

OWL 2 Profiles

An Introduction to Lightweight Ontology Languages

Markus Krötzsch
University of Oxford

Reasoning Web 2012

Remark for the Online Version

This is the online version of the slideset used at the Reasoning Web Summer School 2012 in Vienna (2 x 90min).

Detailed lecture notes that explain the content (and some more) are available online at http://korrekt.org/page/OWL_2_Profiles These notes also give many pointers to further reading.

These slides are published under Creative Commons CC-By 3.0 license, excluding the images. Use them as you like, but please include the above link.

The Web Ontology Language OWL



The OWL Language

- W3C standard since 2004, updated in 2009
- An ontology language with two sides:
 - Descriptive: express expert knowledge formally
 - Logical: draw conclusions from this knowledge
 → reasoning
- Compatibility with important technology standards
 - Unicode, IRI, XML Schema, RDF, RDF Schema

The Data Model of OWL

- Ontologies use a vocabulary of entities
 - Classes
 - Properties
 - Individuals and data literals
- Entities are combined to form expressions
- Relationships of expressions are described by axioms

Syntaxes and Semanticses

- 5 official syntactic formats:
 - Functional-Style Syntax
 - Manchester Syntax
 - OWL/XML Syntax
 - RDF-based syntaxes (RDF/XML, Turtle)
- 2 formal semantics:
 - Direct Semantics
 - RDF-Based Semantics

Reasoning Tasks

- Every ontology has infinitely many conclusions
- Which conclusions are we interested in?
 - Instance checking
 - Class subsumption
 - Ontology consistency
 - Class consistency (coherence)
 - → Tasks be reduced to each other with little effort

Hardness of Reasoning

- Main requirements:
 - Soundness: only correct conclusions are computed
 - Completeness: no correct conclusion is missed
- Reasoning is hard:
 - Undecidable for RDF-Based Semantics
 - N2ExpTime-complete for Direct Semantics
 - → OWL Profiles: sub-languages with easier reasoning

OWL and Description Logics: Basic Features

	OWL Functional-Style Syntax	DL Syntax	
Axioms	SubClassOf(C D)	$C \sqsubseteq D$	
	ClassAssertion(C a)	C(a)	
	ObjectPropertyAssertion(P a b)	P(a,b)	
Class expressions	ObjectIntersectionOf(C D)	$C \sqcap D$	
	ObjectUnionOf(C D)	$C \sqcup D$	
	ObjectComplementOf(C)	$\neg C$	
	owl:Thing	Т	
	owl:Nothing	工	
	ObjectSomeValuesFrom(P C)	∃ <i>P</i> . <i>C</i>	
	ObjectAllValuesFrom(P C)	∀P.C	
Property expressions	ObjectInverseOf(P)	P ⁻	

Example Axioms in DL Syntax

FelisCatus(silvester)

Silvester is a cat.

preysOn(silvester, tweety)

Silvester preys on Tweety.

Cats are mammals.

 $\exists preysOn. \top \sqsubseteq Predator$

What preys on something is a predator.

 $\top \sqsubseteq \forall preysOn.Animal$

What is preyed on is an animal.

All animals that play chess are humans.

 $Mammalia \sqsubseteq \exists hasFather.Mammalia$

Every mammal has a mammal father.

OWL Direct Semantics

- Based on first-order logic interpretations
- Direct correspondences:
 - classes → sets
 - properties → relations
 - individuals → domain elements
- Equivalent to translating OWL to first-order logic

OWL Direct Semantics

Expression ex	Interpretation ex^I
$C\sqcap D$	$ extbf{C}^I \cap extbf{D}^I$
$C \sqcup D$	$\textit{\textbf{C}}^{I} \cup \textit{\textbf{D}}^{I}$
$\neg C$	$\Delta^I \setminus C^I$
Т	Δ^{I}
Т.	Ø
∃ <i>P.C</i>	$\{e \mid \text{ there is } f \text{ with } \langle e, f \rangle \in P^I \text{ and } f \in C^I\}$
∀P.C	$\{e \mid \text{ for all } f \text{ with } \langle e, f \rangle \in P^I \text{ we have } f \in C^I \}$
P⁻	$\{\langle f, e \rangle \mid \langle e, f \rangle \in P^{\mathcal{I}}\}$

