
© Copyright 2011 Digital Enterprise Research Institute. All rights
reserved.

Digital Enterprise Research Institute www.deri.ie

Enabling networked knowledge

Linked Stream Data Processing
Part I: Basic Concepts & Modeling

Danh Le-Phuoc, Josiane X. Parreira, and Manfred Hauswirth
DERI - National University of Ireland, Galway

Reasoning Web Summer School 2012

Digital Enterprise Research Institute www.deri.ie

n  Part I: Basic Concepts & Modeling (Josi)
¨  Linked Stream Data

¨  Data models

¨  Query Languages and Operators

¨  Choices/Challenges when designing a Linked Stream Data
processor

n  Part II: Building a Linked Stream Processing Engine
(Danh)
¨  Analysis of available Linked Stream Processing Engines

–  Design choices, implementation

–  Performance comparison

–  Open Challenges

Outline

Digital Enterprise Research Institute www.deri.ie

Streams everywhere

Digital Enterprise Research Institute www.deri.ie

Application Domains

Enterprise Environments

Telehealth

Smart Cities

Digital Enterprise Research Institute www.deri.ie

n  Heterogeneous data representations
n  Lack of semantics

n  A priori knowledge of data sources needed
n  Disconnected

Sorry, I can’t understand you…

Integration Problem!

Digital Enterprise Research Institute www.deri.ie

n  Semantic Web
¨  Collaborative movement to promote common data formats

on the World Wide Web.

¨  Inclusion of semantic content in web pages

¨  From unstructured and semi-structured documents to a
“Web of data”

n  Linked Data
¨  Best practices to represent, publish, link data on the

Semantic Web

¨  Linked Data Cloud: collection of datasets that have been
published in Linked Data format

Semantic Web, Linked Data

Digital Enterprise Research Institute www.deri.ie

LINKED STREAM DATA

Digital Enterprise Research Institute www.deri.ie

Linked Stream Data

Digital Enterprise Research Institute www.deri.ie

Linked Stream Data

Digital Enterprise Research Institute www.deri.ie

n  Semantically enriched stream data
n  Linked Stream Data examples

¨  W3C Semantic Sensor Network Incubator Group

¨  RDF wrappers for Twitter, Facebook, etc

n  Data integration, connects dynamic and static data

n  Linked Data + DSMS
¨  Stream Data representation/processing different from

standard RDF/SPARQL
–  Temporal aspect, continuous query processing

¨  DSMS use relational storage model
–  Efficient RDF processing requires heavy replication

Linked Stream Data

Digital Enterprise Research Institute www.deri.ie

Running example

Digital Enterprise Research Institute www.deri.ie

n  Tracking system (e.g RFID tags) : Stream data
n  Attendees information (e.g. DBLP records, FOAF)

n  Building information (e.g. layout, connections, room
names)

n  Different sources (no common schema)

n  Linked data used as unified model

Running Example – Conference scenario

Digital Enterprise Research Institute www.deri.ie

Running Example

PREFIX lv: http://deri.org/floorplan/
PREFIX foaf: http://xmlns.com/foaf/0.1/

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person lv:detectedat ?loc}
 GRAPH <http://deri.org/floorplan/>

 {?loc lv:name ?locName. ?loc lv:desc ?locDesc}
?person foaf:name ‘‘$Name$’’.
}

(Q1) Inform a participant about the name and
description of the location he currently is

Digital Enterprise Research Institute www.deri.ie

n  Linked Data principles applied to stream data
n  Extensions to deal with the temporal aspects

¨  Data modeling

¨  Query languages

¨  Query operators

¨  System design and architectures

Linked Stream Data

Digital Enterprise Research Institute www.deri.ie

DATA MODELS, QUERY
LANGUAGES AND

OPERATORS

Digital Enterprise Research Institute www.deri.ie

n  Extends the definition of RDF nodes and RDF triples
¨  RDF node: I, B, and L, which are pair-wise disjoint infinite

sets of Information Resource Identifiers (IRIs), blank nodes
and literals

¨  RDF triple: (s, p, o) ∈ IB × I × IBL, where IL = I ∪ L, IB = I ∪ B
and IBL = I ∪ B ∪ L

n  Stream element: RDF triple with temporal
annotations
¨  Interval-based (e.g. ⟨:John :at :office,[7,9]⟩) – Streaming

SPARQL

¨  Point-based (e.g. ⟨John :at :office,7⟩, ⟨:John :at :office,8⟩,
⟨:John :at :office,9⟩) – EP-SPARQL, C-SPARQL, SPARQLStream,
CQELS

