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Reasoning and Querying in DLs 1. Motivation

Ontologies

An ontology is a conceptual description of a domain
that can be expressed in different formalisms
• The OWL Web Ontology Languages
• Description Logics
• F-Logic, RDFS
• Datalog and related rule-based formalisms

and can be used for a vast range of purposes
• in the Semantic Web, to allow automated agents to understand

shared web resources
• in Google’s new Knowledge Graph, for improved Web search and

more informative results
• in medical and life sciences, to support the effective clinical recording

of data in order to improve patient care
• in organizations, to provide a coherent and unified conceptual view of

possibly distributed, redundant, and incoherent data sources, and to
allow access to them

• . . .
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Reasoning and Querying in DLs 1. Motivation

Ontologies, Data, and Description Logics

In this tutorial, we focus on ontologies expressed in
Description Logics (DLs)

and on their application for data access

The tutorial has two parts:

1 A brief introduction to DLs
• DL basics
• reasoning problems
• computational aspects

2 An overview of the setting where DLs are used for data access
• the query answering problem in DLs
• reasoning techniques
• computational aspects
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Reasoning and Querying in DLs 2. Introduction to DLs

DLs as a Family of Logics

Most DLs are fragments of classical first order logic (FOL), which
usually
• are function-free and use only two variables

(and maybe some additions like counting quantifiers)
• allow only the restricted guarded quantification
• are closely related to modal logic and extensions

In contrast to FOL, Description Logics:
• are decidable
• their syntax is specially well-suited for describing structured

knowledge
no explicit variables
Representation at the predicate level

• may provide ‘abbreviations’ for common KR constructs cumbersome
to write in FOL
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Reasoning and Querying in DLs 2. Introduction to DLs

DLs as Computational Logics

Description Logics are a hierarchy of decidable logics with increasing
expressive power and computational complexity

DLs range from

• Lightweight DLs that support efficient inference but have quite
limited expressiveness

• Very expressive DLs that allow for a flexible representation of very
complex domains, at the price of higher complexity of inference

A hallmark of DLs is the study of the trade-off between expressive
power and computational complexity

This supports a problem-oriented choice of the logic!
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

Vocabulary

We start from a vocabulary with three kinds of elements:

concept names: atomic classes, unary predicates

female, student, course, frog

role names: atomic relations, binary predicates

hasChild, likes, isEnrolledIn, hasColor

individuals: constants

zeus, heracles, kermit, cecilia
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

Concept and role constructors

Using the available constructors, we build more complex concept and roles

Concept constructors:

female u child plane t bird

(fruit t vegetable) u ¬rotten > 2 hasChild.female

frog u ∀hasColor.green ∃hasParent.{zeus}

Role constructors:

isEnrolledIn ∪ attends isRelatedTo ∩ ¬likes

(hasParent ∪ hasChild)∗

The set of available constructors is different in each DL
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

The ABox

In the ABox we write

Concept membership assertions, like Hero(perseus)
(Often written perseus : Hero)

Role membership assertions, like hasParent(perseus, zeus)
(Often written (perseus, zeus) : hasParent)

Hence, an ABox may look like
hasParent(heracles, zeus)
hasParent(heracles, alcmene)
hasParent(perseus, zeus)
Deity(zeus)
Hero(perseus)

Intuitively, it lists facts that are known to be true
Can be seen as a partial description of the world
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

The TBox

The TBox is a set of terminological axioms that state how concept or
roles are related to each other

Two main kinds of terminological axioms:
• General concept inclusions (GCIs): C v D
• Definitions: A ≡ D, where A is a concept name

It can be seen as a shortcut for A v D and D v A

Sometimes, distinction between:

Terminology • Set of definitions
• For every atomic concept A, there is only one

definition whose left hand side is A

General TBox • Set of GCIs
• Every set of definitions can be written as a set of GCIs
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

The TBox (cont’d)

We usually consider general TBoxes, which may look as follows

Herov∃hasAncestor.Deity
Deityv∀hasAncestor.Deity

∀hasParent.MortalvMortal
>vMortal t Deity t Hero
>v∃hasParent.Male u ∃hasParent.Female

> is a special concept that informally means ‘everybody’ (more later)

Intuitively, it describes constraints on every object

It can imply the existence of more objects
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Reasoning and Querying in DLs 2. Introduction to DLs 2.1 The language of DLs

The Meaning of KBs (semantics)

The semantics is given in terms of interpretations, similar to the ones
used in FOL

An interpretation has:

1 A non-empty domain

2 An interpretation function

It gives meaning to the basic symbols in the vocabulary

It is extended to complex concept and roles, following the rules that
define the different constructors

An interpretation is called a model if it satisfies all the assertions in the
ABox and all the axioms in the TBox
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Syntax of ALC Concepts

Our basic vocabulary contains:
• a countable set NC of concepts names,

• a countable set NR of role names (or just roles), and

• a countable set NI of individual names (or just individuals)

ALC concepts are defined inductively:
• Every concept name A ∈ NC is a concept

• > and ⊥ are concepts

• If C is a concept, then ¬C is a concept

• If C1 and C2 are concepts, then C1 u C2 and C1 t C2 are concepts

• If R ∈ NR is a role and C is a concept, then ∀R.C and ∃R.C are
concepts

Note: In ALC we only have concept constructors
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Syntax - ALC Knowledge Bases

An ALC Knowledge Base is a pair K = (T ,A) where:

The TBox T is a finite set of GCIs (C1 v C2), and

The ABox A is a finite set of (concept and role) membership
assertions (C(a), R(a, b))

T = { >vMortal t Deity t Hero,
>v∃hasParent.Male u ∃hasParent.Female,

∀hasParent.MortalvMortal,
Herov∃hasAncestor.Deity,
Deityv∀hasAncestor.Deity }

A = { hasParent(heracles, zeus),
hasParent(heracles, alcmene),
hasParent(perseus, zeus),
Deity(zeus),
Hero(perseus) }
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

The Semantics of ALC

An interpretation I = (∆I , ·I) consists of

• a non-empty set ∆I called domain

• an interpretation function ·I

The interpretation function ·I maps

• every concept C to a subset CI of ∆I , i.e., CI ⊆ ∆I

• every role R to a set RI of pairs of elements from ∆I , i.e., a binary
relation RI ⊆ ∆I ×∆I

• every individual a to an element aI ∈ ∆I
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Example - Interpretation of atomic symbols

1 We consider a domain: {z, p,m, a, s, h, n}

2 Each individuals is interpreted as one element

zeusI = z perseusI = p alcmeneI = a . . .