OWL RDF-Based Semantics

- Based on translating OWL ontologies to RDF graphs
- Interpretations defined on graphs
 - Applicable to all RDF graphs, even if not from OWL
- Sometimes stronger (more entailments), sometimes weaker (fewer entailments) than Direct Semantics
- Direct Semantics and RDF-Based Semantics agree under reasonable conditions

Reasoning in the OWL Profiles

Defining Language Profiles by Grammars

- The OWL sublanguage introduced above is ALCI
- Can be described by a formal grammar:

\mathcal{ALCI}

```
Axiom ::= C \sqsubseteq C \mid C(IName) \mid P(IName, IName)

C ::= CName \mid \top \mid \bot \mid C \sqcap C \mid C \sqcup C \mid \neg C \mid \exists P.C \mid \forall P.C

P ::= PName \mid PName^-
```


A Tiny Version of OWL EL

- OWL EL is based on the description logic EL(++)
- Typical applications in ontology engineering

ELtiny

```
Axiom ::= C \sqsubseteq C \mid C(IName) \mid P(IName, IName)

C ::= CName \mid \top \mid \bot \mid C \sqcap C \mid \exists P.C

P ::= PName
```


A Tiny Version of OWL RL

- OWL RL is a "rule language"
- Typical applications in data management

RL tiny

```
Axiom ::= CL \sqsubseteq CR \mid CR(IName) \mid P(IName, IName)

CL ::= CName \mid \bot \mid CL \sqcap CL \mid CL \sqcup CL \mid \exists P.CL

CR ::= CName \mid \bot \mid CR \sqcap CR \mid \neg CL \mid \forall P.CR

P ::= PName \mid PName^-
```


A Tiny Version of OWL QL

- OWL QL is a "query language"
- Typical applications in data access

QL tiny

```
Axiom ::= CL \sqsubseteq CR \mid CR(IName) \mid P(IName, IName)

CL ::= CName \mid \top \mid \bot \mid \exists P. \top

CR ::= CName \mid \top \mid \bot \mid CR \sqcap CR \mid \neg CL \mid \exists P.CR

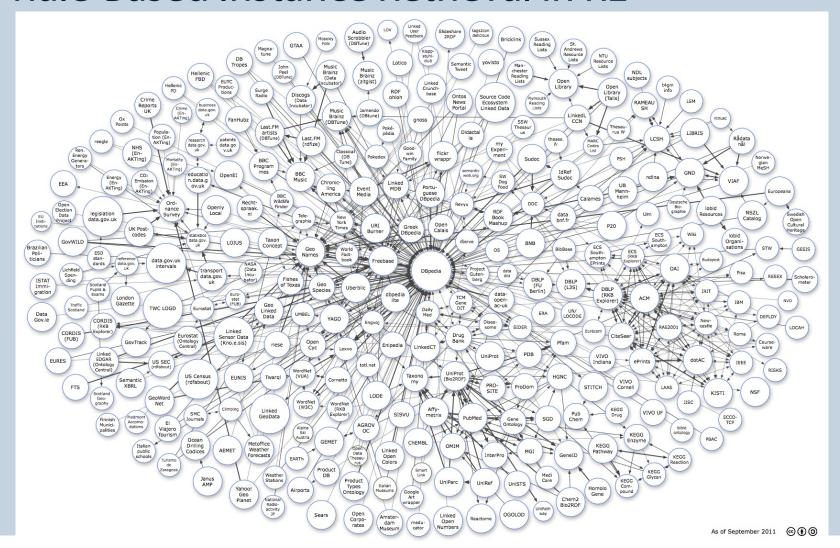
P ::= PName \mid PName^{-}
```


Tiny OWL Profiles: Feature Overview

- RL and QL allow for inverse properties, EL doesn't.
- Features for sub- and superclasses:

Sub	Т	Т	П	Ш		3	ΞT	A	АТ
RL		×	×	×		×	×		
EL	×	×	×			×	×		
QL	×	×					×		
Sup	Т	Τ.	П	Ш	_	3	TE.	A	АТ
RL		×	×		×			×	×
EL	×	×	×			×	×		
QL	×	×	×		×	×	×		

Rule-Based Instance Retrieval in RL



Rule-Based Instance Retrieval in RL

- Goal: for an ontology O, compute all entailments of the form C(a) and P(a,b) for a class name C in O and a property name P in O
- Approach: apply inference rules until no new conclusions are found
- Known under many names: saturation, deductive closure, materialisation, bottom-up reasoning, forward chaining, consequence-based reasoning

