Linked Stream Data Processing
Part I: Basic Concepts & Modeling

Danh Le-Phuoc, Josiane X. Parreira, and Manfred Hauswirth
DERI - National University of Ireland, Galway

Reasoning Web Summer School 2012
Outline

■ Part I: Basic Concepts & Modeling (Josi)
 □ Linked Stream Data
 □ Data models
 □ Query Languages and Operators
 □ Choices/Challenges when designing a Linked Stream Data processor

■ Part II: Building a Linked Stream Processing Engine (Danh)
 □ Analysis of available Linked Stream Processing Engines
 – Design choices, implementation
 – Performance comparison
 – Open Challenges
Streams everywhere

Biomonitoring

A. Chemistry chip pendant (saliva sampling)
B. Skin electrodes (cardiac & respiratory)
C. Strain guage & heart-rate monitor
D. Accelerometer
E. Phone/camera/GPS
F. Chemistry (ρ, pCO_2, sugar)
G. Local area network
H. Pulse pressure
Application Domains

Enterprise Environments

Green IT

Smart Cities

Telehealth
Sorry, I can’t understand you...

- Heterogeneous data representations
- Lack of semantics
- A priori knowledge of data sources needed
- Disconnected

Integration Problem!
Semantic Web, Linked Data

- **Semantic Web**
 - Collaborative movement to promote common data formats on the World Wide Web.
 - Inclusion of semantic content in web pages
 - From unstructured and semi-structured documents to a “Web of data”

- **Linked Data**
 - Best practices to represent, publish, link data on the Semantic Web
 - Linked Data Cloud: collection of datasets that have been published in Linked Data format
LINKED STREAM DATA
Linked Stream Data
Streams as just yet another form/source of Linked Data
Linked Stream Data

- Semantically enriched stream data
- Linked Stream Data examples
 - W3C Semantic Sensor Network Incubator Group
 - RDF wrappers for Twitter, Facebook, etc
- Data integration, connects dynamic and static data
- Linked Data + DSMS
 - Stream Data representation/processing different from standard RDF/SPARQL
 - Temporal aspect, continuous query processing
 - DSMS use relational storage model
 - Efficient RDF processing requires heavy replication
Running example
Running Example – Conference scenario

- Tracking system (e.g. RFID tags): Stream data
- Attendees information (e.g. DBLP records, FOAF)
- Building information (e.g. layout, connections, room names)
- Different sources (no common schema)
- Linked data used as unified model
Running Example

(Q1) Inform a participant about the name and description of the location he currently is

PREFIX lv: http://deri.org/floorplan/
PREFIX foaf: http://xmlns.com/foaf/0.1/

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
 GRAPH <http://deri.org/floorplan/>
 {?loc lv:name ?locName. ?loc lv:desc ?locDesc}
 ?person foaf:name "$Name$".
}
Linked Stream Data

- Linked Data principles applied to stream data
- Extensions to deal with the temporal aspects
 - Data modeling
 - Query languages
 - Query operators
 - System design and architectures
DATA MODELS, QUERY LANGUAGES AND OPERATORS
Linked Stream Data model

- Extends the definition of RDF nodes and RDF triples
 - RDF node: I, B, and L, which are pair-wise disjoint infinite sets of Information Resource Identifiers (IRIs), blank nodes and literals
 - RDF triple: \((s, p, o) \in IB \times I \times IBL\), where \(IL = I \cup L\), \(IB = I \cup B\) and \(IBL = I \cup B \cup L\)

- Stream element: RDF triple with temporal annotations
 - Interval-based (e.g. \(\langle \text{:John} :at :office,[7,9]\rangle\)) – Streaming SPARQL
 - Point-based (e.g. \(\langle \text{:John} :at :office,7\rangle, \langle \text{:John} :at :office,8\rangle, \langle \text{:John} :at :office,9\rangle\)) – EP-SPARQL, C-SPARQL, SPARQL\text{Stream}, CQELS
 - Point-based (maybe) redundant, but instantaneous (more practical)
RDF Stream: bag of elements \(\langle (s,p,o) : [t] \rangle \)
- \((s,p,o) \): RDF triple
- \(t \): timestamp
- stream elements from stream \(S \) with timestamp \(\leq t \)
 \[S_{\leq t} = \{ \langle (s,p,o) : [t'] \rangle \mid t' \leq t \} \]

Non-stream data (RDF datasets) also need to follow the Linked Stream Data model to allow integration

Instantaneous RDF dataset: \(G(t) \)
- \(G(t) \): set of RDF triples valid at time \(t \), called instantaneous RDF dataset.