3 Concept names are interpreted as sets of elements

HeroI = {p, h} DeityI = {z} Mortal I = {s, a} . . .

4 Roles are interpreted as sets of pairs

hasParent I = {(h, z), (h, a), (p, z)}
loves I = {(m,n)} . . .
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

The Semantics of ALC (cont’d)

The interpretation function is extended to all concepts:

Constructor Syntax Semantics

top/verum > >I = ∆I

bottom/falsum ⊥ ⊥I = ∅

negation ¬C ∆I \ CI

conjunction C1 u C2 CI1 ∩ CI2

disjunction C1 t C2 CI1 ∪ CI2

universal rest. ∀R.C {d1 | ∀d2∈∆I .(RI(d1, d2)→ d2 ∈ CI)}

existential rest. ∃R.C {d1 | ∃d2∈∆I .(RI(d1, d2) ∧ d2 ∈ CI)}
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Example - Interpretation of complex concepts

1 We consider a domain: {z, p,m, a, s, h, n}
2 Each individuals is interpreted as one element:

zeusI = z perseusI = p alcmeneI = a . . .
3 Concepts are interpreted as sets of elements.

HeroI = {p, h} DeityI = {z} Mortal I = {s, a} . . .
4 Roles are interpreted as sets of pairs

hasParent I = {(h, z), (h, a), (p, z)}
loves I = {(m,n)} . . .

5 The atomic expressions fix the meaning of all the complex ones, e.g.,
(Hero tMortal )I =

{p, h, s, a}

(∃hasParent.Mortal )I =

{h}

(¬Mortal )I =

{z, p,m, h, n}

(∀hasParent.Deity )I =

{z, p,m, a, s, n}
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

TBox, ABox and KB Satisfaction

For an interpretation I, we say that

I satisfies a GCI C1 v C2 if CI1 ⊆ CI2

I satisfies a TBox T if it satisfies every GCI in T

I satisfies a concept membership assertion C(a) if aI ∈ CI

I satisfies a role membership assertion R(a, b) if (aI , bI) ∈ RI

I satisfies a ABox A if it satisfies every membership assertion in A

An interpretation I is called a model of a knowledge base
(T ,A) if it satisfies the TBox T and the ABox A
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Example - TBox, ABox and KB Satisfaction

Let us take an interpretation I with domain ∆I = {z, p, a, h} and
zeusI = z HeroI = {p, h}

perseusI = p DeityI = {z}
alcmeneI = a Mortal I = {a}
heraclesI = h Male I = {z, p, h}

Female I = {a}
hasParent I = {(h, z), (h, a), (p, z)}

hasAncestor I = {(h, z), (h, a), (p, z)}

I satisfies the ABox: A = { hasParent(heracles, zeus),
hasParent(heracles, alcmene),
hasParent(perseus, zeus),
Deity(zeus),
Hero(perseus) }
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Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Example - TBox, ABox and KB Satisfaction
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zeusI = z HeroI = {p, h}

perseusI = p DeityI = {z}
alcmeneI = a Mortal I = {a}
heraclesI = h Male I = {z, p, h}

Female I = {a}
hasParent I = {(h, z), (h, a), (p, z)}

hasAncestor I = {(h, z), (h, a), (p, z)}
What about the TBox?
T = { Herov∃hasAncestor.Deity,

Deityv∀hasAncestor.Deity
∀hasParent.MortalvMortal ,

>vMortal t Deity t Hero,
>v∃hasParent.Male u ∃hasParent.Female },

Is it a model of the KB K = (T ,A)?
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Expressive DLs

The term expressive DLs is used informally
to refer to ALC and its extensions

The most common ways to obtain an extension of ALC are:

Adding other concept constructors

For example, number restrictions

Adding role constructors

For example, inverses

Allowing, apart from GCIs, other kind of axioms in the TBox

For example, inclusions between roles
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Concept Constructors

Some common concept constructors are:

Different kinds of number restrictions, which informally allow us to
count the number of objects related by a certain role

Nominals, aka one-of O

Self concepts, a more recent construct
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Number restrictions

They can be of different kinds:

Qualified number restrictions Q > 2 hasChild.Male
6 2 hasChild.Male

(Unqualified) number restrictions N > 3 hasChild
6 3 hasChild

equiv. to > 3 hasChild.>
6 3 hasChild.>

Functionality restrictions F 6 1 hasFather
also written funct(hasFather)

Qualified Number Restrictions
Syntax If n ≥ 1, R is a role and C is a concept,

then 6nR.C, >nR.C are concepts
Semantics >nR.C = {d1|#({d2|(d1, d2)∈RI ∧ d2∈CI}) ≥ n}

6nR.C = {d1|#({d2|(d1, d2)∈RI ∧ d2∈CI}) ≤ n}
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Nominals O

allow us to build a concept from a set of individuals {a1, . . . , an}
stands for the set of objects that interpret the individuals a1, . . . , an

For example, we can define:

{Gaia,Chaos,Chronos,Ananke} the primordial gods

{Austria,Belgium, . . . ,UK} the countries of the EU

Nominals
Syntax If a1, . . . , an are individuals, then {a1, . . . , an} is a concept
Semantics {a1, . . . , an}I = {a1I , . . . , anI}
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Self concepts

allow us to build a concept ∃R.Self from a role R
stands for the set of objects that are related via R to itself

For example, we can define:

∃loves.Self narcissists

∃hasAncestor.Self individuals that are their own ancestors

Self
Syntax If R is a role, then ∃R.Self is a concept

Semantics ∃R.SelfI = {d | (d, d) ∈ RI}
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Some Role Constructors

The inverse I is the most popular role constructor

hasParent−

Sometimes, Boolean role constructors are considered

Union (role disjunction) hasFriend ∪ hasRelative
Intersection (role conjunction) hasFriend ∩ hasRelative
Negation ¬hasFriend
Difference hasRelative \ hasFriend

• B stands for intersection, union, and negation
• b stands for intersection, union, and difference

Other constructors
Role composition hasParent ◦ hasSibling
Regular expressions reg hasParent∗ ◦ (hasParent−)∗
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Summary of Main constructors
Constructor Syntax Semantics

Concept constructors (R is a role, C a concept, ai individuals, n ∈ N)
N NR ≥ nR {d1 | #({d2 | (d1, d2) ∈ RI}) ≥ n}