Derivation Rules for RL

$$\mathbf{A}_{\sqsubseteq} \frac{D(c)}{E(c)} : D \sqsubseteq E \in O$$

$$\mathbf{A}_{\sqcap}^{-} \frac{D_1 \sqcap D_2(c)}{D_1(c) \quad D_2(c)}$$

$$\mathbf{A}_{\vee}^{-} \frac{\forall P.E(c) \quad P(c,d)}{E(d)}$$

$$\mathbf{A}_{\neg}^{-} \frac{\neg D(c) \quad D(c)}{\bot(c)}$$

$$\mathbf{A}_{\mathsf{inv}}^{-} \frac{P^{-}(c,d)}{P(d,c)}$$

$$\mathbf{A}_{\sqcap}^{+} \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occurs in } O$$

$$\mathbf{A}_{\exists}^{+} \frac{P(c,d) \quad E(d)}{\exists P.E(c)}$$
: $\exists P.E$ occurs in O

$$\mathbf{A}_{\sqcup}^{+} \frac{D(c)}{D_{1} \sqcup D_{2}(c)} : \begin{array}{l} D = D_{1} \text{ or } D = D_{2} \\ D_{1} \sqcup D_{2} \text{ occurs in } O \end{array}$$

$$\mathbf{A}_{inv}^+ = \frac{P(c,d)}{P^-(d,c)}$$
: P^- occurs in O

Derivation Calculus

- Saturate under the derivation rules (this is uniquely defined: Section 3.3 lecture notes)
- An axiom is inferred if
 - the axiom was derived by the rules, or
 - \perp (c) was derived for some constant c.
 - → Second case takes inconsistent ontologies into account

Example Derivation for RL

FelisCatus

∀preysOn.(Animal

Animal

∃preysOn.Animal

FelisCatus

Animal

FelisCatus(silvester)

preysOn(silvester, tweety)

$$\mathbf{A}_{\sqsubseteq} \ \frac{D(c)}{E(c)} : D \sqsubseteq E \in O$$

$$\mathbf{A}_{\sqcap}^{-} \frac{D_{1} \sqcap D_{2}(c)}{D_{1}(c) D_{2}(c)}$$

$$\mathbf{A}_{\forall}^{-} \frac{\forall P.E(c) \quad P(c,d)}{E(d)}$$

$$\mathbf{A}_{\sqcap}^{+} \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occu}$$

$$\mathbf{A}_{\exists}^{+} \frac{P(c,d) \quad E(d)}{\exists P.E(c)} : \exists P.E \text{ occurs}$$

Example Derivation for RL

FelisCatus

∀preysOn.(Animal

Animal

∃preysOn.Animal

FelisCatus

Animal

FelisCatus(silvester)

Animal(silvester)

∀preysOn.(Animal □ Small)(silvester)

Animal □ Small(tweety)

preysOn(silvester, tweety)

Animal(tweety)

Small(tweety)

∃preysOn.Animal(silvester)

Animal □ ∃preysOn.Animal(silvester)

Predator(silvester)

$$\mathbf{A}_{\sqsubseteq} \ \frac{D(c)}{E(c)} : D \sqsubseteq E \in O$$

$$\mathbf{A}_{\sqcap}^{-} \frac{D_{1} \sqcap D_{2}(c)}{D_{1}(c) D_{2}(c)}$$

$$\mathbf{A}_{\vee}^{-} \frac{\forall P.E(c) \quad P(c,d)}{E(d)}$$

$$\mathbf{A}_{\sqcap}^{+} \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occu}$$

$$\mathbf{A}_{\exists}^{+} \frac{P(c,d) \quad E(d)}{\exists P.E(c)}$$
: $\exists P.E$ occurs

Correctness of the RL Rule Calculus

Correctness of the RL Rule Calculus

Soundness

Completeness

Termination

Soundness of the Calculus

- Proof strategy:
 - Show that every single rule is sound
 - If we start with true statements, only true statements can be derived (that's an induction argument)
 - Easy to see

Termination of the Calculus

- Proof strategy:
 - Show that only a limited number of inferences can be derived
 - ullet Main observation: every derived axiom only uses expressions from the ontology (or $oldsymbol{\perp}$)
 - Only finite number of axioms possible (at most size^3 many)

Completeness of the Calculus (for instance retrieval!)

