leq k \), is the set of all \(C \in \bigcup_{j=i}^{k} P_j \) tolerated under \(L \) by \(\bigcup_{j=i}^{k} P_j \)

- \(Pr \) is lex-preferable to \(Pr' \) iff some \(i \) exists such that
 - \(|\{C \in P_i \mid Pr \models C\}| > |\{C \in P_i \mid Pr' \models C\}| \) and
 - \(|\{C \in P_j \mid Pr \models C\}| = |\{C \in P_j \mid Pr' \models C\}| \) for all \(i < j \leq k \)

- Lex-minimal model \(Pr \) of \(F \): no model of \(F \) is lex-preferable to \(Pr \)
 - \(Pr \) satisfies more constraints in rank \(i \) than and \(Pr' \) and satisfies the same constraints in ranks higher than \(i \) as \(Pr' \)
Interval Probabilistic Logic

- **Lex–entailment:** $(\psi \mid \phi)[l,u]$ is a lex–consequence of KB, denoted $\text{KB} \models_{\text{lex}} (\psi \mid \phi)[l,u]$ iff
 - Each lex–minimal model of $\mathcal{L} \cup \{\phi > 0\}$ satisfies $(\psi \mid \phi)[l,u]

- **Tight lex–entailment:** $(\psi \mid \phi)[l,u]$ is a tight lex–consequence of KB, denoted as $\text{KB} \models_{\text{lex,tight}} (\psi \mid \phi)[l,u]$ iff
 - $l=\inf Pr(\psi \mid \phi)$ (resp., $u=\sup Pr(\psi \mid \phi)$) subject to all lex–minimal models Pr of $\mathcal{L} \cup \{\phi > 0\}$
Interval Probabilistic Logic

- KB = (bird ⇐ ostrich), ((legs|bird)[1,1], (fly|bird)[1,1], (fly|ostrich)[0,0.05])
 - (ψ | φ)[1,1] is interpreted as ψ ← φ (default rule)

- Logical consequences of KB
 - KB ⊫ (legs|ostrich)[1,0]
 - KB ⊫ (fly| ostrich)[1,0]

- Lex–consequences of KB
 - KB ⊫ (legs|ostrich)[1,1]
 - KB ⊫ (fly| ostrich)[0,0.05]
Possibility Theory

- Possibility distribution $\pi: \Omega \rightarrow L$
 - Ω represents universe of discourse
 - $(L, <)$ is a bounded total ordered scale
 - $\pi(\omega) \geq \pi(\omega')$ means ω is a priori more plausible than ω'

- Possibility measure and necessity measure
 \[
 \Pi(A) = \sup \{ \pi(\omega): \omega \in A \} \quad \text{N}(A) = 1 - \Pi(\neg A)
 \]

- Property
 - $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$
 - $\text{N}(A \cap B) = \min(\text{N}(A), \text{N}(B))$
Possibilistic Logic

- **Syntax**
 - Possibilistic formula: (ϕ, a) denotes *certainty degree of* $\phi \geq a$
 - Example: $(\text{eat_fish(Tweety)}, 0.46)$ We are somewhat certain that Tweety eats fish
 - Possibilistic knowledge base: a set of possibilistic formulae
 \[B = \{(\phi_i, a_i) : i = 1, \ldots, n\} \]

- **Example**
 - p: there were human beings in Mars before
 - q: scientists have detected some strange signals from outer space
 - r: there are aliens in other planets
 - s: the ancestors of human are gorillas
 - B = {((p, 0.4), (q \rightarrow r, 1), (s, 0.8), (\neg s \rightarrow \neg r, 0.9))}
Possibilistic Logic (Cont.)