≤ nR {d1 | #({d2 | (d1, d2) ∈ RI}) ≤ n}

Q QNR >nR.C {d1|#({d2|(d1, d2)∈RI ∧ d2∈CI}) ≥ n}
6nR.C {d1|#({d2|(d1, d2)∈RI ∧ d2∈CI}) ≤ n}

O nominals {a1, . . . , an} {aI1 , . . . , aIn}

self ∃R.Self {d | (d, d) ∈ RI}
Role constructors (R, Ri, are roles)

I inverse R− {(d2, d1) | (d1, d2) ∈ RI}
(reg) composition R1 ◦R2 {(d1, d3)|(d1, d2) ∈ RI1∧(d2, d3) ∈ RI2 }
(reg) refl. trans. R∗ (∆I ×∆I) ∪ {(d1, dn)|(di, di+1) ∈ RI ,

closure 1 ≤ i < n}
(B, b) intersection R1 ∩R2 RI1 ∩RI2

(B, b, reg) union R1 ∪R2 RI1 ∪RI2
(B) negation ¬R ∆I ×∆I \RI
(b) difference R1 \R2 RI1 \RI2
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Role Axioms

We can also extend ALC by allowing terminological axioms that refer to
roles and their relations

Role inclusions H are expressions of the form

R v S

for roles R and S

A set of role inclusions is called a role hierarchy or RBox

Transitivity axioms are expressions of the form

trans(R)

for a role R, asserting that R is transitive.

The extension of ALC with transitivity axioms is denoted S
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Role Axioms (cont’d)

Semantically, in a model of a KB

• For every role inclusion R v S, RI ⊆ SI must hold

• For each trans(R), RI must be transitively closed: if (d1, d2) ∈ RI and
(d2, d3) ∈ RI , then (d1, d3) ∈ RI .

In SH we can express, for example:
hasParent v hasAncestor trans(hasAncestor)

Ortiz & Šimkus Reasoning Web 2012 30/117



Reasoning and Querying in DLs 2. Introduction to DLs 2.2 ALC and its extensions

Some Expressive DLs

Some examples of expressive DLs are:

ALCHOIQb SHOINB SHOIQ
SHIQ SHOQ SHIO
ALCreg ALCIreg ALCIFreg

SHIQ and SHOIQ are closely related to the OWL languages
(more later)

Widely studied, supported by many existing reasoners
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The SR family

The new OWL 2 standard is based on the SR family of DLs, which is an
extension of the SH family.

It supports Self concepts

It has complex role inclusion axioms:

hasParent v hasAncestor
hasAncestor ◦ hasAncestor v hasAncestor

hasParent ◦ hasSibling v hasUncle

The implications between roles must satisfy certain syntactic
restrictions

• Strong restrictions on cyclic dependencies
• Witnessed by an order on the roles
• Ensures that the role inclusions form a regular grammar
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The SR family (cont’d)

It allows for special axioms to impose properties on roles
Reflexivity Ref(R)

Irreflexivity Irr(R)

Disjointness Disj(R,S)

Symmetry Sym(R)

In the SR family, KBs are defined as a triple (T ,R,A), where R is
an RBox that contains all the role axioms

The most prominent SR logics are SRIQ and SROIQ
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The DLs underlying OWL

The OWL standards proposed by W3C are based on these logics:

OWL Variant DL counterpart
OWL 1 - Lite SHIF
OWL 1 - DL SHOIQ

OWL 2 SROIQ

Additionally, the OWL standards support data types, which are
captured by concrete domains in DLs.
We do not consider them in this course.
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Terminological Reasoning Services

Traditional reasoning services are tailored for knowledge engineering.

1 Concept (or class) subsumption
Input: concepts C and D (and possibly a TBox T / a KB K)
Problem: Is C subsumed by D (w.r.t. T / K)?
• C is subsumed by D (w.r.t. T / K) if CI ⊆ DI in every

interpretation I (that is a model of T / K)

Does my ontology ensure that everyone who has a parent that is
not mortal is either a hero or a deity?

2 Concept satisfiability
Input: concept C (and possibly a TBox T / a KB K)
Problem: Is C satisfiable (w.r.t. T / K)?
• C is satisfiable (w.r.t. T / K) if CI 6= ∅ for some interpretation I

(that is a model of T )

Is it possible that someone has more than two parents?
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Terminological Reasoning Services (cont’d)

3 Concept disjointness
Input: concepts C and D (and possibly a TBox T / a KB K)
Problem: Are C and D disjoint (w.r.t. T / K)?
• C and D are disjoint (w.r.t. T / K) if CI ∩DI = ∅ in every

interpretation I (that is a model of T / K)

Does my ontology ensure that everyone who is a hero does not
have two mortal parents?

For other services we give an informal description:
4 Least common subsumer: Given concepts C and D, find the most

specific concept that subsumes them both
5 Classification: Find all subsumptions between the concept names

occurring in a given ontology
These services are usually called terminological reasoning services
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Reasoning about Instances

Other services focus on the individuals occurring in the ABox.

6 Instance checking
Input: individual a, concept C, and a KB K
Problem: Is a an instance of C in K?
• a is an instance of C in K if aI ∈ CI for every model I of K

Is Heracles a hero who has a mortal mother?

7 Instance retrieval
Input: concept C, KB K
Problem: List all instances of C in K

Retrieve all heroes that have a mortal mother.

Note: problems 1–3 and 6 are decision problems, their answer is yes/no.

Ortiz & Šimkus Reasoning Web 2012 37/117



Reasoning and Querying in DLs 2. Introduction to DLs 2.3 Reasoning Services

Knowledge Base Satisfiability

Finally, one of the most important services:

KB satisfiability

Input: a KB K
Problem: Is K satisfiable, that is, does there exists a model of K?
Does our KB make sense? Are there contradictions in it?
Closest to reasoning in traditional FOL
We can often reduce other decision problems to KB (un)satisfiability

C is subsumed by D w.r.t. (T ,A) iff (T ,A ∪ {C u ¬D(b)}) is unsatisfiable
C is satisfiable w.r.t. (T ,A) iff (T ,A ∪ {C(b)}) is satisfiable

C and D are disjoint w.r.t. (T ,A) iff (T ,A ∪ {C uD(b)}) is unsatisfiable
a is an instance of C in (T ,A) iff (T ,A ∪ {¬C(a)}) is unsatisfiable

where b is a fresh individual not occurring in T or A.