- Proof strategy:
 - Show that, if a axiom is not inferred, then there is a model of O here the axiom does not hold
 - There even is a single universal model that refutes every axiom that is not inferred
 - Proof steps:
 - Define this model
 - Show that it is a model
 - Show that it refutes non-inferred axioms

Defining a Universal Model

- Let O' be the saturation of O.
- We define an interpretation I:
 - The domain Δ^{I} of I is the set of all individual symbols (w.l.o.g., we can assume that there is one).
 - For every individual symbol c, define $c^1 := c$.
 - For every class name A, define $c \in A^1$ iff $A(c) \in O^1$.
 - For every property name P, define $\langle c, d \rangle \in P^1$ iff $P(c, d) \in O'$.
 - → I refutes atomic assertions that are not in O'

Completing the Completeness Proof (1)

- I and O' agree on class and property names.
- Extend this to complex expressions:
 - 1) P^- occurs in O and $\langle c, d \rangle \in P^{-1}$ iff $P^-(c, d) \in O'$
 - 2) If $E \in CL$ occurs in O, then $c \in E^1$ implies $E(c) \in O^1$
 - 3) If $E \in CR$ and $E(c) \in O'$, then E occurs in O and $c \in E'$
- Easy consequence: I satisfies O

Completing the Completeness Proof (2)

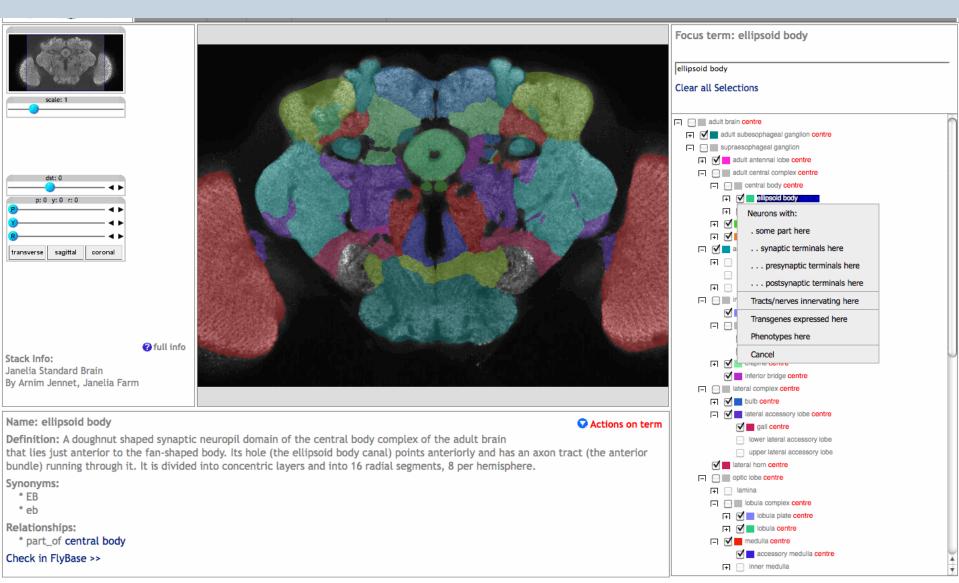
- Example Claim 2: If $E \in CL$ occurs in O, then $c \in E^I$ implies $E(c) \in O^I$
- Proof technique: structural induction on the grammatical definition of CL

$$CL := CName \mid \bot \mid CL \sqcap CL \mid CL \sqcup CL \mid \exists P.CL$$

Not hard in each case; for example:

Case $E = D_1 \sqcap D_2$. By the semantics of \sqcap , we find $c \in D_1^I$ and $c \in D_2^I$. Clearly, D_1 and D_2 occur in O since E does. Thus, the induction hypothesis implies $D_1(c) \in O'$ and $D_2(c) \in O'$. Since E occurs in O, rule \mathbb{A}_{\sqcap}^+ applies and $E(c) \in O'$ as required.

