Geospatial Information with Description Logics, OWL, and Rules

Presenter: Charalampos Nikolaou
Outline

- Geospatial information with description logics and OWL
- OWL reasoners with geospatial capabilities
- Geospatial information with SWRL rules
Geospatial information with DLs and OWL

Three main approaches:

1. Use a DL as it is

2. Define a spatial DL (concrete domain approach)

3. Hybrid: OWL + Spatial ABox
Use a DL as it is
Use a DL as it is

Use OWL-DL

- **Regions** are represented by **concepts**
- **Points** are represented by **individuals**
- RCC-8 relations among regions expressed by DL axioms

Translation of $PO(X, Y)$ as

\[
\begin{align*}
Z_1 & \equiv X \cap \neg Y \\
Z_2 & \equiv \neg X \cap Y \\
Z_3 & \equiv \forall R. X \cap \forall R. Y \\
\end{align*}
\]

TBox

\[
Z_1(z_1) \quad Z_2(z_2) \quad Z_3(z_3)
\]

ABox
Use a DL as it is

Use OWL-DL

Discussion

- Impractical when implemented in a reasoner
 [Stocker-Sirin, OWLED’09]
- Unnatural modeling?
- Can we generalize the approach?
 - For example, can we define the concept of a dream house as one that is located inside a forest?
- How do we express disjunctions of RCC-8 relations (indefinite information)?
Define a spatial DL
(concrete domain approach)
Concrete domains

- Reason about specific domains (real numbers, time intervals, spatial regions)
- Formalization of a concrete domain using a first-order theory
- From **roles** to **features**: associate an individual to a value from a concrete domain
- Notation: $\mathcal{DL}(\mathcal{D})$
Concrete domains

Examples:

- Reals with order (\mathbb{R})
 - **Domain**: the set of real numbers \mathbb{R}
 - **Predicates**: $<$ interpreted by the “less-than” relation

- Allen’s Interval Calculus
 - **Domain**: the set of time intervals
 - **Predicates**: Allen’s basic interval relations (before, starts, etc.) and Boolean combinations of them

- RCC-8 Calculus
 - **Domain**: the set of non-empty, regular closed subsets of \mathbb{R}^2
 - **Predicates**: basic RCC-8 relations (EQ, PO, etc.) and Boolean combinations of them
Concrete domains

TBox
Concept equivalences/inclusions can include features and concrete domain predicates

ABox
Assertions can associate an individual to values from a concrete domain
Concrete domains

Two state of the art approaches

- $\mathcal{ALC}(\text{RCC8}) : \mathcal{ALC}$ with RCC-8 calculus as the concrete domain
 - extension of model-theoretic semantics of \mathcal{ALC}
 - ω-admissibility property
 - tableau-based technique

[Lutz-Milicic, JAR’07]
Concrete domains

Two state of the art approaches

- $\mathcal{ALC}(\text{RCC8}) : \mathcal{ALC}$ with RCC-8 calculus as the concrete domain
 - extension of model-theoretic semantics of \mathcal{ALC}
 - ω-admissibility property
 - tableau-based technique

- $\text{DL-Lite}^{\mathcal{F},\mathcal{R}}(\text{RCC8})$: DL-Lite with RCC-8 calculus as the concrete domain
 - extension of model-theoretic semantics of DL-Lite
 - FOL-rewritability for unions of conjunctive queries

[Lutz-Milicic, JAR’07]
["Ozcep-Moller, DL’12]
An Example

- **DreamHouse**
 One that is located inside a pine forest and borders a lake
An Example

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[\text{DreamHouse} \equiv \text{House} \sqcap \exists(\text{loc}), (\text{hasLake loc}).\text{EC} \]
\[\qquad \sqcap \exists(\text{loc}), (\text{hasForest loc}).\text{NTPP} \lor \text{TPP}\]
\[\text{DreamHouse} \subseteq \forall\text{hasForest}.\text{PineForest} \sqcap \forall\text{hasLake}.\text{Lake}\]
An Example