ä the reductions may require constructors (negation, conjunction)
which may not be available in some logics
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How hard is it to reason in expressive DLs?

For expressive DLs

standard reasoning problems easily reduce to KB (un)satisfiability

and have the same complexity

ä In ALC and some extensions, reasoning about concepts only is easier
(unless PSpace = ExpTime)

To decide satisfiability of K, algorithms search for (a representation of) a
model of K

The larger this model representation may be, the harder the problem

For most expressive DLs, it may be of at least single exponential size
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Complexity of Reasoning in DLs

Concept satisfiability KB satisfiability
ALC, ALCIQ PSpace-complete ExpTime-complete
SH,SHIQ ExpTime-complete
SHOIQ NExpTime-complete
SRIQ 2ExpTime-complete
SROIQ 2NExpTime-complete

äDespite their high complexity, most of these DLs are supported by
efficient reasoners
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Some notes on complexity

Reasoning about KBs with acyclic TBoxes usually has the same
complexity as reasoning about concepts only

In all DLs that contain (or can express) SH, reasoning about a single
concept is already as hard as reasoning about arbitrary KBs

The combination of inverses I, nominals O and counting (Q, N or
F) results in more complicated models

In the SR family, complex role inclusions R1 ◦ . . . Rn v R make
model representations exponentially larger
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From lightweight to expressive DLs, and back

In the early years of DLs, researchers struggled to find suitable
tractable DLs

However, the minimal combinations of constructors considered
desirable (e.g., u+ ∀) made reasoning NP-hard

With the appearance of the FaCT system in the 1990s, efficient
reasoning with (ExpTime) hard DLs seemed possible

This lead to the development of increasingly expressive logics

ALC ; SHIQ ; OWL 1 (SHOIQ) ; OWL 2 (SROIQ)

But with this transition, the promise of efficiency on natural inputs
became increasingly untrue

In some applications this complexity is unacceptable
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Lightweight DLs

Lightweight DLs

For many applications, scalable, lightweight DLs are enough

Existential restrictions are crucial (universal ones not always)

Research increasingly focused on these DLs in the last years

The most prominent examples are

EL and DL-Lite

We also mention Horn DLs which are more expressive but preserve some
of their positive features
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The Basic EL

Essentially, EL is a half of ALC:

It supports existential restrictions ∃R.C, but no universal ones
It supports conjunction C uD, but no disjunction
Of course, it does not allow for negation
• but we can use ⊥ to express a restricted form of negation

EL concepts are defined inductively as follows

C,D −→ A | > | C uD | ∃R.C

where A ∈ NC is a concept name and R ∈ NR is a role.
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Motivation and Applications

In many applications existential restrictions and conjunction seem to play
a central role.

Many medical and Life Sciences ontologies rely on this kind of
axioms:

ViralPneumonia v ∃CausitiveAgent.Virus

ViralPneumonia v InfectiousPneumonia

InfectiousPneumonia v Pneumonia u InfectiousDisease

Pneumonia v ∃AssociatedMorphology.Inflammation

Pneumonia v ∃FindingSite.Lung
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Motivation and Applications (cont’d)

SNOMED CT (Systematized Nomenclature of Medicine – Clinical
Terms) is written in (a minor extension of) EL

So are

• large fragments of the GALEN ontology (Generalized Architecture for
Languages, Encyclopaedias and Nomenclatures in medicine), another
very important medical ontology
http://www.openclinical.org/prj_galen.html

• the Gene Ontology, and ontology for biology with the aim of
“standardizing the representation of gene and gene product attributes
across species and databases” http://www.geneontology.org/

• etc.
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Satisfiability in EL

In the basic EL (i.e. without ⊥)

Satisfiability (w.r.t. a TBox / KB) is trivial
• There is no way to express contradictions

• Every concept C is satisfiable (w.r.t. every TBox / every KB)

Algorithms focus on deciding subsumption
• We can build a canonical model that witnesses all subsumptions

• The model can be built in polynomial time

If we allow the use of ⊥, satisfiability is not trivial but can also be decided
in polynomial time using the canonical model

Theorem
Satisfiability and subsumption (w.r.t. a TBox/KB) in EL⊥ are P-complete
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Other polynomial Extensions of EL

Additionally to ⊥, we can also add the following to EL:

Nominals {a}

Domain and range restrictions > v ∀R−.C, > v ∀R.C

Complex role inclusions R1 ◦ . . . ◦Rn v R

We can adapt the canonical model construction to accommodate these
features, and reasoning is still feasible in polynomial time

Roughly, this results in the DL called EL++
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ExpTime-hard Extensions of EL
In other extensions of EL, reasoning (w.r.t. arbitrary TBoxes) becomes
ExpTime-hard:

ELU⊥ that extends EL⊥ with disjunction

• We can reduce concept satisfiability w.r.t. to a TBox in ALC to TBox
satisfiability in ELU⊥

ELU that extends EL with disjunction

• We can reduce concept satisfiability w.r.t. to a TBox in ALC to the
same problem in ELU⊥

EL∀ that extends EL with value (or universal) restrictions ∀R.C

• We can reduce concept satisfiability w.r.t. to a TBox in ELU to the
same problem in EL∀

There is no known extension of EL between P and ExpTime
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The Basic DL-Lite

In DL-Lite, we distinguish between two kinds of concepts

1 Basic concepts B, with the following syntax:

B −→ A | ∃R | ∃R−

where ∃R is an alternative syntax for ∃R.>

2 (General) concepts C, which additionally allow for negation and
conjunction

C −→ B | ¬B | C1 u C2

GCIs are a bit asymmetric and allow general concepts only on the r.h.s.