- Inconsistency degree of B
 - B^*: classical base of B
 - $B \geq a = \{ \phi \in B^* | (\phi, b) \in B, B \geq a \}$
 - $\text{Inc}(B) = \max\{a: B \geq a \text{ is inconsistent}\}$

\[\begin{array}{cccccc}
\phi_1 & \phi_2 & \phi_3 & \cdots & \phi_{n-1} & \phi_n \\
\alpha_1 \cdot & \alpha_2 \cdot & \alpha_3 \cdot & \cdots & \alpha_{n-1} \cdot & \alpha_n \\
\end{array}\]

$\text{Inc}(B) = a_3$

- $B = \{(q, 1), (q \rightarrow r, 1), (s \rightarrow \neg r, 0.9), (s, 0.8), (p, 0.4)\}$

What is $\text{Inc}(B)$?
Possibilistic Logic

- **Possibilistic inference**
 - ϕ is a plausible consequence of B, denoted $B \vdash_P \phi$ iff $B_{\text{inc}(B)} \vdash \phi$
 - (ϕ, a) is a consequence of B, denoted $B \vdash (\phi, a)$ iff $a > \text{Inc}(B)$, and $B_{\geq a} \vdash \phi$
 - ϕ is a possibilistic consequence of B to degree a, denoted $B \vdash_{\pi} (\phi, a)$ iff
 - $B_{\geq a}$ is consistent
 - $B_{\geq a} \vdash \phi$
 - For all $b > a$, $B_{\geq b} \not\vdash \phi$

Only formulas whose weights are greater than or equal to the inconsistency degree are used
Possibilistic Logic (Cont.)

- Example

\[\text{B} = \{(q, 1), (q \rightarrow r, 1), (\neg s \rightarrow \neg r, 0.9), (s, 0.9), (p, 0.4)\} \]

- \(\text{B} \models_{\pi} (q, 1) \)
- \(\text{B} \models_{\pi} (q \rightarrow r, 1) \)
- \(\text{B} \not\models_{\pi} (p, 0.4) \)

Drowning effect
Possibilistic Logic

- **Semantics**
 - Possibility distribution $\pi: \Omega \rightarrow [0,1]$
 - $\pi(\omega)=1$: ω is totally possible
 - $\pi(\omega)=0$: ω is impossible
 - $\pi(\omega)>0$: ω is possible

- Normal possibility distribution π: there exists one world ω such that $\pi(\omega)=1$

- **Satisfaction**: π satisfies (ϕ,a), denoted $\pi \models (\phi,a)$, iff $N(\phi) \geq a$
 - $\pi \models B$ iff $\pi \models (\phi,a)$, for all $(\phi,a) \in B$
 - $B \models (\phi,a)$ iff for every $\pi \models B$, we have $\pi \models (\phi,a)$
Possibilistic Logic (Cont.)

- Possibilistic knowledge base \(B = \{(\phi_1, a_1), \cdots, (\phi_n, a_n)\} \Rightarrow \) a unique possibility distribution

\[\pi(\omega) = 1 - \alpha_3 \]

- A possibility distribution \(\Rightarrow \) a possibilistic knowledge base
 - \(\Pi(\phi) = \max\{\pi(\omega) : \omega \models \phi\} \)
 - \(N(\phi) = 1 - \Pi(\neg \phi) \)
Possibilistic Logic

Soundness and completeness

- \(B \vdash (\phi, a) \) iff \(B \models (\phi, a) \)
- \(B \vdash_p \phi \) iff \(N_B(\phi) > \text{Inc}(B) \)
- \(B \vdash_\pi (\phi, a) \) iff \(N_B(\phi) \geq a \) and \(a > \text{Inc}(B) \)
Generalizations of Possibilistic Logic

- **Linear-order inference**
 - B is stratified as $(S_1, ..., S_k)$
 - Formulas in S_i have the same weights
 - The weight of formulas in S_i is greater than that of formulas in S_j with $i < j$
 - $K_{LO,B} = \bigcup S'_i$ with $S'_i = S_i$ if $S'_1 \cup ... \cup S'_{n-1} \cup S_i$ is consistent and $S'_i = \emptyset$ otherwise
 - $B \vdash_{LO} \phi$ iff $K_{LO,B} \vdash \phi$

