Reasoning with Inconsistent and Uncertain Ontologies

Guilin Qi
Southeast University
China
gqi@seu.edu.cn

Reasoning Web 2012 September 05, 2012
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
 - Belief revision
 - Revision of ontologies in DLs
- Mapping repair in description logics
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
 - Belief revision
 - Revision of ontologies in DLs
- Mapping repair in description logics
Example

- We encounter a strange new animal and it appears to be a bird
- As it comes closer, we see clearly it is red
 - Belief: the animal is a red bird
 - Formally: $\text{Bird}(a) \land \text{Red}(a)$

- We ask a bird expert who says the animal is not a bird but a sort of mammal
 - Conflict!

What do we believe now?
Example

Knowledge
- Old knowledge: $K = \{ \text{Bird}(a) \land \text{Red}(a) \}$
- New knowledge: $\phi = \neg \text{Bird}(a)$

Problem: K and ϕ are in conflict
- $K \cup \{ \phi \}$ is inconsistent
Introduction of Belief Revision

- Earlier was proposed in database update
 - New tuples are added to a database
 - Cause the violation of integrity constraints

- Has been discussed from a philosophical view
 - Pioneer work by Carlos E. Alchourrón, Peter Gärdenfors, David Makinson (AGM)

- Has application in many areas
 - Databases
 - Artificial intelligence
 - Multi-agent systems
 - Planning
 - Semantics Web
Definition of a Revision Operator

- According to wikipedia

 “Belief revision is the process of changing beliefs to take into account a new piece of information.”

- A revision operator is a mapping from a theory and a formula to a theory

 - A theory is a set of deductively closed formulas (also called belief set)

- Questions

 - Is it reasonable to consider “theory”?
 - What is a rational revision operator?
 - How do we iterate the revision?
 - ...

...
Belief Base

- Arguments against belief set
 - No distinction is made between pieces of knowledge that are known by themselves and pieces of knowledge that are merely consequences of them
 - It fulfils the principle of irrelevance of syntax, which is debatable
 - \{p, q\} and \{p \land q\} should be treated differently when revised by \(\neg p\)

- Use of Belief base
 - A set of formulas that are not deductively closed
 - Revision operators applied to belief bases typically selects some subset of the original knowledge base that are consistent with the new knowledge
Principle of Belief Revision

- **Adequacy of representation:** The revised knowledge should have the same representation as the old knowledge.

- **Irrelevance of syntax:** The revised knowledge base should not depend on the syntactical form of either original knowledge base or the new formula.

- **Maintenance of consistency:** The revised knowledge base should be consistent.

- **Primacy of new information:** New information should always be accepted.

- **Minimal change:** As much information in original knowledge base should be kept after revision.
Example (Cont.)

- **Knowledge**
 - Old knowledge: $K = \{\text{Bird}(a) \land \text{Red}(a)\}$
 - New knowledge: $\phi = \neg \text{Bird}(a)$

- **Problem:** K and ϕ are in conflict
 - $K \cup \{\phi\}$ is inconsistent

- $K \ast \phi = \{\neg \text{Bird}(a) \land \text{Red}(a)\}$
 - Minimal change
 - Primacy of new information
 - ...
AGM Postulates

(K₁) $K * \phi$ is a belief set (adequacy of representation)

(K₂) $\phi \in K * \phi$ (primacy of new information)

(K₃) $K * \phi \subseteq K + \phi$

(K₄) If $\neg \phi \notin K$ then $K + \phi \subseteq K * \phi$

(K₅) If ϕ is consistent then $K * \phi$ is also consistent (maintenance of consistency)

(K₆) If $Cn(\phi) = Cn(\psi)$ then $K * \phi = K * \psi$ (independency of syntax)

(K₇) $K * (\phi \land \psi) \subseteq (K * \phi) + \psi$

(K₈) If $\neg \psi \notin K * \phi$ then $(K * \phi) + \psi \subseteq K * (\phi \land \psi)$
Constructive Models for AGM Postulates