B v C
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Motivation and Applications

DL-Lite was specially tailored in such a way that:

traditional reasoning problems are all solvable in polynomial time

the data described by the ontology can be queried efficiently

• it has very low computational complexity

• it can be achieved by relying on existing database technologies

(more later)

it can express basic data and conceptual modeling formalisms, like
ER-diagrams and UML class diagrams

• among other advantages, this allows for formal reasoning in these
formalisms, and for studying their complexity
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Motivation and Applications (cont’d)

The application of DL-Lite has been specially successful in areas like:

ontology based data access

information and data integration

conceptual modeling

and similar data-oriented fields.
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Model construction in DL-Lite

Similarly to EL, a satisfiable DL-Lite concept/KB has a canonical
model that allows to solve standard reasoning tasks

The canonical model can be built using a DB-like chase procedure as
known from databases

Moreover, most problems can be solved without actually constructing
the canonical model
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Reasoning in DL-Lite

Unsatisfiability in DL-Lite can only arise due to some C v ¬D
implied by the TBox that is violated in the ABox

• To check satisfiability, we only need to derive all the C v ¬D that
follow form the TBox and check them

• This can be done in polynomial time

Subsumption is reducible to KB unsatisfiability

〈T ,A〉 |= C v D iff 〈T ′,A′〉 is unsatisfiable

where T ′ = T ∪ {A v C,A v ¬D} and A′ = A ∪ {A(d)} for fresh
A and d
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Combined vs. Data Complexity

So far, our complexity considerations have assumed combined
complexity
• ‘standard’ measure of complexity
• takes into account the size of the full input, including TBox and ABox

For certain settings, more fine-grained notions of complexity known
from databases are more adequate

When the ABox may contain big amounts of data and its much larger
than the terminological component, we focus on data complexity

Definition (Data complexity)

Data complexity is the complexity of reasoning w.r.t. to an input ABox,
where the terminological component (TBox, concepts) is assumed to be
fixed
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Data Complexity in DLs

All expressive DLs are intractable in data complexity

• practically all of them are NP-complete (for satisfiability)

EL is P-complete in data complexity

A crucial difference between EL and DL-Lite is that DL-Lite has lower
data complexity
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Data Complexity in DL-Lite

Theorem
The data complexity of reasoning in DL-Lite is not higher than that of
evaluating an SQL query over a database

DL-Lite has very low complexity

• feasible in logarithmic space, and inside a (highly parallelizable)
complexity class called AC0

Any reasoning problem over a DL-Lite KB can be reduced to
evaluating an SQL query over a database corresponding to the ABox

• particularly appealing if we indeed have a very large and dynamic
ABox

• the implementation of this idea has made DL-Lite a very popular
formalism
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Extensions of DL-Lite

There are many well known extensions of DL-Lite that preserve its nice
computational features, for example:

In DL-LiteF the TBox may include functionality assertions funct(R),
funct(R−)

In DL-LiteR we have role inclusions, also of the form R v ¬S
(sometimes called DL-LiteH)

DLR-Lite, and the respective F and R extensions, allow for
predicates of arity higher than 2

Many other extensions are defined in a ‘less standard’ way (e.g.,
DL-Litehorn, DL-Litekrom)
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Beyond LogSpace

It is well known that, essentially, adding any other DL construct to
DL-Lite increases the data complexity beyond logarithmic space.

For example,

adding concepts of the form ∃R.A on the l.h.s. of GCIs, ∀R.A on the
r.h.s. or ∃R−.A on the l.h.s. makes reasoning NLogSpace-hard

It we additionally allow conjunction on the l.h.s. reasoning becomes
PTime hard (like in EL)

Concept negation, concept disjunction, or concepts of the form
∀R.A on the l.h.s.,make reasoning already NP-hard
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Lightweight Profiles for OWL 2

The new OWL 2 standard has profiles that are intended to support
scalable reasoning:

OWL EL is based on EL++

OWL QL is based on DL-Lite

Don’t miss the the tutorial by Markus Krötzsch!
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Horn fragments of other DLs

We know that most extensions of EL and DL-Lite lead to increased
complexity of reasoning, but . . .

are some of the positive features of these DLs preserved in
more expressive logics?

Fortunately, yes:

Horn fragments of DLs are obtained by restricting the syntax of
expressive DLs in such a way that disjunction can not be expressed

They fall inside the (well-known) Horn fragment of FOL

This is usually enough to ensure the existence of one canonical
model that suffices for all reasoning problems, as in EL and DL-Lite
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Complexity of Horn DLs

The data complexity of reasoning in Horn-DLs is usually
PTime-complete

• This holds for Horn-SHIQ, Horn-SHOIQ, Horn-SRIQ,
Horn-SROIQ

The combined complexity is not much lower than that of the
non-Horn variant

• Horn-SHIQ and Horn-SHOIQ are ExpTime-complete

• Horn-SRIQ and Horn-SROIQ are 2ExpTime-complete

Roughly, this is because the (representation of) the canonical model
may be as large and complex as in the non-Horn case

Horn DLs allow to reason efficiently in the presence of
large amounts of data
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So far:

Ontologies describe relevant terms and their relations

An inflammation of the lungs is a pneumonia
Streptococcus is a type of Gram positive Bacteria
Hypertension is a synonym for high blood pressure

DL ABoxes store data
ämore important: actual data sources can be viewed as/mapped to
ABoxes

patient(4971.120462) hasFinding(4971.120462, f14)
inflammation(f14) hasLocation(f14, lung)
hasCausitiveAgent(f14, strepPn) strepBacteria(strepPn)
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Queries in DLs

The user can pose queries over the vocabulary of the ontology, the
system performs reasoning to return all answers

• Retrieve antibiotics that can be used to treat Gram-positive
bacterial pneumonia

• Determine whether patient 6771.120884 has a close relative that
is allergic to penicillin

• Retrieve all patients diagnosed with bacterial pneumonia that
have an antibiotic allergy, or have a direct relative that has an
antibiotic allergy
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Queries in DLs (cont’d)

Sometimes query answering is reducible to instance checking

For example,

The query
Determine whether patient 6771.120884 has a close relative that

is allergic to penicillin
reduces to checking whether

K |= Patient u ∃hasRelative.(∃hasAllergy.Penicillin)(6771.120884)

But this holds only for the very simple queries that can be written as
concepts
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Queries in DLs (cont’d)

For example,

The (similar) query

Determine whether there exists a common allergy for some relative
of patient 6771.120884

amounts to the FOL formula

Patient(6771.120884) ∧ ∃x, y.
(
hasRelative(6771.120884, x)∧

∧hasAllergy(x, y) ∧ hasAllergy(6771.120884, y)
)

which is not equivalent to any DL concept

DL expressions are poor query languages!
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Query Languages (cont’d)

We want to access and process data using database inspired query
languages that allow to flexibly select and join pieces of information

Such queries are, in general, not expressible in DLs

The existing algorithms and complexity results do not apply for them

We need new reasoners, new reasoning techniques, new algorithms, and
new complexity bounds

We briefly discuss some of them in the rest of this tutorial
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Databases and DL Ontologies

A TBox is similar to a conceptual schema, but while the latter is only
important in the design phase, the TBox will still be relevant when
actually answering queries

It expresses constraints on the schema, but the semantics is different
from traditional DB constraints

; the constraints need not be satisfied by the ABox (database) at
run time!
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DBs and Complete information

In traditional databases it is assumed that information is complete

For example, if the train departure table contains only

Destination Departure
...