¨  Point-based (maybe) redundant, but instantaneous (more
practical)

Linked Stream Data model

Digital Enterprise Research Institute www.deri.ie

n  RDF Stream: bag of elements ⟨(s,p,o) : [t]⟩
¨  (s,p,o) : RDF triple

¨  t : timestamp

¨  stream elements from stream S with timestamp ≤ t

 S≤t ={⟨(s,p,o):[t’]⟩ ∈ S | t’ ≤ t}

n  Non-stream data (RDF datasets) also need to follow
the Linked Stream Data model to allow integration è
Instantaneous RDF dataset: G(t)

n  G(t) : set of RDF triples valid at time t, called
instantaneous RDF dataset.

n  RDF dataset : sequence G = [G(t)], t∈N, ordered by t.
¨  Static RDF dataset (Gs): G(t) = G(t+1) for all t ≥ 0

Linked Stream Data model

Digital Enterprise Research Institute www.deri.ie

n  Pattern matching as basic operator (extended from
SPARQL)
¨  Mappings which are defined as partial functions

where V is an infinite set of variables disjoint from IBL,
and dom(μ) is the subset of V where μ is defined.

n  Compatible mappings

Query Operators

18 D. Le-Phuoc, J. X. Parreira and M. Hauswirth

An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples
valid at time t, called instantaneous RDF dataset. An RDF dataset is a sequence
G = [G(t)], t 2 N, ordered by t. When it holds that G(t) = G(t+1) for all t � 0,
we call G a static RDF dataset and denote Gs = G(t).

Query operators. The primitive operation on RDF stream and instantaneous
RDF dataset is pattern matching which is extended from the triple pattern of
SPARQL semantics [90]. Each output of a pattern matching operator consists
of a mapping which is defined as partial functions. Let V be an infinite set of
variables disjoint from IBL, a partial function µ from V to IBL denoted as

µ : V 7�! IBL. (7)

The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings
µ1 and µ2 are compatible, denoted as µ1

.
= µ2 if :

µ1
.
= µ2 () 8x 2 dom(µ1) \ dom(µ2)) µ1(x) = µ2(x) (8)

For a given triple pattern ⌧ , the triple obtained by replacing variables within
⌧ according to µ is denoted as µ(⌧).

Let ⌦1 and ⌦2 be two mapping sets. The join, union, di↵erence and left
outer-join operators over ⌦1 and ⌦2 are defined as following:

⌦1 ./ ⌦2 = {µ1 [µ2 | µ1 2 ⌦1 ^ µ2 2 ⌦2 ^ µ1
.
= µ2} (9)

⌦1 [⌦2 = {µ | µ1 2 ⌦1 _ µ2 2 ⌦2} (10)

⌦1 \ ⌦2 = {µ 2 ⌦1 | ¬9µ0 2 ⌦2, µ
0 .
= µ} (11)

⌦1 ./ ⌦2 = (⌦1 ./ ⌦2) [(⌦1 \ ⌦2) (12)

Three primitive operators on RDF dataset and RDF stream, namely, triple
matching pattern operator, window matching operator and sequential operator,
can be defined from the above operators. Similar to SPARQL, the triple matching
pattern operator on an instantaneous RDF dataset at timestamp t is defined as

[[P, t]]G = {µ | dom(µ) = var(P) ^ µ(P) 2 G(t)} (13)

where P 2 (I [V) ⇥ (I [V) ⇥ (IL [V).
A window matching operator [[P, t]]!S over an RDF stream S is then defined

by extending the operator above as follows:

[[P, t]]!S = {µ | dom(µ) = var(P) ^ hµ(P) : [t0]i 2 S ^ t0 2 !(t)} (14)

where !(t) : N ! 2N is a function mapping a timestamp to a (possibly infinite) set
of timestamps. This gives the flexibility to choose between the di↵erent window

Digital Enterprise Research Institute www.deri.ie

n  Join, union, different and left outer-join follow
mappings (Ω1 and Ω2 are mapping sets)

Query Operators

Digital Enterprise Research Institute www.deri.ie

n  Triple matching operator

¨  Triple pattern P ∈(I∪V)×(I∪V)×(IL∪V)

¨  μ(P): triple obtained by replacing variables within P
according to μ

n  Window matching operator

¨  ω(t): N → 2N : function mapping a timestamp to a (possibly
infinite) set of timestamps (N : set of natural numbers)

¨  ω(t) will depend on the type of the window (e.g. time-based,
tuple-based)

Query Operators

18 D. Le-Phuoc, J. X. Parreira and M. Hauswirth

An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples
valid at time t, called instantaneous RDF dataset. An RDF dataset is a sequence
G = [G(t)], t 2 N, ordered by t. When it holds that G(t) = G(t+1) for all t � 0,
we call G a static RDF dataset and denote Gs = G(t).