RDF dataset: sequence \(G = [G(t)], t \in \mathbb{N} \), ordered by \(t \).
- Static RDF dataset \((G^s) \): \(G(t) = G(t+1) \) for all \(t \geq 0 \)
Query Operators

- Pattern matching as basic operator (extended from SPARQL)
 - Mappings which are defined as partial functions
 \[\mu : V \leftrightarrow IBL \]
 where \(V \) is an infinite set of variables disjoint from \(IBL \), and \(\text{dom}(\mu) \) is the subset of \(V \) where \(\mu \) is defined.
- Compatible mappings
 \[\mu_1 \equiv \mu_2 \iff \forall x \in \text{dom}(\mu_1) \cap \text{dom}(\mu_2) \Rightarrow \mu_1(x) = \mu_2(x) \]
Join, union, different and left outer-join follow mappings (Ω_1 and Ω_2 are mapping sets)

\[\Omega_1 \bowtie \Omega_2 = \{ \mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1 \land \mu_2 \in \Omega_2 \land \mu_1 \vartriangleleft \mu_2 \} \]

\[\Omega_1 \cup \Omega_2 = \{ \mu \mid \mu_1 \in \Omega_1 \lor \mu_2 \in \Omega_2 \} \]

\[\Omega_1 \setminus \Omega_2 = \{ \mu \in \Omega_1 \mid \neg \exists \mu' \in \Omega_2, \mu' \vartriangleleft \mu \} \]

\[\Omega_1 \bowtie \bowtie \Omega_2 = (\Omega_1 \bowtie \Omega_2) \cup (\Omega_1 \setminus \Omega_2) \]
Query Operators

- **Triple matching operator**

 \[
 [P, t]_G = \{ \mu \mid \text{dom}(\mu) = \text{var}(P) \land \mu(P) \in G(t) \}
 \]

 - Triple pattern \(P \in (I \cup V) \times (I \cup V) \times (I \cup V) \)
 - \(\mu(P) \): triple obtained by replacing variables within \(P \) according to \(\mu \)

- **Window matching operator**

 \[
 [P, t]_S^\omega = \{ \mu \mid \text{dom}(\mu) = \text{var}(P) \land \langle \mu(P) : [t'] \rangle \in S \land t' \in \omega(t) \}
 \]

 - \(\omega(t) : N \rightarrow 2^N \): function mapping a timestamp to a (possibly infinite) set of timestamps (\(N \): set of natural numbers)
 - \(\omega(t) \) will depend on the type of the window (e.g. time-based, tuple-based)
Query Operators

Sequential Operator

\[
[P \Rightarrow^t P']_S = \{ \mu_1 \cup \mu_2 \mid \mu_1 \in [P, t]_S^\omega \land \mu_2 \in [P, t]_S^\omega \land \mu_1 \neq \mu_2 \\
\land \langle \mu_1(P) : [t'_1] \rangle \in S \land \langle \mu_2(P) : [t'_2] \rangle \in S \land t'_1 \leq t'_2 \}
\]

AND, UNION, OPT, FILTER, AGG can be derived from operators introduced so far
Extensions of SPARQL grammar for continuous queries

- Few different languages have been proposed
- Clauses to handle streams and to add window operators