- **Example:** $B = \{(q, 1), (q \rightarrow r, 1), (s \rightarrow \neg r, 0.9), (s, 0.9), (t, 0.9), (p, 0.4)\}$
 - $B \vdash_{LO} p$
 - $B \vdash_{LO} t$
Generalizations of Possibilistic Logic

- **Lexicographic inference**
 - B is stratified as \((S_1, \ldots, S_k)\)
 - For \((S'_1, \ldots, S'_k)\) and \((S''_1, \ldots, S''_k)\) which are subsets of \((S_1, \ldots, S_k)\)
 - \((S'_1, \ldots, S'_k)\) is preferred to \((S''_1, \ldots, S''_k)\) iff some \(i\) exists such that
 - | \(S'_i\) | > | \(S''_i\) | and
 - | \(S'_j\) | = | \(S''_j\) | for all \(i < j \leq k\)
 - \(B \vdash_{\text{lex}} \phi\) iff \(S'_1 \cup \ldots \cup S'_k \vdash \phi\) for all lexi-preferred subset \((S'_1, \ldots, S'_k)\) of \((S_1, \ldots, S_k)\)

- **Example:** \(B = \{(q, 1), (q \rightarrow r, 1), (s \rightarrow \neg r, 0.9), (s, 0.9), (t, 0.9), (p, 0.4)\}\)
 - \(B \vdash_{\text{lex}} p\)
 - \(B \vdash_{\text{lex}} t\)

What are lexi-preferred subsets of \((S_1, \ldots, S_k)\)?
Comparison

Properties

- **Probabilistic logic**
 - If \(\text{Mod}(S \land T) = \emptyset \), then \(P(S \lor T) = P(S) + P(T) \)
 - \(P(S \lor T) = P(S) + P(T) - P(S \land T) \)
 - \(P(\neg S) = 1 - P(S) \)

- **Possibilistic logic**
 - \(\Pi(A \cup B) = \max(\Pi(A), \Pi(B)) \)
 - \(N(A \cap B) = \min(N(A), N(B)) \)

Types of uncertainty

- **Probabilistic logic**: quantitative
- **Possibilistic logic**: qualitative
Comparison

- **Inconsistency**
 - Probabilistic logic
 - Use probabilistic semantics
 - Possibilistic logic
 - Use standard first-order semantics

- **Example**
 - $\text{KB} = \{\text{bird} \leftrightarrow \text{ostrich}\}, \{(\text{legs}|\text{bird})[1,1], (\text{fly}|\text{bird})[1,1], (\text{fly}|\text{ostrich})[0,0.05]\}$ is inconsistent under probabilistic semantics
 - $(\text{fly}|\text{ostrich})[0,0.05]$ can be inferred under probabilistic default semantics
 - $\text{KB}' = \{\text{ostrich} \rightarrow \text{bird}, 1\}, \{\text{bird} \rightarrow \text{legs}, 1\}, \{\text{bird} \rightarrow \text{fly}, 1\}, \{\text{ostrichfly} \rightarrow \text{fly}, 0.05\}$ is not inconsistent under possibilistic semantics
 - $(\text{ostrich} \rightarrow \text{fly}, 1)$ can be inferred under possibilistic semantics
Outline

- Probabilistic logic vs possibilistic logic

- Probabilistic description logics
 - Description logics
 - Probabilistic description logics

- Possibilistic description logics and its extension

- Revising ontologies in description logics

- Mapping repair in description logics
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
 - Description logics
 - Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Description Logics

- Description logics
 - Are (mostly) decidable fragments of first-order predicate logic
 - Provide logical underpinning of W3C standard OWL

- Building blocks
 - Concepts (unary predicates/formulae with one free variable)
 - E.g., Person, Lawyer ⊔ Doctor
 - Roles (binary predicates/formulae with two free variables)
 - E.g., hasChild
 - Individuals (constants)
 - E.g., John, Mary
Description Logics (Syntax)