Rule-Based Classification in EL



Rule-Based Classification in EL

- - → Possible wit similar inference rules as for RL

Derivation Rules for EL

 Ignore assertions: assume we only have class inclusions here

$$\mathbf{T}_{\sqsubseteq} \frac{C \sqsubseteq D}{C \sqsubseteq E} : D \sqsubseteq E \in O \qquad \qquad \mathbf{T}_{\mathsf{i}}^{+} \frac{C \sqsubseteq C \quad C \sqsubseteq \top}{C \sqsubseteq C \quad C \sqsubseteq \top} : C \text{ occurs in } O$$

$$\mathbf{T}_{\sqcap}^{-} \frac{C \sqsubseteq D_{1} \sqcap D_{2}}{C \sqsubseteq D_{1} \quad C \sqsubseteq D_{2}} \qquad \qquad \mathbf{T}_{\sqcap}^{+} \frac{C \sqsubseteq D_{1} \quad C \sqsubseteq D_{2}}{C \sqsubseteq D_{1} \sqcap D_{2}} : D_{1} \sqcap D_{2} \text{ occurs in } O$$

$$\mathbf{T}_{\exists}^{-} \frac{C \sqsubseteq \exists P.\bot}{C \sqsubseteq \bot} \qquad \qquad \mathbf{T}_{\exists}^{+} \frac{C \sqsubseteq \exists P.D \quad D \sqsubseteq E}{C \sqsubseteq \exists P.E} : \exists P.E \text{ occurs in } O$$

Derivation Calculus

- Saturate under the derivation rules
- An axiom A

 B is inferred if

 - A $\sqsubseteq \bot$ was derived, or

 - → Second case takes inconsistent class into account
 - → Third case takes inconsistent ontology into account

Correctness of the EL Rule Calculus

Soundness

Completeness

Termination

Correctness of the EL Rule Calculus

- Soundness and termination as for RL
- Completeness similar to RL, but with different model I:
 - Introduce one representative domain element e_c
 for every class name C that is not inconsistent
 - For class name A, define $e_c \in A^l$ iff $C \sqsubseteq A \in O'$.
 - For property name P, define $<e_{C},e_{D}>$ ∈ P^I iff C \sqsubseteq ∃P.D ∈ O'.
 - → Not a universal model, but a "canonical" one

Rewriting-Based Query Answering in QL

Rewriting-Based Query Answering in QL

- Goal: for an ontology O, compute all certain answers for a conjunctive query over O
- Approach: rewrite input query into a union of many conjunctive queries that yield the result
 - Rewriting only depends on terminological axioms, not on assertions
 - Rewritten queries can be answered by relational DB systems (SQL)

QL Syntax Revisited

QL tiny

```
Axiom ::= CL \sqsubseteq CR \mid CR(IName) \mid P(IName, IName)

CL ::= CName \mid \top \mid \bot \mid \exists P. \top

CR ::= CName \mid \top \mid \bot \mid CR \sqcap CR \mid \neg CL \mid \exists P.CR

P ::= PName \mid PName^{-}
```


A Simpler Normal Form for Axioms

• Axioms of QLtiny can be rewritten to a simpler form:

QL normal form:

$$A \sqsubseteq B$$
 $A \sqsubseteq \bot$ $A \sqsubseteq \exists P.B$
 $A \sqcap A' \sqsubseteq B$ $\top \sqsubseteq B$ $\exists P.\top \sqsubseteq B$
 $A(c)$ $P(c, d)$

where A, A', and B are class names, and P is a property or an inverse property

Rules for Rewriting Queries

Derive new queries by **replacing** atoms:

$$\mathbf{Q}_{\sqsubseteq} \ \frac{E(x)}{D(x)} : D \sqsubseteq E \in O$$

$$\mathbf{Q}_{\sqcap}^{-} \frac{D_1 \sqcap D_2(x)}{D_1(x) \quad D_2(x)}$$

$$\mathbf{Q_{inv}} \ \frac{P(x,y)}{P^{-}(y,x)}$$

$$\mathbf{Q}_{\mathsf{T}}^{-} \ \frac{\top(x)}{}$$

$$\mathbf{Q}_{\exists}^{+} \frac{\exists P. \top(x) \quad \exists P^{-}. \top(y) \quad P(x, y) \quad P^{-}(y, x) \quad B(y)}{\exists P. B(x)} : \text{only in the query atoms in the premise;}$$

y a non-distinguished variable that occurs $\exists P.B$ occurs in O

plus any rule obtained from $\mathbf{Q}_{\mathbf{q}}^{+}$ by leaving away some (but not all) of the premises

Example Rewriting for QL

FelisCatus
☐ ∃preysOn.Animal

SerinusCanaria
☐ Animal

FelisCatus(silvester)

FelisCatus(tom)

SerinusCanaria(tweety)

preysOn(silvester, tweety)