StreamingSPARQL: DatastreamClause, Window

```
SelectQuery ::= 'SELECT' ('DISTINCT' | 'REDUCED')? '('Var | '*') (DatasetClause* | DatastreamClause*) WhereClause SolutionModifier
DatastreamClause ::= 'FROM' (DefaultStreamClause | NamedStreamClause)
DefaultStreamClause ::= 'STREAM' SourceSelector Window
NamedStreamClause ::= 'NAMED' 'STREAM' SourceSelector Window
GroupGraphPattern ::= { TriplesBlock? ((GraphPatternNotTriples | Filter)?)? TriplesBlock? )*(Window)?)
Window ::= (SlidingDeltaWindow | SlidingTupleWindow | FixedWindow)
skipSlidingDeltaWindow ::= 'WINDOW' 'RANGE' ValSpec 'SLIDE' ValSpec?
FixedWindow ::= 'WINDOW' 'RANGE' ValSpec 'FIXED'
SlidingTupleWindow ::= 'WINDOW' 'ELEMSINTEGER'
ValSpec ::= INTEGER | Timeunit?
Timeunit ::= ('MS' | 'S' | 'MINUTE' | 'HOUR' | 'DAY' | 'WEEK')
```
Query Languages

- **C-SPARQL**: FromStrClause, Window

 \[
 \text{FromStrClause} \rightarrow \text{‘FROM’ \[‘NAMED’ \‘STREAM’ \text{StreamIRI} \‘[RANGE’ \text{Window} \’]\’} \\
 \text{Window} \rightarrow \text{LogicalWindow} | \text{PhysicalWindow} \\
 \text{LogicalWindow} \rightarrow \text{Number} \ \text{TimeUnit} \ \text{WindowOverlap} \\
 \text{TimeUnit} \rightarrow \text{‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’} \\
 \text{WindowOverlap} \rightarrow \text{‘STEP’ Number TimeUnit | ‘TUMBLING’}
 \]

- **CQELS**: StreamGraphPattern (IRIs for streams)

 \[
 \text{GraphPatternNotTriples ::= GroupOrUnionGraphPattern} | \text{OptionalGraphPattern} \\
 | \text{MinusGraphPattern} | \text{GraphGraphPattern} \\
 | \text{StreamGraphPattern} | \text{ServiceGraphPattern} | \text{Filter} | \text{Bind}
 \]

 \[
 \text{StreamGraphPattern ::= ‘STREAM’ \[’Window \’\} \text{VarOrIRIref \{‘TriplesTemplate\’\}} \\
 \text{Window ::= Range} | \text{Triple} | \text{‘NOW’} | \text{‘ALL’} \\
 \text{Range ::= ‘RANGE’ Duration (‘SLIDE’ Duration | ‘TUMBLING’)?} \\
 \text{Triple ::= ‘TRIPLES’ INTEGER} \\
 \text{Duration ::= (INTEGER \‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’ | ‘ns’)+}
 \]
(Q1) Inform a participant about the name and description of the location he just entered

C-SPARQL

```sparql
SELECT ?locName ?locDesc
FROM STREAM <http://deri.org/streams/rfid> [NOW]
FROM NAMED <http://deri.org/floorplan/>
WHERE {
  ?loc lv:desc ?locDesc
  ?person foaf:name "\$Name".
}
```

CQELS

```sparql
SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
}
```
(Q2) Notify two people when they can reach each other from two different and directly connected (from now on called nearby) locations.

- Streaming SPARQL and C-SPARQL don’t allow multiple windows in one stream in their grammar
 - C-SPARQL solution: create two virtual streams

- CQELS

```sparql
CONSTRUCT {?person1 lv:reachable ?person2} 
FROM NAMED <http://deri.org/floorplan/> 
WHERE { 
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedat ?loc1} 
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2 lv:detectedat ?loc2} 
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} 
} 
```
Different streams can provide the same pattern

Q3: Name of location of people nearby the DERI building

CQELS (queries all streams that provide “nearby” info)

```
SELECT ?name ?locName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM ?streamURI [NOW] {?person lv:detectedat ?loc}
GRAPH <http://deri.org/floorplan/>
{
?person foaf:name ?name.
}
```
EP-SPARQL and C-SPARQL allow functions to deal with timestamps

- Timestamp can be retrieved and bound to a variable
- Timestamp of a bound stream element can be retrieved

Q4: Return pairs of people that were detected in a location in consecutive times (in the last 30min)