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists \! (\text{loc}. (\text{hasLake loc}).\text{EC}) \\
\sqcap \exists (\text{loc}, (\text{hasForest loc}).\text{NTPP} \lor \text{TPP})
\]

\[
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]
An Example

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (\text{loc}), (\text{hasLake loc}).\text{EC} \\
\quad \sqcap \exists (\text{loc}), (\text{hasForest loc}).\text{NTPP} \lor \text{TPP}
\]

\[
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]
An Example

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (loc), (\text{hasLake} \ loc).\text{EC} \\
\qquad \sqcap \exists (loc), (\text{hasForest} \ loc) \text{NTPP} \lor \text{TPP} \\
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]
An Example (classification)

- **ABox**

<table>
<thead>
<tr>
<th>Concept</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>House(h)</td>
<td>loc(f, (v_f))</td>
</tr>
<tr>
<td>hasForest(h, f)</td>
<td>loc(h, (v_h))</td>
</tr>
<tr>
<td>hasLake(h, l)</td>
<td>loc(l, (v_l))</td>
</tr>
<tr>
<td></td>
<td>NTPP((v_h), (v_f))</td>
</tr>
<tr>
<td></td>
<td>EC((v_h), (v_l))</td>
</tr>
</tbody>
</table>
An Example (classification)

- **ABox**

 House(h) \hspace{1cm} \text{loc}(f, v_f) \hspace{1cm} \text{NTPP}(v_h, v_f)

 hasForest(h, f) \hspace{1cm} \text{loc}(h, v_h) \hspace{1cm} \text{EC}(v_h, v_l)

 hasLake(h, l) \hspace{1cm} \text{loc}(l, v_l)

- **Question**: Is individual h a DreamHouse?
An Example (classification)

- **ABox**

 - House(h)
 - hasForest(h, f)
 - hasLake(h, l)
 - loc(f, v_f)
 - loc(h, v_h)
 - loc(l, v_l)
 - NTPP(v_h, v_f)
 - EC(v_h, v_l)

- **Question**: Is individual h a DreamHouse?
- **Answer**: Yes.
An Example (classification)

- **ABox**

<table>
<thead>
<tr>
<th>House(h)</th>
<th>loc(f, v_f)</th>
<th>NTPP(v_h, v_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasForest(h, f)</td>
<td>loc(h, v_h)</td>
<td>EC(v_h, v_l)</td>
</tr>
<tr>
<td>hasLake(h, l)</td>
<td>loc(l, v_l)</td>
<td></td>
</tr>
</tbody>
</table>

- **Question**: Is individual \(h \) a DreamHouse?
- **Answer**: Yes.
- **Why?**
An Example (classification)

- **ABox**

 \[
 \begin{align*}
 \text{House}(h) & \quad \text{loc}(f, v_f) & \quad \text{NTPP}(v_h, v_f) \\
 \text{hasForest}(h, f) & \quad \text{loc}(h, v_h) & \quad \text{EC}(v_h, v_f) \\
 \text{hasLake}(h, l) & \quad \text{loc}(l, v_l) & \quad \text{NTTP}(v_h, v_l)
 \end{align*}
 \]

 DreamHouse \equiv \text{House} \sqcap \exists(\text{loc}), (\text{hasLake}\ \text{loc}).\text{EC} \\
 \quad \sqcap \exists(\text{loc}), (\text{hasForest}\ \text{loc}).\text{NTTP} \vee \text{TPP}

 DreamHouse \subseteq \forall\text{hasForest}.\text{PineForest} \sqcap \forall\text{hasLake}.\text{Lake}
An Example (classification)

- **ABox**

 \[
 \text{House}(h) \quad \text{loc}(f, v_f) \quad \text{NTPP}(v_h, v_f) \\
 \text{hasForest}(h, f) \quad \text{loc}(h, v_h) \quad \text{EC}(v_h, v_1) \\
 \text{hasLake}(h, l) \quad \text{loc}(l, v_1)
 \]