- Selection function
- Epistemic entrenchments
- System of spheres
Partial Meet Belief Revision

- Selection function γ: maps a non-empty collection X of subsets of K to a non-empty subset $\gamma(X)$ of X
- ϕ-remainder of K: a maximal subsets of K that fail to entail ϕ
- $K \perp \phi$: set of all ϕ-remainders of K
- Partial meet belief revision for K and ϕ
 - We first find all the $\neg \phi$-remainders of K (subsets of K that are consistent with ϕ)
 - We apply the selection function to $K \perp \neg \phi$, get $\gamma(K \perp \neg \phi)$
 - Take conjunction of elements in $\gamma(K \perp \neg \phi)$ and ϕ as the result of revision

- Theorem: partial meet belief revision operators correspond to the postulates (K_1) to (K_8)
Reformulation of AGM Postulates in Propositional Logic

(R_1) \phi*\mu \vdash \mu

(R_2) If \phi \land \mu is satisfiable then \phi*\mu \equiv \phi \land \mu

(R_3) If \mu is satisfiable then \phi*\mu is also satisfiable

(R_4) If \phi_1 \equiv \phi_2 and \mu_1 \equiv \mu_2 then \phi_1*\mu_1 \equiv \phi_2* \mu_2

(R_5) (\phi*\mu) \land \psi implies \phi*(\mu \land \psi)

(R_6) If (\phi*\mu) \land \psi is satisfiable then \phi*(\mu \land \psi) implies (\phi*\mu) \land \psi

☐ Theorem: Given a belief set \(K \), if \(\phi \) is a formula that satisfies \(K = \text{Cn}(\phi) \) and \(K*\mu = \text{Cn}(\phi \circ \mu) \), then * satisfies \((K_1) \rightarrow (K_8) \) iff \(\circ \) satisfies \((R_1) \rightarrow (R_6) \)
Dalal’ s Revision Operator

- Distance function: Hamming distance between two interpretations

Example: atoms are p, q, r

\[\omega: \ 1 \ 1 \ 0 \]
\[\omega': \ 0 \ 1 \ 0 \]

\[d(\omega, \omega') = 1 \]

- Idea: to revise formula \(\phi \) by formula \(\psi \)
 - Compute the distance \(d(\phi, \psi) \) between \(\phi \) and \(\psi \)
 - Take models of \(\psi \) whose distance with \(\phi \) is equal to \(d(\phi, \psi) \)

- Theorem: Dalal’ s operator satisfies \((R_1)-(R_6) \)
Base Revision Operators

- Assumption: K is not closed under logical consequence, i.e. $K \neq \text{Cn}(K)$

- Operators: related to foundationalism in philosophy
 - **WIDTIO (When in Doubt, Throw it Out)**
 - Idea: the maximal subsets of $K \cup \{\phi\}$ that are consistent and contain ϕ are combined by intersection
 - **Ginsberg–Fagin–Ullman–Vardi**
 - Idea: the maximal subsets of $K \cup \{\phi\}$ that are consistent and contain ϕ are combined by disjunction
 - **Nebel’s revision operators**
 - Similar to WIDTIO and Ginsberg–Fagin–Ullman–Vardi but priority among formulas are given
 - **Hansson’s revision operators**: defined by selection function
Example

- Tweety is a bird: \(\text{Bird}(\text{Tweety}) \)
- Any bird can fly: \(\forall x (\text{Bird}(x) \rightarrow \text{Fly}(x)) \)
 - We can infer that \(\text{Fly}(\text{Tweety}) \)
- Later on, we learn that \(\neg \text{Fly}(\text{Tweety}) \) (Inconsistency!)

Formally
- \(K = \{ \text{Bird}(\text{Tweety}), \forall x (\text{Bird}(x) \rightarrow \text{Fly}(x)) \} \)
- \(\phi =: \text{Fly}(\text{Tweety}) \)
Example (Cont.)