EP-SPARQL

CONSTRUCT {?person2 lv:comesAfter ?person1} {
 SELECT ?person1 ?person2
 WHERE {
 {?person1 lv:detectedat ?loc}
 SEQ {?person2 lv:detectedat ?loc}
 }
 FILTER (getDURATION()<"P30m"^^xsd:duration)
DESIGN CHOICES & CHALLENGES
Current available systems can be classified into two categories based on their architecture design:

- **White box architecture**
 - Implements all required components
 - physical operators (e.g. windows, join, triple pattern matching)
 - data structures (e.g. B+-Trees, hashtables)
 - query generator/optimizer/executor

- **Black box architecture**
 - Uses existing RDF and data stream processing systems as sub-components
 - Query rewriter, data translator and orchestrator among sub-components is needed

Black box easier to implement, but no full-control and data transformation overhead
White box
Black box

Diagram showing the process flow of a query system, including:

- Query
- Optimizer
- Executor
- Operator implementations
- Execution
- Access methods
- Query rewriter
- Orchestrator
- Data transformation
Current Linked Stream Data approaches follow/reuse operators from relational DSMS

Continuous query

- $Q(t)$: query results up to time t
- $R(t)$: unordered bag of tuples (relations) at time instant t
- Relation R: sequence $R = [R(t)]$, $t \in \mathbb{N}$, ordered by t.

Query algebra

- Stream-to-stream (Streaming SPARQL): stream-to-stream operator
- Mixed (C-SPARQL, SPARQL$_{Stream}$, CQELS): stream-to-relation, relation-to-relation and relation-to-stream operators
Query Algebra

- **Stream-to-stream operator**
 - One-time queries in SQL that are continuously executed

- **Relation-to-relation operator**
 - As in traditional relational DBMS

- **Stream-to-relation operator ➔ Windows**
 - Time-based (e.g. last 3 secs)

<table>
<thead>
<tr>
<th>Timestamp (sec)</th>
<th>Person</th>
<th>Loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1</td>
<td>loc1</td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>loc1</td>
</tr>
<tr>
<td>999</td>
<td>5</td>
<td>loc2</td>
</tr>
<tr>
<td>998</td>
<td>6</td>
<td>loc1</td>
</tr>
<tr>
<td>997</td>
<td>7</td>
<td>loc1</td>
</tr>
</tbody>
</table>
Stream-to-stream operator
- One-time queries in SQL that are continuously executed

Relation-to-relation operator
- As in traditional relational DBMS

Stream-to-relation operator ➔ Windows
- Time-based (e.g. last 3 secs)
- Tuple-based (e.g. last 4 tuples)

<table>
<thead>
<tr>
<th>Timestamp (sec)</th>
<th>Person</th>
<th>Loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1</td>
<td>loc1</td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>loc1</td>
</tr>
<tr>
<td>999</td>
<td>5</td>
<td>loc2</td>
</tr>
<tr>
<td>998</td>
<td>6</td>
<td>loc1</td>
</tr>
<tr>
<td>997</td>
<td>7</td>
<td>loc1</td>
</tr>
</tbody>
</table>
Query Algebra

- **Stream-to-stream operator**
 - One-time queries in SQL that are continuously executed

- **Relation-to-relation operator**
 - As in traditional relational DBMS

- **Stream-to-relation operator ➔ Windows**
 - Time-based (e.g. last 3 secs)
 - Tuple-based (e.g. last 4 tuples)
 - Partitioned (e.g. Loc last tuple)

<table>
<thead>
<tr>
<th>Timestamp (sec)</th>
<th>Person</th>
<th>Loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1</td>
<td>loc1</td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>loc1</td>
</tr>
<tr>
<td>999</td>
<td>5</td>
<td>loc2</td>
</tr>
<tr>
<td>998</td>
<td>6</td>
<td>loc1</td>
</tr>
<tr>
<td>997</td>
<td>7</td>
<td>loc1</td>
</tr>
</tbody>
</table>
Query Algebra

- **Relation-to-stream operator**: produces a stream from relation R
 - Istream (insert stream): add element <s,t> whenever s is in $R(t) - R(t-1)$
 - Dstream (delete stream): add element <s,t> whenever s is in $R(t-1) - R(t)$
 - Rstream (relation stream): add element <s,t> whenever s is in R at time t.