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (\text{loc}), (\text{hasLake} \text{ loc}).\text{EC} \\
\sqcap \exists (\text{loc}), (\text{hasForest} \text{ loc}).\text{NTPP} \vee \text{TPP}
\]

\[
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]
An Example (classification)

- **ABox**

 - $\text{House}(h)$
 - $\text{loc}(f, v_f)$
 - $\text{NTPP}(v_h, v_f)$
 - $\text{hasForest}(h, f)$
 - $\text{loc}(h, v_h)$
 - $\text{EC}(v_h, v_l)$
 - $\text{hasLake}(h, l)$
 - $\text{loc}(l, v_l)$

$\text{DreamHouse} \equiv \text{House} \sqcap \exists (\text{loc}), (\text{hasLake loc}).\text{EC}$

$\sqcap \exists (\text{loc}), (\text{hasForest loc}).\text{NTPP} \lor \text{TPP}$

$\text{DreamHouse} \sqsubseteq \forall \text{hasForest. PineForest} \sqcap \forall \text{hasLake. Lake}$
An Example (classification)

- **ABox**

 \[
 \begin{align*}
 &\text{House}(h) & \text{loc}(f, v_f) & \text{NTPP}(v_h, v_f) \\
 &\text{hasForest}(h, f) & \text{loc}(h, v_h) & \text{EC}(v_h, v_l) \\
 &\text{hasLake}(h, l) & \text{loc}(l, v_l)
 \end{align*}
 \]

 \[
 \text{DreamHouse} \equiv \text{House} \sqcap \exists(\text{loc}), (\text{hasLake } \text{loc}).\text{EC} \\
 \sqcap \exists(\text{loc}), (\text{hasForest } \text{loc}).\text{NTPP} \lor \text{TPP}
 \]

 \[
 \text{DreamHouse} \sqsubseteq \forall\text{hasForest}.\text{PineForest} \sqcap \forall\text{hasLake}.\text{Lake}
 \]
Hybrid: OWL + Spatial ABox
Hybrid: OWL + Spatial ABox

General architecture

[Diagram showing the General architecture with DL, TBox, ABox, and DL Reasoning]

KB
Hybrid: OWL + Spatial ABox

General architecture

- DL
 - TBox
 - ABox

- DL Reasoning

- KB
Hybrid: OWL + Spatial ABox

General architecture

![Diagram showing the general architecture of a knowledge base (KB) with DL (Description Logic) and Spatial ABox reasoning](image-url)
Hybrid: OWL + Spatial ABox

1. Grutter et al.

2. Reasoner RacerPro (DL/OWL + Spatial ABox)

3. Reasoner PelletSpatial (DL/OWL + Spatial ABox)
Hybrid: OWL + Spatial ABox

Domain Knowledge (TBox)

- Introduction of roles (e.g., `partiallyOverlaps`) for RCC relations (e.g., `PO`)
- `spatiallyRelated`: top role for topological relations
- Role inclusion axioms for RCC relations
 \[
 \text{partiallyOverlaps} \sqsubseteq \text{spatiallyRelated}
 \]

Assertions (ABox)

- Assertion of the “connectsWith” relation, \(\text{connectsWith}(a, b) \), between two regions (individuals)

[Grütter et al., ISWC’08]
Hybrid: OWL + Spatial ABox

RCCBox

- Definition of RCC relations based on the “connectsWith” relation
 \[P(x, y) \equiv \forall z (C'(z, x) \rightarrow C(z, y)) \quad \text{DC}(x, y) \equiv \neg C(x, y) \]

- Axioms for composition tables of RCC

Predicate \(C(x, y) \) corresponds to role connectsWith\((x, y)\) in ABox

[Grütter et al., ISWC’08]
Hybrid: OWL + Spatial ABox

Application

1. Input: a set of geometries (polygons in \mathbb{Z}^2)

2. Compute assertions of the form $\text{connectsWith}(a, b)$

3. Update ABox with new spatial relations according to definitions in RCCBox
 1. Should $\text{DC}(a, b)$ be inferred in RCCBox, then
 2. the role assertion $\text{disconnectedWith}(a, b)$ is inserted in ABox