- Description languages
 - Defining complex concepts: sets of individuals
 - Defining complex roles: binary relations on individuals

- Complex concepts are built by
 - Atomic concepts: Tissue, Heart
 - Constructors: $Tissue \sqcap \exists part\cdot of. Heart$

- Complex roles are built by
 - Atomic roles: part-of, has-location
 - Constructors: HasFather
Description Logics (Semantics)

- **Interpretation:** \(I= (\Delta^I, .^I) \)
 - **Domain:** \(\Delta^I \)
 - **Assignment function:** \(.^I \)

![Diagram showing the interpretation of Description Logics](image)
Description Logics (Cont.)

- Interpretation: $I = (\Delta^I, \cdot^I)$

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic concept</td>
<td>A</td>
<td>Heart</td>
<td>$A^I \subseteq \Delta^I$</td>
</tr>
<tr>
<td>Atomic role</td>
<td>R</td>
<td>part-of</td>
<td>$R^I \subseteq \Delta^I \times \Delta^I$</td>
</tr>
<tr>
<td>Negation</td>
<td>$\neg C$</td>
<td>\neg Heart</td>
<td>$\Delta^I \setminus C^I$</td>
</tr>
<tr>
<td>Conjunction</td>
<td>$C \sqcap D$</td>
<td>Lawyer\sqcapDoctor</td>
<td>$C^I \setminus D^I$</td>
</tr>
<tr>
<td>Value restriction</td>
<td>$\forall R.C$</td>
<td>\forall part-of.Wood</td>
<td>${a</td>
</tr>
</tbody>
</table>

...
Description Logics (Ontology)

- **TBox T**: defining terminology of application domain
 - Inclusion assertion on concept: $C \sqsubseteq D$

 \[
 \text{Pericardium} \sqsubseteq \text{Tissue} \sqcap \exists \text{part-of.Heart}
 \]

 - Inclusion assertion on roles: $R \sqsubseteq S$

 \[
 \text{Part-of} \sqsubseteq \text{has-location}
 \]

- **ABox A**: stating facts about a specific “world”
 - Membership assertion: $C(a)$ or $R(a,b)$

 \[
 \text{HappyMan}(Bob), \text{HasChild}(Bob, Mary)
 \]
Description Logics (Semantics)

- Given an interpretation I
- Semantics of TBox axioms
 - $I \models C \subseteq D$ if $C^I \subseteq D^I$
 - $I \models R \subseteq S$ if $R^I \subseteq S^I$
- Semantics of ABox assertions
 - $I \models C(a)$ if $a^I \in C^I$
 - $I \models R(a,b)$ if $(a^I,b^I) \in R^I$
Model of an ontology $O = \langle T, A \rangle$
- I is a model of O if it satisfies all axioms in T and all assertions in A

Concept satisfiability
- Concept C is satisfiable in O if C^I is nonempty for some model I of O

Ontology Entailment
- $O \models \phi$ iff $I \models \phi$ for all models I of O
Description Logics (Semantics)

- **Incoherent ontology:** ontology with at least one unsatisfiable concept
 - Example: \{PhDStudent ⊑ Student,

 PhDStudent ⊑ Employee,

 Student ⊑ ¬Employee\}

- **Inconsistent ontology:** ontology without a model
 - Example: \{PhDStudent ⊑ Student,

 PhDStudent ⊑ Employee,

 Student ⊑ ¬Employee,

 PhDStudent(John)\}

Incoherent ontology can be consistent!
Example: DICE ontology

- \(\text{Brain} \sqsubseteq \text{CentralNervousSystem} \sqcap \exists \text{systempart.NervousSystem} \sqcap \text{BodyPart} \sqcap \exists \text{region.HeadAndNeck} \sqcap \forall \text{region.HeadAndNeck} \)

- \(\text{CentralNervousSystem} \sqsubseteq \text{NervousSystem} \)