Example Rewriting for QL

FelisCatus

☐ ∃preysOn.Animal

SerinusCanaria
☐ Animal

FelisCatus(silvester)

FelisCatus(tom)

SerinusCanaria(tweety)

preysOn(silvester, tweety)

```
∃y.FelisCatus(x) Λ preysOn(x, y) Λ Animal(y)
∃y.FelisCatus(x) Λ preysOn(x, y) Λ SerinusCanaria(y)
∃y.FelisCatus(x) Λ preysOn(y, x) Λ Animal(y)
∃y.FelisCatus(x) Λ preysOn(y, x) Λ SerinusCanaria(y)
FelisCatus(x) Λ ∃preysOn.Animal(x)
FelisCatus(x)
```


Missing Bits

- Check if ontology is consistent
 - \rightarrow Check if the "query" $\exists y. \bot(y)$ is entailed

- Allow query simplification by unification
 - → Factorise query atoms

Correctness of the QL Rewriting Calculus

- Soundness: easy
- Termination: not hard (query building blocks finite)
- Correctness: not entirely trivial
 - Construct a universal model, step by step (may be infinite now!)
 - Every query match can be found in this model
 - → can also be found in the partially constructed model after some number n of construction steps
 - Show that there is a rewritten query that has a match after only n-1 construction steps
 - Induction: some rewriting matches at n=0 (assertions in O)

The Limits of Lightweight Ontologies

Tiny OWL Profiles: Possible Extensions

- OWL RL and QL allow inverse properties, EL doesn't.
- Features for sub- and superclasses:

Sub	Т	Т	П	Ц		3	TE	A	АТ
RL		×	×	×		×	×		
EL	×	×	×			×	×		
QL	×	×					×		
Sup	Т	Τ	П	Ц	_	3	ЭT	A	АТ
Sup RL	Т	×	×	Ц	×	3	3T	×	× AT
	×	× ×				E ×	ΤE		

Tiny OWL Profiles: Possible Extensions

- OWL RL and QL allow inverse properties, EL doesn't.
- Features for sub- and superclasses: more is possible

Sub	Т		П	Ш		3	ЭT	A	АТ
RL	×	×	×	×		×	×		
EL	×	×	×	×		×	×		
QL	×	×	×	×			×		
Sup	Т	Τ	П	Ц		3	ЭT	A	АТ
RL	×	×	×		×			×	×
EL	×	×	×		×	×	×		×
QL	×	×	×		×	×	×		×

Unions are Hard

- No tractable language can have □ in subclasses and □ in superclasses
- Proof idea: Show NP-hardness by expressing 3SAT in OWL
- Try it at home (solution in Section 4.3 lecture notes)

Universal + Existential = Exponential

- Reasoning in any ontology language with
 - ∃ and □ in subclasses, and
 - ▼ and ∃ in superclasses
 is ExpTime-hard.
- This covers the union of RL and EL and the union of RL and QL
- How can we show this?

Alternation (1)

 An Alternating Turing Machine (ATM) is a nondeterministic TM whose states are partitioned into two sets of existential states and universal states.

Intuition:

- Existential state: the ATM nondeterministically picks one possible transition to move on
- Universal state: the ATM branches into many ATMs that explore each possible transition

Alternation (2)

- A configuration of an ATM is accepting if:
 - it is in an existential state and one of the possible transitions leads to an accepting state, or
 - it is in an universal state and all of the possible transitions lead to an accepting state.
 (note: inductive definition; universal states with no transitions are accepting)
- An ATM accepts an input if the initial state is accepting on this input.

Alternation (3)

- Time and space complexity for ATMs defined as usual (considering the time/space used by a single sequence of choices, whether existential or universal)
- What makes ATMs so interesting for us:
 - ALogSpace = PTime
 - APTime = PSpace
 - APSpace = ExpTime

Input: an ATM and an input word

Goal:

- Construct an OWL ontology that derives a certain entailment iff the ATM can accept the input in polynomial space.
- The construction should only take polynomial time

- Idea: individuals represent ATM configurations, classes describe configurations, properties model transitions
- Encoding:
 - Aq: the ATM is in state q
 - Hi: the ATM head is at position i
 - C σ ,i: the tape position i contains symbol σ
 - Acc: the configuration is accepting
 - Iw: the initial configuration for input word w
 - S δ : property linking to configuration obtained by applying transition δ