...
Innsbruck 08:10
Innsbruck 10:10
Innsbruck 12:10
Innsbruck 14:10
Innsbruck 17:10
...

...

then we know that there is no train to Innsbruck departing at 9:05
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KBs and Incomplete information

In contrast, in a DL KB we do not assume that information is complete

For example, if we only have

Person(Andrea) Female(Maria)

then it does not imply that Maria is not a person, not that Andrea is
neither male nor female.

In fact, incomplete information results in different models that have to be
taken into account when answering queries

If in the example above we also have

person v male t female

then we will have at least two models: one where Andrea is male, and
one where Andrea is female.

Ortiz & Šimkus Reasoning Web 2012 74/117



Reasoning and Querying in DLs 3. DLs and Data Access

Open vs. Closed World Assumption

Formally, we have

In Databases we make the closed word assumption (CWA): the facts
that are not known to be true are considered false

In contrast in DLs, like in standard first order logic, we make the
open word assumption (OWA): a fact whose truth we know nothing
about can be either true or false

This semantic difference has a huge impact on query answering!
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Query answering in DLs vs. query answering in DBs

A DB is a relational structure

A KB represents a set of relational structure, its models

Given a KB K and a query q, we are interested in
the certain answers to q over K,

i.e., in the answers that occur in every model of K.

Closely related to query answering in incomplete databases

In Databases, the query is evaluated over one structure
∼ model checking is computationally easy

In DLs and incomplete DBs, the query is answered over many
structures
∼ logical consequence is computationally costly
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Querying Knowledge Bases

The most important reasoning problem is query answering

Query Answering

Given a KB K and a query q, compute the tuples of individuals
that are an answer for q in every model of K

We will define the notion of answer formally once we have formally
defined the query language

We sometimes consider queries with no answer variables, for which
the answer is true if the query is true in all models, or false otherwise
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Querying Knowledge Bases - Example

TBox T : ∃hasFather.> v Person
∃hasFather−.> v Person

Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries: q1(x, y) ← hasFather(x, y)

q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2)

∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2)

∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = ???

{

cert(q2, 〈T ,A〉) = ???

{

cert(q3, 〈T ,A〉) = ???

{

cert(q4, 〈T ,A〉) = ???

{
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Choosing a query language

We want to access and process data using database inspired query
languages that allow to flexibly select and join pieces of information

Which is the best query language?

Some candidates:
DL expressions: concepts and roles
• They allow us to do simple instance queries
• but as we have discussed, have very limited expressive power

Formulas in FOL
• A natural candidate - recall examples above
• but they are not decidable

; answering yes/no queries over an empty KB amounts to deciding FOL
validity
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Choosing a query language (cont’d)

A good alternative:

Conjunctive Queries (CQs)

• A special kind of positive existential FOL formulas

• Equivalent to the plain Select-Project-Join fragment of SQL

• Very popular in databases, standard language in many areas

• Around 90% of the queries in actual applications fall in this fragment

• Positive computational features

• All the mentioned examples are CQs

They have been extensively studied for a wide range of DLs
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An Example Conjunctive Query

q(x)← Hero(x), hasMother(x, v1), hasAncestor(v1, v2),Deity(v2)

Or, using standard FOL syntax:

q(x)← ∃v1, v2.Hero(x) ∧ hasMother(x, v1) ∧ hasAncestor(v1, v2)
∧Deity(v2)

The query asks for the heroes x that have
a divine ancestor on the maternal side

(we use red to highlight the answer variables)
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Other query languages that have been studied for some DLs

Unions of Conjunctive queries (UCQs): disjunctions of CQs

q(x)← {Hero(x), hasMother(x, v1), hasAncestor(v1, v2),Deity(v2)}
∪ {hasWife(x, v1),Deity(v1)}

Or, in FOL syntax

q(x)←
(
∃v1, v2.Hero(x) ∧ hasMother(x, v1) ∧ hasAncestor(v1, v2)
∧Deity(v2)

)
∨(

∃v1.hasWife(x, v1) ∧ Deity(v1)
)

heroes that have a divine ancestor on the maternal side or are married
with a goddess

They are also very popular, and they preserve many of the good
computational properties of CQs
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Other query languages (cont’d)

Positive queries: positive FOL formulas

q(x1, x2)← ∃v. hasRelative(x1, x2) ∧
hasChild(x1, v) ∧ hasChild(x2, v) ∧
Male(x1) ∧ Female(x2) ∧ (Mortal(x1) ∨Mortal(x2))

pairs of individuals who are relatives, have a common child v, and at least
one of them is mortal

They have the same expressiveness as UCQs, but they are more succinct
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Other query languages (cont’d)

Queries that allow to express more complex navigations on the
database, in the style of XPath

q(x1, x2)← hasParent∗ ◦ hasParent−
∗
(x1, x2)

pairs of individuals who are relatives

Combinations of the above

q1(x1, x2)← ∃v. hasParent∗ ◦ hasParent−
∗
(x1, x2) ∧

hasChild(x1, v) ∧ hasChild(x2, v) ∧
Male(x1) ∧ Female(x2) ∧ (Mortal(x1) ∨Mortal(x2))

pairs of individuals who are relatives, have a common child v, and at least
one of them is mortal
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Conjunctive Queries

Conjunctive Query (CQ)

A conjunctive query is a formula of the form

q(~t) = ∃~v.A1(~v1) ∧ . . . ∧An(~vn)

where

~t and ~v are lists of constants and variables,

the Ai are concepts/roles,

the ~vi are lists of arguments of matching arity,

and ~vi ⊆ ~t ∪ ~v for each i.

We often write conjunctive queries as lists (or even sets) of atoms

q(~t) = A1(~v1), . . . , An(~vn)

To define query answers, we use the notion of match
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Query Match - Example

Intuitively, a match for a query q is an assignment of query variables to
elements in an interpretation that makes q true. The answer to q is given
by the image of the answer variables.