4. Check spatial consistency of ABox using path consistency on the RCC network constructed from the spatial role assertions of the ABox

[Grüttet et al., ISWC’08]
The reasoner RacerPro

- **Description Logic**: $SHIQ$
- **Spatial Extension**: the ABox is associated to a spatial representation layer (RCC substrate)
- **RCC substrate**: offers representation and querying facilities for RCC networks

Features

- Representation of indefinite information: disjunctions of RCC relations can be used between two individuals
- Consistency checking of RCC networks
- Querying of **asserted** and **entailed** RCC relations using the query language nRQL

RacerPro: ABox Reasoning

- Spatial regions: \(a, b, \) and \(c \)

- Region \(a \) contains \(b \)

 \[(rcc\text{-related} \ a \ b \ (:ntppi \ :tppi))\]

- Region \(a \) is disjoint with \(c \)

 \[(rcc\text{-related} \ a \ c \ (:dc))\]
RacerPro: ABox Reasoning

- Spatial regions: a, b, and c

- Region a contains b

 \((rcc\text{-}related \ a \ b \ (((ntppi :tppi))) \)

- Region a is disjoint with c

 \((rcc\text{-}related \ a \ c \ (:dc)) \)

(?) Which regions are disjoint?
RacerPro: ABox Reasoning

- Spatial regions: a, b, and c

- Region a contains b
 \[(\text{rcc-related } a \ b \ ((:\text{ntppi} \ :\text{tppi})))\]

- Region a is disjoint with c
 \[(\text{rcc-related } a \ c \ (:\text{dc}))\]

\[(\text{retrieve } (?x \ ?y) \ (\text{and } (?x \ ?y \ :\text{dc})))\]
RacerPro: ABox Reasoning

- Spatial regions: \(a, b, \) and \(c \)

- Region \(a \) contains \(b \)
 \[
 (\text{rcc-related} a \ b \ ((:\text{ntppi} :\text{tppi})))
 \]

- Region \(a \) is disjoint with \(c \)
 \[
 (\text{rcc-related} a \ c \ (:\text{dc}))
 \]

\(?\text{(retrieve } (?x \ ?y) \ (\text{and} \ (?x \ ?y \ :\text{dc}))\)\)

\((a, c) \ \text{and} \ (c, b)\)
Dream House (definition)

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (loc), (\text{hasLake} \; loc).\text{EC} \\
\sqcap \exists (loc), (\text{hasForest} \; loc).\text{NTPP} \lor \text{TPP}
\]

\[
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]
Dream House (definition)

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (loc), (\text{hasLake} \ loc).\text{EC} \\
\sqcap \exists (loc), (\text{hasForest} \ loc).\text{NTPP} \lor \text{TPP}
\]

\[
\text{DreamHouse} \subseteq \forall \text{hasForest}.\text{PineForest} \sqcap \forall \text{hasLake}.\text{Lake}
\]

(implies DreamHouse

(and

(all hasForest PineForest)

(all hasLake Lake)))
Dream House (definition)

- **DreamHouse**
 One that is located inside a pine forest and borders a lake

\[
\text{DreamHouse} \equiv \text{House} \sqcap \exists (loc), (\text{hasLake } loc). \text{EC} \\
\sqcap \exists (loc), (\text{hasForest } loc). \text{NTPP } \lor \text{ TPP}
\]

\[
\text{DreamHouse} \sqsubseteq \forall \text{hasForest}. \text{PineForest} \sqcap \forall \text{hasLake}. \text{Lake}
\]

(implies DreamHouse

(and

(all hasForest PineForest)

(all hasLake Lake)))
Dream House (ABox reasoning)