(1) Left and right transition rules

$$A_q \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq \exists S_\delta.(A_{q'} \sqcap H_{i+1} \sqcap C_{\sigma',i})$$
 if $\delta = \langle q, \sigma, q', \sigma', r \rangle$ and $i < p(|w|) - 1$

if
$$\delta = \langle q, \sigma, q', \sigma', r \rangle$$
 and $i < p(|w|) - 1$

$$A_q \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq \exists S_\delta. (A_{q'} \sqcap H_{i-1} \sqcap C_{\sigma',i})$$
 if $\delta = \langle q, \sigma, q', \sigma', l \rangle$ and $i > 0$

if
$$\delta = \langle q, \sigma, q', \sigma', l \rangle$$
 and $i > 0$

(2) Memory

$$H_j \sqcap C_{\sigma,i} \sqsubseteq \forall S_\delta.C_{\sigma,i}$$

if
$$i \neq j$$

(3) Final configurations

$$A_q \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq Acc$$

if there is no transition from q and σ

(4) Existential acceptance

$$A_q \sqcap \exists S_\delta.Acc \sqsubseteq Acc$$

if
$$q \in E$$

(5) Universal acceptance

$$A_q \sqcap H_i \sqcap C_{\sigma,i} \sqcap \prod_{\delta \in \Delta(q,\sigma)} \exists S_\delta.Acc \sqsubseteq Acc$$

if $q \in U$ and where $\Delta(q, \sigma)$ is the set of all transitions from q and σ

 Finally, we define the initial configuration for input w: (p defines the polynomial space bound for the ATM)

$$I_{w} \coloneqq A_{q_0} \sqcap H_0 \sqcap C_{\sigma_0,0} \sqcap \ldots \sqcap C_{\sigma_{|w|-1},|w|-1} \sqcap C_{\square,|w|} \sqcap \ldots \sqcap C_{\square,p(|w|)-1},$$

EL + QL = ExpTime

Only a small change is needed in the ATM simulation.

Replace:

(2) Memory

$$H_j \sqcap C_{\sigma,i} \sqsubseteq \forall S_\delta.C_{\sigma,i}$$

if
$$i \neq j$$

By:

$$\exists S_{\delta}^{-}.(H_{j}\sqcap C_{\sigma,i}) \sqsubseteq C_{\sigma,i} \quad \text{if } i \neq j$$

Advanced Features

Further Features of all OWL Profiles

Datatypes

- Many types (numbers, strings, dates, ...)
- Used with DataProperties
- Datatype expressions usable like class expressions
- Restrictions to avoid non-determinism

Property Hierarchies

Further Features of OWL EL and OWL RL

Property Chains

- Generalisation of transitivity
- Example: hasParent o hasBrother

 hasUncle
- Subject to global restrictions in OWL DL

Equality

State that two individuals are the same or different

Nominals

- Classes with exactly one instance, given by an individual
- Example: ∃ livesIn.{europe} ⊑ European

Further Features of OWL EL and OWL RL

Functional Properties

- Properties that have at most one value
- Limited to DataProperties in OWL EL
- Missing in lecture notes

Keys

- "Rules" that imply the equality of individuals
- Semantics restricted to named individuals
- No description logic syntax
- Example: HasKey(Person hasName birthday)

Further Features of OWL EL

- Local Reflexivity (Self)
 - Example: CEO

 ∃ supervisedBy.Self
 - Can be used to refer to classes in property chains:

```
Man ⊑ ∃ manProperty.Self manProperty o hasChild ⊑ fatherOf
```

 Not in OWL RL (no technical reason) or OWL QL (technical status not known, but should work)

Sugar

- Many OWL features can also be expressed by using other features → Syntactic sugar
- Can be more efficient for encoding something
- What is sugar depends on the available features (for example: □ is sugar if □ and ¬ are available)

Summary & Conclusions

Summary: Reasoning in the Profiles

- Reasoning with the OWL 2 Profiles
 - Saturation (bottom-up): EL and RL
 - Rewriting (top-down): QL
 - → other approaches possible in each case!
- Completeness of inference methods:
 - Relate computation to (canonical/universal) models
 - Main tool: (structural) induction

Summary: Extending the Profiles

- Various features can be added
- Some features are generally problematic
 - Unions (in superclasses)
 - Combination of universals and existentials
 - Combination of inverses and existentials
- Hardness by simulating hard problems in OWL
 - ATMs as a powerful tool

Conclusions