Primordial
Female
Deity

Male
Mortal

1
zeus

2
Male
Hero 5

Male
Hero

8 Female
Deity

Female
Mortal

Male
Deity

7

6

4electryon
alcmene perseus

3

Primordial

Deity
Male

Deity

hasParent

hasMother

Hero

v1

v2

x

heracles

q2(x)← Hero(x), hasMother(x, v1), hasAncestor(v1, v2),Deity(v2)

Answer: heracles
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Query Match, Query Answer

Formally:

Query Match

A match for q(~t) in an interpretation I is a mapping from the variables
and constants in q to ∆I such that

π(a) = aI for each individual a,
π(x)∈AI for each A(x)∈ q, and
〈π(x), π(y)〉 ∈ rI for each r(x, y)∈ q.

Query Answer

A tuple of individuals 〈a1, . . . , an〉 is called an (certain) answer for
q(t1, . . . , tn) over K if in every model I of K there is a match π for q
such that π(ti) = ai

I for every i. We use cert(q,K) to denote the set of
certain answers for q(t1, . . . , tn) over K.
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Query Answering

Query answering consists on listing the answers to a query, i.e., it is an
enumeration problem:

Definition (Query answering problem)

Given a KB K and a query q over K, list all the tuples ~c of constants such
that ~c ∈ cert(q,K).

When studying the complexity of query answering, we need to consider
the associated decision problem:

Definition (Recognition problem for query answering)

Given a KB K, a query q over K, and a tuple ~c of constants, check
whether ~c ∈ cert(q,K).
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Entailment of Boolean Queries

Definition (Boolean query)

A query q over K that has no answer variables is called Boolean.

For a Boolean query q, the main reasoning task is deciding whether q
evaluates to true in all models:

Definition (Query entailment problem)

For a Boolean query q and a KB K, we write K |= q if there is a match
for q in every model of K.
Given a KB K and a Boolean query q over K, the query entailment
problem is to decide whether K |= q.
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Query Answering and Query Entailment

The recognition problem for query answering reduces to the
entailment problem for Boolean queries:

• Simply instantiate the query with the input tuple and verify the
entailment of the resulting Boolean query

Many algorithms focus on query entailment only

Query answering can then be achieved by calling the query
entailment procedure for each possible tuple
(only constants occurring in the KB, thus finitely many tuples)

In practice, of course, listing query answers should be done with
smarter algorithms
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Query answering in lightweight DLs

CQ entailment has been studied for many DLs.

For lightweight DLs like the DL-Lite and EL families, focus on:

data complexity, which is usually tractable

practical techniques for query answering with large amounts of data

• query answering using existing technologies

• in particular, using reductions into SQL and existing RDBMSs

• or using other existing database technologies, such as Datalog engines

Recently, this kind of techniques have been explored for more expressive Horn
DLs.
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Query answering in expressive DLs

For expressive DLs that extend ALC

data complexity is typically coNP-complete

the landscape for combined complexity of query answering is not so
simple

worst-case optimal algorithms are hard to come about

until now, many decidability/complexity results obtained, but no
practical algorithms implemented
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Complexity of CQ entailment in DLs

Combined complexity Data complexity
Plain databases NP-complete in AC0

DL-Lite NP-complete in AC0

EL NP-complete P-complete
Horn-SHIQ ExpTime-complete P-complete
SHIQ 2ExpTime-complete

(1)

coNP-complete

(2)

SHOIQ decidability open

(1) CQ answering is already 2ExpTime-hard for ALCI and SH.
SHOI and SHOQ are also in 2ExpTime.

(2) Already for TBoxes with a single disjunction in fragments of ALC
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Query Answering vs. standard Reasoning

Instance checking Combined complexity Data complexity
DL-Lite in P in AC0

EL P-complete P-complete
Horn-SHIQ ExpTime-complete P-complete
SHIQ ExpTime-complete coNP-complete
SHOIQ NExpTime-complete coNP-hard

Query answering Combined complexity Data complexity
DL-Lite NP-complete in AC0

EL NP-complete P-complete
Horn-SHIQ ExpTime-complete P-complete
SHIQ 2ExpTime-complete coNP-complete
SHOIQ dec. open coNP-hard
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Query Answering with Relational Database Systems

Existing Relational Database Systems seem the most promising
approach for achieving scalability of query answering

Main challenge to be overcome:

; How do we make a RDBMS aware of the TBox?

• Option 1: incorporate the TBox into the query ; query rewriting

• Option 2: incorporate the TBox into the ABox ; data completion

These two approaches are analogous to backward chaining and
forward chaining in automated deduction and logic programming.
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The Query Rewriting Approach

This approach was introduced by Calvanese et.al. for DL-Lite

Idea: Given a KB 〈T ,A〉 and a CQ q, obtain a FOL query qT
such that for every tuple ~a of constants,

~a is an answer for q over 〈T ,A〉
iff

~a is an answer for qT over A (using the usual DB semantics)

This allows us to directly use off-the-shelf RDBMSs (FOL queries are
equivalent to SQL over standard DBs):

The ABox is stored directly as a database

The query qT is then evaluated over this DB

Optimal from the data complexity point of view, since it really
optimizes query answering w.r.t. the data size

Ortiz & Šimkus Reasoning Web 2012 97/117



Reasoning and Querying in DLs 3. DLs and Data Access 3.2 QA in Lightweight DLs

The Query Rewriting Approach – Example 1

TBox T : B′ v B
∃S.> v A

Query: q ← A(x), R(x, y), B(y)

The rewriting of q is the disjunction of: A(x), R(x, y), B(y);
A(x), R(x, y), B′(y);
S(x, z), R(x, y), B(y);
S(x, z), R(x, y), B′(y);

A CQ q is reformulated into a UCQ qT

Intuitively, we exploit the GCIs to obtain new queries that can contribute
to the answer
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Query rewriting in DL-Lite

The rewriting algorithm is given as a set of rules that apply the GCIs in T
(from right to left) to a given query:

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x,_), . . .
∃P− v A . . . , A(x), . . . ; . . . , P (_, x), . . .
A v ∃P . . . , P (x,_), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P (_, x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x,_), . . . ; . . . , P1(x,_), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

where _ denotes a fresh variable that appears only once

Roughly, we obtain the rewritten qT by applying the rules and unifying
variables in every possible way.
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The limits of Query Rewriting

Answering FOL queries in standard DBs is in AC0 w.r.t. data
complexity

In query rewriting

• The data, which is the only measured input, is not changed

• The rewriting does not depend on the data

Hence, the rewriting approach (into FOL queries) can only work for
DLs whose data complexity is in AC0

That is, we can only use it for the DL-Lite family
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EL and Query Rewriting

TBox T : ∃S.A v A

Query: q ← A(x)

The rewriting of q is the disjunction of: A(x)
S(x, y1), A(y1)
S(x, y1), S(y1, y2), A(y2)
S(x, y1), S(y1, y2), S(y2, y3), A(y3)
. . .