- $K \bot \phi = \{K_1, K_2\}$
 - $K_1 = \{\text{Bird}(\text{Tweety})\}$
 - $K_2 = \{\forall x (\text{Bird}(x) \rightarrow \text{Fly}(x))\}$

- Different selection functions result in different revision operators
 - $\gamma(K \bot \phi) = K_1$
 - $K \phi = \{\text{Bird}(\text{Tweety}), \neg \text{Fly}(\text{Tweety})\}$
 - $\gamma(K \bot \phi) = K_2$
 - $K \phi = \{\forall x (\text{Bird}(x) \rightarrow \text{Fly}(x)), \neg \text{Fly}(\text{Tweety})\}$
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
 - Belief revision
 - Revision of ontologies in DLs
- Mapping repair in description logics
Motivation of Revision in DLs

- Ontologies change due to the following reasons
 - New axioms are added during ontology learning
 - Axioms containing modelling errors are modified
 - Ontologies with different priorities are merged
 - ...

- Problems with ontology change
 - The old ontology and the newly added ontology are not consistent together

- Revision: dealing with logical contradictions during ontology change
Reformulation of AGM Postulates

(O+1) $X \subseteq K \ast X$

(O+2) If $K \cup X$ is consistent, then $K \ast X = K \cup X$

(O+3) If X is consistent, then $K \ast X$ is also consistent.

(O+4) If $X \equiv Y$, then $K \ast X \equiv K \ast Y$

Plus the following postulate which is dened by a contraction operator:

(O+5) $(K \ast X) \cap K = K - \neg X$

- The negation of an axiom has two different definitions (consistency-negation and coherence-negation)
- Two kinds of logical contradictions
Reformulation of AGM Postulates

- Problems

- Their reformulation of AGM postulates deviate the original idea of AGM theory

- Disjunction is not used: the result of revision must be a single ontology

- There are two kinds of contradictions in DLs: inconsistency and incoherence
 - Revision operators defined by these postulates are applied to deal with inconsistency only
Incoherence

- Unsatisfiable concept $C: C = \emptyset$, for all $I \models T$

- Incoherence: there is an unsatisfiable concept in T

- Problem of incoherence
 - Main source of inconsistency
 - Trivial subsumption
Debugging Terminologies

- **MUPS for** A **w.r.t.** T: a subset T' of TBox T such that
 - A is unsatisfiable in T'
 - A is satisfiable in any T'' where $T'' \subseteq T'$
- Example: $T = \{\text{Manager} \sqsubseteq \text{Employee}, \text{Employee} \sqsubseteq \text{JobPosition}, \text{JobPosition} \sqsubseteq \neg \text{Employee}, \text{Leader} \sqsubseteq \text{JobPosition}\}$
 - Manager is unsatisfiable
 - MUPS: $\{\text{Manager} \sqsubseteq \text{Employee}, \text{Employee} \sqsubseteq \text{JobPosition}, \text{JobPosition} \sqsubseteq \neg \text{Employee}\}$

- **MIPS for** T: a subset T' of TBox T such that
 - T' is incoherent
 - any T'' with $T'' \subseteq T'$ is coherent
- Example (cont.): One MIPS
 - $\{\text{Employee} \sqsubseteq \text{JobPosition}, \text{JobPosition} \sqsubseteq \neg \text{Employee}\}$
A Kernel Revision Operator

- **Idea**: based on MIPS
 - Step 1: find MIPS of T w.r.t. T_0
 - Step 2: remove some axioms in these MIPS

- **MIPS of T w.r.t. T_0**: a subset T' of TBox T
 - $T' \cup T_0$ is incoherent (incoherence)
 - Any T'' with $T'' \subseteq T'$ is coherent with T_0 (minimalism)

- **Example**
 - $T = \{\text{Manager} \sqsubseteq \text{Employee}, \text{Employee} \sqsubseteq \text{JobPosition}\}$
 - $T_0 = \{\text{JobPosition} \sqsubseteq \neg \text{Employee}, \text{Leader} \sqsubseteq \text{JobPosition}\}$
 - A MIPS of T w.r.t. T_0
 - $\{\text{Employee} \sqsubseteq \text{JobPosition}\}$
A Kernel Revision Operator

Which axioms should be removed from MIPS?