Query operators. The primitive operation on RDF stream and instantaneous
RDF dataset is pattern matching which is extended from the triple pattern of
SPARQL semantics [90]. Each output of a pattern matching operator consists
of a mapping which is defined as partial functions. Let V be an infinite set of
variables disjoint from IBL, a partial function µ from V to IBL denoted as

µ : V 7�! IBL. (7)

The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings
µ1 and µ2 are compatible, denoted as µ1

.
= µ2 if :

µ1
.
= µ2 () 8x 2 dom(µ1) \ dom(µ2)) µ1(x) = µ2(x) (8)

For a given triple pattern ⌧ , the triple obtained by replacing variables within
⌧ according to µ is denoted as µ(⌧).

Let ⌦1 and ⌦2 be two mapping sets. The join, union, di↵erence and left
outer-join operators over ⌦1 and ⌦2 are defined as following:

⌦1 ./ ⌦2 = {µ1 [µ2 | µ1 2 ⌦1 ^ µ2 2 ⌦2 ^ µ1
.
= µ2} (9)

⌦1 [⌦2 = {µ | µ1 2 ⌦1 _ µ2 2 ⌦2} (10)

⌦1 \ ⌦2 = {µ 2 ⌦1 | ¬9µ0 2 ⌦2, µ
0 .
= µ} (11)

⌦1 ./ ⌦2 = (⌦1 ./ ⌦2) [(⌦1 \ ⌦2) (12)

Three primitive operators on RDF dataset and RDF stream, namely, triple
matching pattern operator, window matching operator and sequential operator,
can be defined from the above operators. Similar to SPARQL, the triple matching
pattern operator on an instantaneous RDF dataset at timestamp t is defined as

[[P, t]]G = {µ | dom(µ) = var(P) ^ µ(P) 2 G(t)} (13)

where P 2 (I [V) ⇥ (I [V) ⇥ (IL [V).
A window matching operator [[P, t]]!S over an RDF stream S is then defined

by extending the operator above as follows:

[[P, t]]!S = {µ | dom(µ) = var(P) ^ hµ(P) : [t0]i 2 S ^ t0 2 !(t)} (14)

where !(t) : N ! 2N is a function mapping a timestamp to a (possibly infinite) set
of timestamps. This gives the flexibility to choose between the di↵erent window

18 D. Le-Phuoc, J. X. Parreira and M. Hauswirth

An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples
valid at time t, called instantaneous RDF dataset. An RDF dataset is a sequence
G = [G(t)], t 2 N, ordered by t. When it holds that G(t) = G(t+1) for all t � 0,
we call G a static RDF dataset and denote Gs = G(t).

Query operators. The primitive operation on RDF stream and instantaneous
RDF dataset is pattern matching which is extended from the triple pattern of
SPARQL semantics [90]. Each output of a pattern matching operator consists
of a mapping which is defined as partial functions. Let V be an infinite set of
variables disjoint from IBL, a partial function µ from V to IBL denoted as

µ : V 7�! IBL. (7)

The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings
µ1 and µ2 are compatible, denoted as µ1

.
= µ2 if :

µ1
.
= µ2 () 8x 2 dom(µ1) \ dom(µ2)) µ1(x) = µ2(x) (8)

For a given triple pattern ⌧ , the triple obtained by replacing variables within
⌧ according to µ is denoted as µ(⌧).

Let ⌦1 and ⌦2 be two mapping sets. The join, union, di↵erence and left
outer-join operators over ⌦1 and ⌦2 are defined as following:

⌦1 ./ ⌦2 = {µ1 [µ2 | µ1 2 ⌦1 ^ µ2 2 ⌦2 ^ µ1
.
= µ2} (9)

⌦1 [⌦2 = {µ | µ1 2 ⌦1 _ µ2 2 ⌦2} (10)

⌦1 \ ⌦2 = {µ 2 ⌦1 | ¬9µ0 2 ⌦2, µ
0 .
= µ} (11)

⌦1 ./ ⌦2 = (⌦1 ./ ⌦2) [(⌦1 \ ⌦2) (12)

Three primitive operators on RDF dataset and RDF stream, namely, triple
matching pattern operator, window matching operator and sequential operator,
can be defined from the above operators. Similar to SPARQL, the triple matching
pattern operator on an instantaneous RDF dataset at timestamp t is defined as