- \(\text{BodyPart} \sqsubseteq \neg \text{NervousSystem} \) or \(\text{DisjointWith} \) (BodyPart, NervousSystem)
Description Logics

- **Example from Foaf**
 - Person(timbl)
 - Homepage(timbl, http://w3.org/)
 - Homepage(w3c, http://w3.org/)
 - Organization(w3c)
 - InverseFunctionalProperty(Homepage)
 - DisjointWith(Organization, Person)

- **Example from OpenCyc**
 - ArtifactualFeatureType(PopulatedPlace)
 - ExistingStuffType(PopulatedPlace)
 - DisjointWith(ExistingObjectType, ExistingStuffType)
 - ArtifactualFeatureType ⊑ ExistingObjectType
Description Logics

- **Deficiency of DLs**
 - Cannot express uncertain information
 - *I am quite sure* that a heart patient has a private health insurance
 - *I am a little certain* that Tom is a heart patient
 - Cannot deal with inconsistency

- **Syntax and semantics of DLs need to be extended**
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
 - Description logics
 - Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Probabilistic Description Logics

- Syntax

- Classification of individuals: a set of classical individuals I_C and a finite set of probabilistic individuals I_P

- Basic classification concept (basic c-concept): DL concepts that are free of probabilistic individuals from I_P

- c-concept:
 - Every basic concept is a c-concept
 - If C and D are C-concept, $\neg C$ and $C \sqcap D$ are c-concepts

- Conditional constraint: $(D \mid C)[l,u]$
 - C and D are c-concepts
 - Meaning: probability of D given C lies between l and u
Probabilistic Description Logics

Example

<table>
<thead>
<tr>
<th>A terminological probabilistic knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax₁: (HighBloodPressure</td>
</tr>
<tr>
<td>ax₂: (¬HasHighBloodPressure</td>
</tr>
<tr>
<td>ax₃: (MalePacemakerPatient</td>
</tr>
<tr>
<td>ax₄: (Male</td>
</tr>
<tr>
<td>ax₅: PacemakerPatient ⊑ Heartpatient</td>
</tr>
</tbody>
</table>
Probabilistic Description Logics

- Syntax

- **PTBox** $PT=(T,P)$
 - T: classical DL knowledge base
 - P: is a finite set of conditional constraints

- **PABox** P_o
 - o is a probabilistic individual in I_P
 - P_o is a finite set of conditional constraints
 - $(D | C)[l,u] \in P_o$: if $C(o)$ holds then $D(o)$ holds with a probability between l and u
 - $(D | \top)[l,u] \in P_o$: $D(o)$ holds with a probability between l and u
 - $(\exists R{o'}) | C)[l,u] \in P_o$: if $C(o)$ holds then $R(o,o')$ holds with a probability between l and u
Probabilistic Description Logics

Example

<table>
<thead>
<tr>
<th>A terminological probabilistic knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax_1: $(\text{HighBloodPressure} \mid \text{Heartpatient}) [1,1]$</td>
</tr>
<tr>
<td>ax_2: $(\neg \text{HasHighBloodPressure} \mid \text{PacemakerPatient}) [1,1]$</td>
</tr>
<tr>
<td>ax_3: $(\text{MalePacemakerPatient} \mid \text{PacemakerPatient}) [0.4,1]$</td>
</tr>
<tr>
<td>ax_4: $(\text{Male} \mid \text{PacemakerPatient}) [0.4,1]$</td>
</tr>
<tr>
<td>ax_5: $\text{PacemakerPatient} \sqsubseteq \text{Heartpatient}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A PABox for the probabilistic individual Tom</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax_6: $(\text{PacemakerPatient} \mid \top) [0.8,1]$</td>
</tr>
</tbody>
</table>
Probabilistic Description Logics

- Syntax

- Probabilistic knowledge base $\text{KB} = (T, P, (P_o)_{o \in I_P})$
 - P: probabilistic knowledge about randomly chosen individuals
 - Conditional constraints in P are default statements
 - P_o: probabilistic knowledge about the concrete individual o
 - Conditional constraints in every P_o with $o \in I_P$ are strict statements
Probabilistic Description Logics