- **ABox**
 - Fire(f)
 - PineForest(n)
 - Lake(l)
 - House(h)
 - hasForest(h, n)
 - hasLake(h, l)
 - NTPP(h, n)
 - NTPP(n, f)
 - EC(h, l)
Dream House (ABox reasoning)

- **ABox**

<table>
<thead>
<tr>
<th>Fire(f)</th>
<th>House(h)</th>
<th>NTPP(h, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PineForest(n)</td>
<td>hasForest(h, n)</td>
<td>NTPP(n, f)</td>
</tr>
<tr>
<td>Lake(l)</td>
<td>hasLake(h, l)</td>
<td>EC(h, l)</td>
</tr>
</tbody>
</table>

- **Question**: What are the houses that are threatened?
Dream House (ABox reasoning)

- **ABox**

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire(f)</td>
<td>House(h)</td>
</tr>
<tr>
<td>PineForest(n)</td>
<td>hasForest(h, n)</td>
</tr>
<tr>
<td>Lake(l)</td>
<td>hasLake(h, l)</td>
</tr>
<tr>
<td></td>
<td>NTPP(h, n)</td>
</tr>
<tr>
<td></td>
<td>NTPP(n, f)</td>
</tr>
<tr>
<td></td>
<td>EC(h, l)</td>
</tr>
</tbody>
</table>

- **Question**: What are the houses that are threatened?
- **Answer**: House h.
Dream House (ABox reasoning)

- **ABox**

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire(f)</td>
<td></td>
</tr>
<tr>
<td>PineForest(n)</td>
<td></td>
</tr>
<tr>
<td>Lake(l)</td>
<td></td>
</tr>
<tr>
<td>House(h)</td>
<td></td>
</tr>
<tr>
<td>NTPP(h, n)</td>
<td></td>
</tr>
<tr>
<td>NTPP(n, f)</td>
<td></td>
</tr>
<tr>
<td>EC(h, l)</td>
<td></td>
</tr>
</tbody>
</table>

- **Question**: What are the houses that are threatened?
- **Answer**: House h.
- **Why?**
Dream House (ABox reasoning)

<table>
<thead>
<tr>
<th>Fire(f)</th>
<th>House(h)</th>
<th>NTPP(h, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PineForest(n)</td>
<td>hasForest(h, n)</td>
<td>NTPP(n, f)</td>
</tr>
<tr>
<td>Lake(l)</td>
<td>hasLake(h, l)</td>
<td>EC(h, l)</td>
</tr>
</tbody>
</table>

h

l

n

f
Dream House (ABox reasoning)

- Fire(f)
- PineForest(n)
- Lake(l)
- House(h)
- hasForest(h, n)
- hasLake(h, l)
- NTPP(h, n)
- NTPP(n, f)
- EC(h, l)

Diagram:
- Node h connected to node n with NTPP
- Node f connected to node l with NTPP
Dream House (ABox reasoning)

- Fire(f)
- PineForest(n)
- Lake(l)
- House(h)
- hasForest(h, n)
- hasLake(h, l)
- NTPP(h, n)
- NTPP(n, f)
- EC(h, l)
- EC
- NTPP
- h
- l
- n
- f
Dream House (ABox reasoning)

Fire(f) House(h) NTPP(h, n)
PineForest(n) hasForest(h, n) NTPP(n, f)
Lake(l) hasLake(h, l) EC(h, l)
Dream House (ABox reasoning)

- Fire(f)
- PineForest(n)
- Lake(l)
- House(h)
- hasForest(h, n)
- hasLake(h, l)
- NTPP(h, n)
- NTPP(n, f)
- EC(h, l)

![Diagram of relations between entities]

Composition of edge

\((v_h, v_n) \text{ and } (v_n, v_f)\)
Dream House (ABox reasoning)

\[
\begin{align*}
\text{Fire}(f) & \quad \text{House}(h) & \quad \text{NTPP}(h, n) \\
\text{PineForest}(n) & \quad \text{hasForest}(h, n) & \quad \text{NTPP}(n, f) \\
\text{Lake}(l) & \quad \text{hasLake}(h, l) & \quad \text{EC}(h, l)
\end{align*}
\]
Dream House (ABox reasoning)