- **Incision function σ** for T: for each TBox T_0 and the set $\text{MIPS}_{T_0}(T)$ of all MIPS of T w.r.t. T_0

 - $\sigma(\text{MIPS}_{T_0}(T)) \subseteq \bigcup_{T_i \in \text{MIPS}_{T_0}(T)} T_i$ (Axioms selected belong to some MIPS)

 - $T' \cap \sigma(\text{MIPS}_{T_0}(T)) \neq \emptyset$, for any $T' \in \text{MIPS}_{T_0}(T)$ (Each MIPS has at least one axiom selected)

- **Naïve incision function**: $\sigma(\text{MIPS}_{T_0}(T)) = \bigcup_{T_i \in \text{MIPS}_{T_0}(T)} T_i$

- **Principle**: minimal change, i.e., select minimal number or set of axioms
A Kernel Revision Operator

- Kernel revision operator: Given T and σ, for any T_0

\[T *_{\sigma} T_0 = (T \setminus \sigma(MIPS_{T_0}(T))) \cup T_0 \]

- The result of revision is always a coherent TBox

- Logical properties

 - (R_1) $T_0 \subseteq T *_{\sigma} T_0$ (success)
 - (R_2) If $T \cup T_0$ is coherent, then $T *_{\sigma} T_0 = T \cup T_0$
 - (R_3) If T_0 is coherent then $T *_{\sigma} T_0$ is coherent (coherence preserve)
 - (R_4) If $T_1 \equiv T_2$, then $T *_{\sigma} T_1 \equiv T *_{\sigma} T_2$ (weak syntax independence)
 - (R_5) If $\phi \in T$ and $\phi \notin T *_{\sigma} T_0$, then there is a subset S of T and a subset S_0 of T_0 such that $SU S_0$ is coherent, but $SU S_0 \cup \{\phi\}$ is not (relevance)
Different incision functions will result in different specific kernel revision operators

- Incision functions can be computed by Reiter’s hitting set tree (HST) algorithm

However, there are potentially exponential number of hitting sets computed by the algorithm

- We reduce the search space by using scoring function or confidence values
Main steps: Given T and T_0

- Step 1: compute MIPS of T w.r.t. T_0
- Step 2: For each MIPS, we take its subset consisting of axioms whose priority is the lowest
- Step 3 Remove minimal number of axioms in these subsets from the ontology
Example

\[T = \{\text{Example} \sqsubseteq \text{Knowledge}, \text{Document} \sqsubseteq \neg \text{Knowledge}, \text{Form} \sqsubseteq \text{Knowledge}, \text{Firm} \sqsubseteq \text{Organization}\}\]

\[T_0 = \{\text{Document} \sqsubseteq \text{Example}, \text{Knowhow_document} \sqsubseteq \text{Document}, \text{Form} \sqsubseteq \text{Document}\}\]

- \[w_{\text{Example} \sqsubseteq \text{Knowledge}} = 0.4\]
- \[w_{\text{Document} \sqsubseteq \neg \text{Knowledge}} = 0.8\]
- \[w_{\text{Form} \sqsubseteq \text{Knowledge}} = 0.6\]
- \[w_{\text{Firm} \sqsubseteq \text{Organisation}} = 0.9\]
- The axioms in \(T_0\) are assigned weight 1
Example

- \(T = \{ \text{Example} \sqsubseteq \text{Knowledge}, \text{Document} \sqsubseteq \neg \text{Knowledge}, \text{Form} \sqsubseteq \text{Knowledge}, \text{Firm} \sqsubseteq \text{Organization} \} \)

- \(T_0 = \{ \text{Document} \sqsubseteq \text{Example}, \text{Knowhow_document} \sqsubseteq \text{Document, Form} \sqsubseteq \text{Document} \} \)

- MIPS of \(T \) w.r.t. \(T_0 \)