-Semantics

World I: a set of basic c-concepts $C \subseteq \mathcal{C}$ such that \{ $C(i) \mid C \in I$\} \cup \{ $\neg C(i) \mid C \in \mathcal{C} \setminus I$\} is satisfiable

- \mathcal{C} is the set of all basic c-concepts
- i is a new individual
- \mathcal{I}_C denotes the set of all worlds relative to \mathcal{C}

Model of a TBox: I is a model of $T(I \models T)$ iff $T \cup$ \{ $C(i) \mid C \in I$\} \cup \{ $\neg C(i) \mid C \in \mathcal{C} \setminus I$\} is satisfiable

Model of a c-concept: $I \models C$

- $I \models C$ iff $C \in I$, C is a basic c-concept
- $I \models \neg C$ iff $I \not\models C$ does not hold
- $I \models C \cap D$ iff $I \models C$ and $I \models D$
Probabilistic Description Logics

- Semantics

- **Probabilistic interpretation** Pr: a probability function on \mathcal{I}_c
 - \mathcal{I}_c denotes the set of all worlds relative to C
 - $Pr(C)$: sum of all $Pr(I)$ such that $I \models C$

- $Pr \models T$: $I \models T$ for every $I \in \mathcal{I}_c$ such that $Pr(I) > 0$

- $Pr \models (D | C)[l,u]$: $Pr(C) = 0$ or $Pr(D | C) \in [l,u]$
 - $Pr(D | C) = Pr(D \cap C) / Pr(C)$

- $Pr \models F$: $I \models F$ for every $F \in \mathcal{F}$
 - \mathcal{F} is a set of conditional constraints
Probabilistic Description Logics

-Semantics

- $Pr \text{ verifies } (D | C)[l,u] \text{ iff } Pr(C)=1 \text{ and } Pr \models (D | C)[l,u]$

 - $Pr \text{ falsifies } (D | C)[l,u] \text{ iff } Pr(C)=1 \text{ and } Pr \not\models (D | C)[l,u]$

- $\mathcal{F} \text{ tolerates } (D | C)[l,u] \text{ under } T: T \cup \mathcal{F} \text{ has a model that verifies } (D | C)[l,u]$

- Consistency of a PTBox $PT=(T,P)$

 - $T \text{ is satisfiable}$

 - There exists an ordered partition $(P_0,...,P_k)$ of P such that

 - Each P_i, $0 \leq i \leq k$, is the set of all $F \in P_i \cup ... \cup P_k$ tolerated under T by $P_i \cup ... \cup P_k$

 - Idea of the partition: when in conflict, remove conditional constraints in the lower strata

 - The partition follows the rule of maximum specificity

 - Called z-partition of PT
Probabilistic Description Logics

Example

A terminological probabilistic knowledge base

| P_0 | ax_1: (HighBloodPressure | Heartpatient) [1,1] |
|-------|---|
| | ax_2: (¬HasHighBloodPressure | PacemakerPatient) [1,1] |
| | ax_3: (MalePacemakerPatient | PacemakerPatient) [0.4,1] |
| | ax_4: (Male | PacemakerPatient) [0.4,1] |
| | ax_5: PacemakerPatient \sqsubseteq Heartpatient |

A PABox for the probabilistic individual Tom

| P_1 | ax_6: (PacemakerPatient | \top) [0.8,1] |
Probabilistic Description Logics—Semantics

- Pr is lex-preferable to Pr' iff some i exists such that
 - $|\{F \in P_i | Pr \models F\}| > |\{F \in P_i | Pr' \models F\}|$ and
 - $|\{F \in P_i | Pr \models F\}| = |\{F \in P_i | Pr' \models F\}|$ for all $j < i \leq k$