Fire(f) House(h) NTPP(h, n)
PineForest(n) hasForest(h, n) NTPP(n, f)
Lake(l) hasLake(h, l) EC(h, l)

Diagram:
- h (House) connected to l (Lake) via EC
- h (House) connected to n (PineForest) via NTPP
- l (Lake) connected to n (PineForest) via NTPP
Dream House (ABox reasoning)

Fire(f) House(h) NTPP(h, n)
PineForest(n) hasForest(h, n) NTPP(n, f)
Lake(l) hasLake(h, l) EC(h, l)
The reasoner PelletSpatial

- **Description Logic**: OWL 2 ($\text{SROIQ}(D)$)

- **Spatial Extension**: Separate ABox for spatial data

- **Spatial ABox**: Topological relations are managed as a **basic** RCC-8 network (a single relation between two nodes)

Features

- Representation of definite information only

- Consistency checking of basic RCC-8 networks (path consistency)

- Querying of **asserted** and **entailed** basic RCC-8 relations using a subset of SPARQL (BGPs and operator AND)

Available from http://clarkparsia.com/pellet/spatial
SWRL Rules
Geospatial information with SWRL rules

Extension of OWL for the representation of qualitative and quantitative spatial information (SOWL)

- RCC-8
- Directional relations (e.g., East, North-West), and
- Distance relations (e.g., “3Km away from Vienna”)
Geospatial information with SWRL rules

Modeling

- Point
 - X
 - Y
- Line
- Polyline
- MBR
 - Ymax
 - Ymin
 - Xmax
 - Xmin
- Footprint
- Location
 - WestOf
 - DistanceReg1-Reg2
 - Reg1
 - Reg2

Legend:
- subclass
- property
- class
- datatype
- instance

Batsakis et al., RuleML’11
Geospatial information with SWRL rules

Spatial assertions

- RCC-8 relations between two regions
- Directional relations between two regions
- Distance relations between two regions
- Geometry of regions (in subclasses of Footprint)

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 - compute the intersection of two sets of spatial relations
 - check spatial consistency (using Pellet)

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 \[
 DC(X, Z) \leftarrow NTPP(X, Y) \land EC(Y, Z)
 \]
 \[
 DC_{EC}(X, Z) \leftarrow EC(X, Y) \land TPPi(Y, Z)
 \]
 - compute the intersection of two sets of spatial relations
 - check spatial consistency (using Pellet)

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations

 $$DC(X, Z) \leftarrow NTPP(X, Y) \land EC(Y, Z)$$

 $$DC \lor EC(X, Z) \leftarrow EC(X, Y) \land TPPi(Y, Z)$$

 denotes disjunction of relations DC and EC

 - compute the intersection of two sets of spatial relations
 - check spatial consistency (using Pellet)

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 - compute the intersection of two sets of spatial relations
 - check spatial consistency (using Pellet)

\[
\begin{align*}
\text{DC}(X, Z) & \leftarrow \text{NTPP}(X, Y) \land \text{EC}(Y, Z) \\
\text{DC_EC}(X, Z) & \leftarrow \text{EC}(X, Y) \land \text{TPPi}(Y, Z)
\end{align*}
\]

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 \[DC(X, Z) \leftarrow NTPP(X, Y) \land EC(Y, Z) \]
 \[DC_{EC}(X, Z) \leftarrow EC(X, Y) \land TPPi(Y, Z) \]
 - compute the intersection of two sets of spatial relations
 \[NTPP(X, Y) \leftarrow NTPP_{PO}(X, Y) \land DC_{EC} \land NTPP(X, Y) \]
 - check spatial consistency (using Pellet)
 \[R_s(x, y) \leftarrow R_i(x, y) \cap (R_j(x, k) \circ R_k(k, y)) \]

\[\text{denotes disjunction of relations DC and EC} \]