Istream
- SELECT Istream(*) FROM RFIDstream [RANGE Unbounded]
 WHERE signalstrength >= 85

Dstream
- SELECT Dstream(tagid) FROM RFIDstream [60 seconds]

Rstream
- SELECT Rstream(*) FROM RFIDstream [NOW]
 WHERE signalstrength >= 85
Time Management

- Timestamps are necessary to order stream elements
- Application timestamp (source) vs. system timestamp (DSMS)
- Input manager: buffers to order tuples, ensure they are processed in order
 - Heartbeat (timestamp)
 - Punctuation (pattern)
Time Management
Query Evaluation

- **Eager re-evaluation vs. period re-evaluation**
 - Eager: too expensive if update rate is high
 - Periodic: might cause stale results

- **Query evaluation needs to handle two types of events**
 - Arrival of new stream elements
 - Expiration of old stream elements
 - Action upon events vary across operators, e.g. an arrival might generate a new result (join) or trigger the removal of an existing result (negation)
Arrivals are triggered by stream source
Expiration needs to be handled by the query processor

- Timestamp
- Negative tuple: for a window of length w_l, a tuple inserted at time t will generate a negative tuple at time $t + w_l$

| Window length | <s_1, t> | <s_2, $t+1$> | … | <s_n, $t + w_l - 1$> | <$-s_1$, $t + w_l$> | <$-s_2$, $t + w_l + 1$> |
Adding and evicting stream elements

\[
\begin{align*}
&W_1=\{\text{TRIPLES 2}\} \\
&W_2=\{\text{RANGE 5}\} \\
&W_3=\{\text{RANGE 5}\}
\end{align*}
\]
Query Evaluation

- **Stateless operators**: processed “on the fly” (directly on stream)
 - E.g. Selection, union.

- **Stateful operators**: need to maintain processing states (probed at re-evaluation)
 - E.g. window join, aggregation, duplication elimination, non-monotonic operators

![Diagram of query evaluation](image)
Window join: new arrival in one input triggers probing on the other input.
Query Evaluation

- **Aggregation**
 - Expirations must be dealt with immediately
 - Time and space requirements depends on the aggregation function

- **Distributive aggregates**
 - Computed incrementally, constant time/space requirements
 - E.g. COUNT, SUM, MAX, MIN

- **Algebraic aggregates**
 - Computed using values from distributive aggregates. Constant time/space requirements
 - E.g. AVG (SUM/COUNT)
- **Holistic aggregates**: space consumption linear to input sizes
 - E.g. TOP-k, COUNT DISTINCT
- **Duplicate elimination**
 - Distinct values are kept
 - Expirations are handled eagerly
Query Evaluation

- **Non-monotonic operators**
 - Previous results removed when they no longer satisfy query
 - E.g. negation
 - Negative tuples can be used
Memory Overflow

- Some join operators already handle memory overflow by sending input partitions to disk.
- Use of secondary storage requires indexes
 - Expensive under high update rates
- Alternative: Partition the data to make updates "local"
 - Sort tuples chronologically
 - Inserts in newer partition only
 - Deletes in older partition only
 - Problem: search is not efficient. Assumes insertion/expiration order is the same
 - Sub-indexes
 - Doubly partitioned indexes
Re-arrange query operators for more efficient execution

- Traditional selectivity estimates can’t be applied
- Alternative: join reordering based on update rates
Adaptivity is key!

- Processor must be able to reorder query operators on the fly
- Changes in:
 - operator costs (processing time),
 - update rate,
 - input selectivity

"Notify two people who are co-authors of a paper if they are in the same location (within the last 30 seconds)"
Query Optimization

- Operators routing (instead of fixed query plan tree)
 - Eddies: estimate which operators are faster/more selective
 - Overhead: migration of internal state of query plan

- Continuous query: multi-query optimization possible
 - Better memory usage
 - Trade-offs exists (e.g. join -> selection vs. selection -> join)
Scheduling

- Data first push into queues, then consumed by operators
- Scheduler determiners which data in which queue to process next
 - Different scheduling strategies (e.g. round robin, arrival time, time slice)
 - Choice depends on factors such as stream arrival patterns, max/avg output latency.