- Lex-minimal model Pr of F: no model of F is lex-preferable to Pr

- Lex-entailment: $(D \mid C)[l,u]$ is a lex-consequence of \mathcal{F} under PT, denoted $\mathcal{F} \models^{\text{lex}} (D \mid C)[l,u]$ iff
 - Each lex-minimal model of $T \cup \mathcal{F} \cup \{(C \mid \top)[1,1]\}$ satisfies $(D \mid C)[l,u]$

- Tight lex-entailment: $(D \mid C)[l,u]$ is a tight lex-consequence of \mathcal{F} under PT, denoted as $\mathcal{F} \models^{\text{lex,tight}} (D \mid C)[l,u]$ iff
 - $l = \inf Pr(\psi \mid \phi)$ (resp., $u = \sup Pr(\psi \mid \phi)$) subject to all lex-minimal models Pr of $L \cup \{\phi > 0\}$
Probabilistic Description Logics

Example: the following are tight lex–consequence of PT

<table>
<thead>
<tr>
<th>A terminological probabilistic knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
</tr>
<tr>
<td>ax_1: (HighBloodPressure $</td>
</tr>
<tr>
<td>ax_2: (~HasHighBloodPressure $</td>
</tr>
<tr>
<td>ax_3: (MalePacemakerPatient $</td>
</tr>
<tr>
<td>P_1</td>
</tr>
<tr>
<td>ax_4: (Male $</td>
</tr>
<tr>
<td>ax_5: PacemakerPatient \sqsubseteq Heartpatient</td>
</tr>
</tbody>
</table>

- $(\text{HighBloodPressure} \mid \text{Male} \sqcap \text{Heartpatient}) [1,1]$
- $(\text{MalePacemakerPatient} \mid \text{PacemakerPatient}) [0.4,1]$

But $(\text{HasHighBloodPressure} \mid \text{PacemakerPatient}) [1,1]$ is not inferred
Log-linear Description Logics

- Knowledge base $K = (K^D, K^U)$
 - K^D: a classical DL knowledge base
 - K^U: a set of weighted axioms (like possibilistic DLs)

- Semantics
 - Based on probability distributions over consistent knowledge bases

 $K^D \subseteq K' \subseteq K^D \cup \{c : (c, w_c) \in K^U\}$

 $$Pr_K(K') = \begin{cases}
 \frac{1}{Z} \exp\left(\sum_{c \in K' \setminus K^D} w_c\right) & \text{if } K' \text{ consistent} \\
 0 & \text{otherwise}
 \end{cases}$$

 - Marginal probability of an axiom: sum of the probabilities of the consistent knowledge bases containing it
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Possibilistic Description Logics

A possibilistic DL knowledge base

Tool(amilcare): 1.0
Tool(cavido): 0.46
Application(cavido): 0.46
Tool ⊑ Application : 0.3

Note: Inference is non-trivial when inconsistency exists
Certainty degree is attached to inferred axiom
Possibilistic Description Logics

- Syntax

- Possibilistic axiom: \((\phi, a)\), \(\phi\) is a DL axiom
- Possibilistic DL knowledge base \(B=\{(\phi_i, a_i) : i=1, \cdots, n\}\)
- Classical DL Base \(B^*=\{\phi : (\phi, a) \in B\}\)
- \(\alpha\)-cut of \(B\): \(B_{\geq \alpha} = \{\phi \in B^* : (\phi, b) \in B, \text{ and } b \geq a\}\)
- Inconsistency degree: \(\text{Inc}(B) = \max\{a : B_{\geq a} \text{ is inconsistent}\}\)
- Example:

 \(B=\{(\text{Tool(amilcare)}, 1), (\text{Application(cavido)}, 0.46),\)

 \((\text{Tool(cavido)}, 0.46), (\text{disjoint(Tool, Application)}, 0.3)\}\)
Possibilistic Description Logics
– Semantics