This can not be written as a finite SQL query!

It can be written as S∗(x, y), A(y), but transitive closure is not FOL-expressible

EL is P-hard in data complexity, hence we can not use the
Query Rewriting approach as defined above
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Query Rewriting beyond DL Lite

First-order rewritability fails for every DL beyond DL Lite

Some possible solutions:
1 Rewrite into query language that is more expressive than FOL

• Every CQ over EL can be rewritten into a Datalog query

The query above is equivalent to the Datalog query

q(x) : −A(x)

A(x) : −R(x, y), A(y)

• Rewriting into Datalog works even for Horn-SHIQ, the most
expressive DL for which query answering has been implemented

2 Give up the data independence of the rewriting approach, and
modify also the ABox (Lutz el.al. 08)
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The Data completion approach – Naive attempt

Basic idea: add the TBox information to the ABox

For each lightweight DL KB there is one canonical model that can be
used for answering all queries

If we represent that canonical model as a database, then we can
simply pose queries to it

But often this does not work:

; the canonical model for query answering may be infinite,
even for DL Lite and EL!
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The Data completion approach

Question: Can we use the data completion approach?

Answer: Only partially - we need to combine it with, e.g., query rewriting

The combined approach (Lutz et al. 09)

Idea: Given a KB 〈T ,A〉 and a CQ q, obtain a FOL query q′ and
an ABox A′ such that for every tuple ~a of constants,

~a is an answer for q over 〈T ,A〉
iff

~a is an answer for q′ over A′ (using the usual DB semantics)

This requires the data to be modified

Assumes a different setting (e.g., access to the data a priori, privacy)
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The Combined approach – An overview

Instead of the real canonical model, we realize in the database
another representative model that reuses existentially quantified
elements

Reusing elements may introduce spurious query matches

; that is why we need to rewrite the query as well

With suitable rewritings, we can obtain a query that has a match in
the small model iff it has a match in the canonical one

This approach has been successfully applied
to EL and DL-Lite
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Open issues

Despite the success of query rewriting and the combined approach, many
challenges remain:

The rewritten queries are often hard to evaluate

• they can be very large (exponential blow-up in query size)

• their ‘unnatural’ structure may not be adequate for existing DBMS
optimizations

The data completion stage of the combined approach may not be
applicable: no access to the data a priori, no right to modify it

Even if it is applicable, it can be very expensive

Many research efforts still aim at practicable and
scalable query answering in lightweight DLs
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Query Answering in Expressive DLs

Assume a given knowledge base K and a query q

We want to decide K |= q

This is equivalent to deciding whether there is a countermodel
witnessing K 6|= q i.e. a model of K where there is no match for q

For most DLs, one can show that if K 6|= q, then there is a
countermodel that has some kind of forest-shaped

ABox part
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Query Matches in Forest-shaped models

A match for q in a canonical model has two parts:

a partial match into the A-Box part (roots)
maps for subqueries inside the trees

A

B

C

A

B

C

C

A A
B,C
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Searching for Countermodels

All existing algorithms search for a forest-shaped countermodel

In many cases, this is done in three stages:

1 Consider all partial matches of the query into the ABox part

2 generate all combinations Q of subqueries that contain some
subquery generated by a partial match

3 For each Q, decide existence of a tree-shaped model part I with
I 6|= Q

The last step focuses on trees only, and is often achieved by
elaborate adaptations of TBox reasoning techniques
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What makes query answering hard?

For most expressive DLs, query answering is very hard:

There are exponentially many possible ABox parts, and exponentially
many partial matches in each of them

Q can be exponential in q

A (subquery) can be matched to a tree in exponentially many
different ways

Deciding I 6|= Q inside a tree is exponentially harder than standard
reasoning

Many algorithms for query answering in expressive DLs have been
developed, but none of them seems implementable
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Complexity of Query Answering in Expressive DLs

in 3ExpTime

ExpTime-complete

undecidable

ALC

recursive

2ExpTime-complete

2coNExpTime-hard

co-NExpTime-hard

ZOIQ

ALCHOIQ

SRIQ SROQ
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S
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Overview of some Techniques for QA in Expressive DLs –
Part 1

Modified tableaux algorithms that take the query size into account
when blocking
• Often called n-blocking or CARIN blocking
• First introduced for ALCN (in the context of a language called

CARIN) (Levy and Rousset 98)
• Has been extended to more expressive logics, but does not work for

DLs with transitive roles
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Overview of some Techniques for QA in Expressive DLs –
Part 2

Tuple-graph or rolling up techniques

• Each way of mapping a subquery inside a tree can be expressed as a
DL concept

• Using this, query answering can be reduced to satisfiability testing

exponentially many satisfiability tests
each of them receives an exponentially larger KB as input

• First introduced for a DL called DLR (Calvanese et.al. 98)
• Yields optimal complexity bounds
• Has been extended to other DLs like ALCHQ, SHIQ, and SHOQ
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Overview of some Techniques for QA in Expressive DLs –
Part 3

Automata on infinite trees reduce the existence of a countermodel to
the emptiness test of a suitable automaton

• Yield optimal bounds for combined complexity
• They can handle both the ABox and the tree part, but are not

optimal in data complexity
• Can be combined with other techniques
• Can accommodate many constructs
• They have been used to obtain complexity bounds for the most

expressive decidable DLs so far

Knot-based techniques focus on the ’tree part’ of the problem
• Use simple, local representations of models
• Allow to obtain optimal complexity bounds some hard cases
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Summary

Query answering is a relatively new DL reasoning task that is gaining
importance in many applications

In general, query answering in DLs is harder and more involved than:
• Query Answering in plain DBs
• Traditional reasoning in DLs

For lightweight DLs:
• the complexity seems manageable
• most successful approaches rely on relational DBs
• in practice, scalability not so easy
• many open challenges

For expressive DLs:
• the problem is usually very hard
• many questions are still open
• no practical algorithms available
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Thanks!

Questions? Comments?
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