[Batsakis et al., RuleML’11]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 \[\text{DC}(X, Z) \leftarrow \text{NTPP}(X, Y) \land \text{EC}(Y, Z) \]
 \[\text{DC}_\text{EC}(X, Z) \leftarrow \text{EC}(X, Y) \land \text{TPPi}(Y, Z) \]
 - compute the intersection of two sets of spatial relations
 \[\text{NTPP}(X, Y) \leftarrow \text{NTPP_PO}(X, Y) \land \text{DC}_\text{EC}_\text{NTPP}(X, Y) \]
 - check spatial consistency (using Pellet)
 \[R_s(x, y) \leftarrow R_i(x, y) \cap (R_j(x, k) \circ R_k(k, y)) \]

\[\text{Batsakis et al., RuleML'11} \]

[Current relation between regions x and y]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations
 - \[\text{DC}(X, Z) \leftarrow \text{NTPP}(X, Y) \land \text{EC}(Y, Z) \]
 - \[\text{DC} _ \text{EC}(X, Z) \leftarrow \text{EC}(X, Y) \land \text{TPPi}(Y, Z) \]
 - compute the intersection of two sets of spatial relations
 - \[\text{NTPP}(X, Y) \leftarrow \text{NTPP} _ \text{PO}(X, Y) \land \text{DC} _ \text{EC} _ \text{NTPP}(X, Y) \]
 - check spatial consistency (using Pellet)
 - \[R_s(x, y) \leftarrow R_i(x, y) \land (R_j(x, k) \circ R_k(k, y)) \]

\[\text{Composition of } R_i \text{ with } R_k \]

Current relation between regions \(x \) and \(y \)

\[\text{[Batsakis et al., RuleML'11]} \]
Geospatial information with SWRL rules

Implementation of the previous framework using OWL

1. OWL 2 property axioms for expressing inverse, symmetry, and transitivity for spatial relations

2. SWRL rules to
 - encode composition of spatial relations

 \[
 \text{DC}(X, Z) \leftarrow \text{NTPP}(X, Y) \land \text{EC}(Y, Z) \\
 \text{DC _ EC}(X, Z) \leftarrow \text{EC}(X, Y) \land \text{TPPi}(Y, Z)
 \]
 - compute the intersection of two sets of spatial relations

 \[
 \text{NTPP}(X, Y) \leftarrow \text{NTPP _ PO}(X, Y) \land \text{DC _ EC _ NTPP}(X, Y)
 \]
 - check spatial consistency (using Pellet)

 \[
 R_s(x, y) \leftarrow R_i(x, y) \cap (R_j(x, k) \circ R_k(k, y))
 \]

Batsakis et al., RuleML’11
Geospatial information with SWRL rules

- Implementation of SOWL is available at http://www.intelligence.tuc.gr/prototypes.php

[Batsakis et al., RuleML’11]
Conclusions

□ We talked about
 □ Geospatial information with description logics and OWL
 □ OWL reasoners with geospatial capabilities
 □ Geospatial information with SWRL rules

□ **Next topic**: conclusions, questions, discussion
Bibliography

[Katz et al., OWLED’05]
Yarden Katz, Bernardo Cuenca Grau: Representing Qualitative Spatial Information in OWL-DL. OWLED 2005

[Lutz-Milicic, JAR‘07]

[Özçep-Möller, DL‘12]
Özgür L. Özçep, Ralf Möller: Combining DL-Lite with Spatial Calculi for Feasible Geo-thematic Query Answering. Description Logics 2012

[Grütter et al., ISWC‘08]
Bibliography

[Wessel-Möller, JAPLL’09]

[Stocker-Sirin, OWLED‘09]
Markus Stocker, Evren Sirin: *PelletSpatial*: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine. OWLED 2009

[Batsakis-Petrakis, RuleML’11]