- Possibility distribution \(\pi: I \rightarrow [0,1] \), \(I \) is the set of all interpretations
 - \(\pi(l) \) represents the degree of compatibility of \(I \) with available information
 - \(\pi(l_1) > \pi(l_2) \): \(l_1 \) is preferred to \(l_2 \)

- Possibility measure \(\Pi \)
 \[\Pi(\phi) = \max\{\pi(l): l \in I, l \models \phi\} \]

- Necessity Measure \(N \)
 \[N(\phi) = 1 - \max\{\pi(l): l \not\models \phi\} \]
Possibilistic Description Logics

Example

<table>
<thead>
<tr>
<th>A possibilistic DL knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax_1: (Heartpatient \sqsubseteq HighBloodPressure, 1.0)</td>
</tr>
<tr>
<td>ax_2: (PacemakerPatient \sqsubseteq \negHighBloodPressure, 1.0)</td>
</tr>
<tr>
<td>ax_3: (HeartPatient \sqsubseteq \existsHasHealthInsurance.PrivateHealth,0.9)</td>
</tr>
<tr>
<td>ax_4: (PacemakerPatient(Tom), 0.8)</td>
</tr>
</tbody>
</table>
Possibilistic Description Logics

- Inference services: instance checking

<table>
<thead>
<tr>
<th>A possibilistic DL knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax_1: $(\text{Heartpatient} \sqsubseteq \text{HighBloodPressure}, 1)$</td>
</tr>
<tr>
<td>ax_2: $(\text{PacemakerPatient} \sqsubseteq \neg \text{HighBloodPressure}, 1)$</td>
</tr>
<tr>
<td>ax_3: $(\text{HeartPatient} \sqsubseteq \exists \text{HasHealthInsurance.PrivateHealth}, 0.9)$</td>
</tr>
<tr>
<td>ax_4: $(\text{PacemakerPatient}(\text{Tom}), 0.8)$</td>
</tr>
<tr>
<td>ax_5: $(\text{HeartPatient}(\text{Tom}), 0.5)$</td>
</tr>
<tr>
<td>ax_6: $(\text{HeartPatient} \sqsubseteq \text{MalePacemakerPatient}, 0.4)$</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Possibilistic Description Logics

- Inference services: instance checking with weight

A possibilistic DL knowledge base

\[
\begin{align*}
ax_1: & \text{ (Heartpatient } \sqsubseteq \text{ HighBloodPressure, 1)} \\
ax_2: & \text{ (PacemakerPatient } \sqsubseteq \neg \text{HighBloodPressure, 1)} \\
ax_3: & \text{ (HeartPatient } \sqsubseteq \exists \text{HasHealthInsurance.PrivateHealth,0.9)} \\
ax_4: & \text{ (PacemakerPatient(Tom), 0.8)} \\
ax_5: & \text{ (HeartPatient(Tom),0.5)} \\
ax_6: & \text{ (HeartPatient } \sqsubseteq \text{MalePacemakerPatient, 0.4)}
\end{align*}
\]

\[\neg \text{ HighBloodPressure(Tom): 0.8}\]
Reduction

Inference services

Computing inconsistency degree
Algorithms

- A black-box algorithm (Qi et al. ECSQARU2007, IJIS 2011)
 - Idea: search the weights by a binary search
 - Call a standard DL reasoner to check inconsistency
 - A system called PossDL has been implemented

- A tableaux algorithm (Qi and Pan ASWC 2008)
 - Idea: extending classical tableaux algorithm for DL ALC
 - A weight is attached to a concept name or a role name
 - No implementation is done
Generalizations of Possibilistic Description Logics

- **Linear order inference** (Qi et.al. ECSQARU2007, IJIS 2011)
 - Algorithm idea: compute the inconsistency degree and remove axioms whose weights are equal to it
 - Call a standard DL reasoner to check inconsistency
 - PossDL provides functionalities to compute consequences of linear order inference

- **Lexicographic inference** (Du and Qi RR 2008)
 - Algorithm idea: compile the DL axioms to propositional programs
 - No implementation has been done