 - \(T_1 = \{ \text{Document} \sqsubseteq \neg \text{Knowledge} (0.8), \text{Form} \sqsubseteq \text{Knowledge} (0.6) \} \)

 - \(T_1 = \{ \text{Example} \sqsubseteq \text{Knowledge} (0.4), \text{Document} \sqsubseteq \neg \text{Knowledge} (0.8) \} \)

- Result of revision

\[T \ast \sigma T_0 = T \cup T_0 \setminus \{ \text{Example} \sqsubseteq \text{Knowledge, Form} \sqsubseteq \text{Knowledge} \} \]
Outline

- Probabilistic logic vs possibilistic logic
- Probabilistic description logics
- Possibilistic description logics and its extension
- Revising ontologies in description logics
- Mapping repair in description logics
Ontology Mapping

O1

O2

Construct Mapping

Mapping between O1 and O2

Vehicle

Boat

Car

hasSpeed

Speed

Vehicle

Automobile

speed

Speed

Vehicle ↔ Vehicle

Car ↔ Automobile

Speed ↔ Speed

hasSpeed ↔ speed
Example

Source ontology crs: O_1

- document
- article
- program

Target Ontology ekaw: O_2

- Document
- Paper
- Workshop_Paper
- Conference_Paper

Mapping:

- document \rightarrow Document: 0.93
- article \rightarrow Paper: 0.80
- program \rightarrow Workshop_Paper: 0.65
- program \rightarrow Conference_Paper: 0.65
Example

Combined Ontology (O)

Mapping (M)

article

Conference_Paper

article

Workshop_Paper

program

Document

program

Document

document

Document
Formal Definition of Mapping Revision

- Distributed system D: \(<O_1,O_2,M>\)
- Union: \(O_1 \cup_M O_2 = O_1 \cup O_2 \cup \{t(m): m \in M\}\)

 \(t(<\text{crs:article}, \text{ekaw:Conference_paper}, \sqsubseteq, 0.65>) = \text{crs:article} \sqsubseteq \text{ekaw:Conference_paper}\)

- Inconsistency: M is inconsistent with \(O_1\) and \(O_2\) iff there is a concept which is satisfiable in \(O_i\), but unsatisfiable in \(O_1 \cup_M O_2\)

- Mapping revision operator: \(*<O_1,O_2,M> = <O_1,O_2,M'>\) with \(M' \subseteq M\)
Example

Source ontology crs: O_1

- document
 - article
 - program
 - disjoint

Target Ontology ekaw: O_2

- Document
 - Paper
 - Workshop_Paper
 - Conference_Paper

Mapping:
- document \rightarrow Document: 0.93
- document \rightarrow Paper: 0.80
- document \rightarrow Workshop_Paper: 0.65
- document \rightarrow Conference_Paper: 0.65
- article \rightarrow Paper: 0.80
- article \rightarrow Workshop_Paper: 0.65
- article \rightarrow Conference_Paper: 0.65
- program \rightarrow Paper: 0.80
- program \rightarrow Workshop_Paper: 0.65
- program \rightarrow Conference_Paper: 0.65

Isa relationships:
- document \sqsubseteq Paper
- article \sqsubseteq Paper
- program \sqsubseteq Paper
- document \sqsubseteq Workshop_Paper
- article \sqsubseteq Workshop_Paper
- program \sqsubseteq Workshop_Paper
- document \sqsubseteq Conference_Paper
- article \sqsubseteq Conference_Paper
- program \sqsubseteq Conference_Paper
Conflict–based Mapping Revision

- Consider a distributed system \(D: \langle O_1, O_2, M \rangle \)
- Conflict set for \(A \) in \(O_i \): \(C \subseteq M \), \(A \) is satisfiable in \(O_i \) but unsatisfiable in \(O_1 \cup C \cup O_2 \)
 - Minimal conflict set: conflict set which is minimal w.r.t. set inclusion
 - \(\text{MCS}_{O_1, O_2}(M) \): all the minimal conflict sets for all the unsatisfiable concepts
- Incision function \(\sigma \) for \(D \)
 - \(\sigma(D) \subseteq \cup (\text{MCS}_{O_1, O_2}(M)) \)
 - If \(C \neq \emptyset \) and \(C \in \text{MCS}_{O_1, O_2}(M) \), then \(C \cap \sigma(D) \neq \emptyset \);
 - If \(m=\langle C, C', r, \alpha \rangle \in \sigma(D) \), then there exists \(C \in \text{MCS}_{O_1, O_2}(M) \) such that \(m \in C \), \(\alpha=\min\{\alpha_i: \langle C_i, C'_i, r_i, \alpha_i \rangle \in C\} \)
- Conflict–based Revision operator:
 - \(* \langle O_1, O_2, M \rangle = \langle O_1, O_2, \ M \setminus \sigma(\text{MCS}_{O_1, O_2}(M)) \rangle \)
Inconsistency degree of D:

$$\text{Inc}(D) = \max\{\alpha : \text{there is an unsatisfiable concept in } D_{\geq \alpha}\}$$

Postulates:

- (Relevance): a correspondence is removed only if it is (1) involved in a conflict, and (2) its confidence degree is minimal.
- (Consistency): consistency must be restored after revision.

Theorem: Operator \ast is a conflict-based mapping revision operator iff it satisfies (Relevance) and (Consistency).
An iterative algorithm for Mapping Revision

Input: A distributed system $D=\langle O_1, O_2, M \rangle$ and a revision operator

Output: A repaired distributed system

Algorithm:

- **Step 1:** Stratify the mapping M
- **Step 2:** Compute inconsistency degree d
- **Step 3:** Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- **Step 4:** If revised D is still inconsistent, go to Step 2
Algorithm (Step 1)
----- Stratify the mapping

Stratify the mapping

M

Mapping (M)

document 0.93 Document
program 0.80 Document
program 0.80 Document
article 0.65 Workshop_Paper
article 0.65 Conference_Paper
article 0.65 Conference_Paper
program 0.80 Document
program 0.80 Document
document 0.93 Document
An iterative algorithm for Mapping Revision

Input: A distributed system $D=\langle O_1, O_2, M \rangle$ and a revision operator

Output: A repaired distributed system

Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2
Algorithm (Step 2)
-------- Compute inconsistency degree

M

document 0.93 Document

program 0.80 Document

program 0.80 Document

article 0.65 Workshop_Paper

article 0.65 Conference_Paper

$0_1 \cup 0_2 \cup M \cdot 0.93$ is consistent

$0_1 \cup 0_2 \cup M \cdot 0.80$ is inconsistent

Inconsistency degree is 0.80
An iterative algorithm for Mapping Revision

Input: A distributed system \(D = \langle O_1, O_2, M \rangle \) and a revision operator

Output: A repaired distributed system

Algorithm:

- Step 1: Stratify the mapping \(M \)
- Step 2: Compute inconsistency degree \(d \)
- Step 3: Use \(O_1 \cup O_2 \cup M_{>d} \) to revise \(M_{=d} \)
- Step 4: If revised \(D \) is still inconsistent, go to Step 2
Algorithm (Step 3)
----- Do revision

Revise $M_{=0.80}$ by $O_1 \cup O_2 \cup M_{>0.80}$

Compute a minimal conflict subset
- e.g. $\{\text{document } \subseteq \text{Document}, \text{Document } \subseteq \text{program}\}$

Remove an axiom with the lowest weight
- e.g. ax: $\text{Document } \subseteq \text{program}$ with weight 0.80

$(O_1 \cup O_2 \cup M_{\geq 0.80} \setminus \text{ax})$ becomes consistent
An iterative algorithm for Mapping Revision

Input: A distributed system $D=\langle O_1, O_2, M \rangle$ and a revision operator

Output: A repaired distributed system

Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{\geq d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2
Conclusions

- We give a short introduction of probabilistic logic and possibilistic logic and a comparison between them.
- We introduce probabilistic description logics and possibilistic description logics.
- We introduce belief revision in propositional logic and description logics.
Thank You!