[[P, t]]G = {µ | dom(µ) = var(P) ^ µ(P) 2 G(t)} (13)

where P 2 (I [V) ⇥ (I [V) ⇥ (IL [V).
A window matching operator [[P, t]]!S over an RDF stream S is then defined

by extending the operator above as follows:

[[P, t]]!S = {µ | dom(µ) = var(P) ^ hµ(P) : [t0]i 2 S ^ t0 2 !(t)} (14)

where !(t) : N ! 2N is a function mapping a timestamp to a (possibly infinite) set
of timestamps. This gives the flexibility to choose between the di↵erent window

Digital Enterprise Research Institute www.deri.ie

n  Sequential Operator

n  AND, UNION, OPT, FILTER, AGG can be derived from
operators introduced so far

Query Operators

Linked Stream Data Processing 19

modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T)}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as)t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P) : [t01]i 2 S ^ hµ2(P) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [[[P2]]

1 2

Digital Enterprise Research Institute www.deri.ie

n  Extensions of SPARQL grammar for continuous
queries
¨  Few different languages have been proposed

¨  Clauses to handle streams and to add window operators

n  StreamingSPARQL: DatastreamClause, Window

Query Languages

Digital Enterprise Research Institute www.deri.ie

n  C-SPARQL: FromStrClause, Window

n  CQELS: StreamGraphPattern (IRIs for streams)

Query Languages

Digital Enterprise Research Institute www.deri.ie

(Q1) Inform a participant about the name and
description of the location he just entered

n  C-SPARQL

n  CQELS

Query Example: 1 stream

SELECT ?locName ?locDesc
FROM STREAM <http://deri.org/streams/rfid> [NOW]
FROM NAMED <http://deri.org/floorplan/>
WHERE {
?person lv:detectedat ?loc. ?loc lv:name ?locName.
?loc lv:desc ?locDesc
?person foaf:name ‘‘$Name’’.
}$ ’’. }

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person lv:detectedat ?loc}
GRAPH <http://deri.org/floorplan/>
{?loc lv:name ?locName. ?loc lv:desc ?locDesc} ?person foaf:name ‘‘$Name
$ ’’.
}

Digital Enterprise Research Institute www.deri.ie

(Q2) Notify two people when they can reach each other
from two different and directly connected (from now on

called nearby) locations.

n  Streaming SPARQL and C-SPARQL don’t allow
multiple windows in one stream in their grammar
¨  C-SPARQL solution: create two virtual streams

n  CQELS

Query Example: 2+ windows on streams

CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedat ?loc1}
STREAM <http://deri.org/streams//rfid> [RANGE 3s] {?person2 lv:detectedat ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
}

Digital Enterprise Research Institute www.deri.ie

n  Different streams can provide the same pattern

Q3: Name of location of people nearby the DERI
building

n  CQELS (queries all streams that provide “nearby” info)

Query Example: Stream as var

SELECT ?name ?locName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM ?streamURI [NOW] {?person lv:detectedat ?loc}
GRAPH <http://deri.org/floorplan/>
{
?streamURI lv:nearby :DERI_Building. ?loc lv:name ?locName.
?person foaf:name ?name.
 }
}

Digital Enterprise Research Institute www.deri.ie

n  EP-SPARQL and C-SPARQL allow functions to deal
with timestamps
¨  Timestamp can be retrieved and bound to a variable

¨  Timestamp of a bound stream element can be retrieved

n  Q4: Return pairs of people that were detected in a
location in consecutive times (in the last 30min)

n  EP-SPARQL

Query Example: Timestamps

CONSTRUCT {?person2 lv:comesAfter ?person1} {
SELECT ?person1 ?person2
WHERE {
{?person1 lv:detectedat ?loc}
SEQ {?person2 lv:detectedat ?loc}
}
FILTER (getDURATION()<"P30m"^^xsd:duration)

Digital Enterprise Research Institute www.deri.ie

DESIGN CHOICES &
CHALLENGES

Digital Enterprise Research Institute www.deri.ie

n  Current available systems can be classified into two
categories based on their architecture design

n  White box architecture
¨  Implements all required components

–  physical operators (e.g. windows, join, triple pattern matching)

–  data structures (e.g. B+-Trees, hashtables)

–  query generator/optimizer/executor

n  Black box architecture
¨  Uses existing RDF and data stream processing systems as

sub-components

¨  Query rewriter, data translator and orchestrator among sub-
components is needed

n  Black box easier to implement, but no full-control
and data transformation overhead

System design & Architectures

Digital Enterprise Research Institute www.deri.ie

White box

Digital Enterprise Research Institute www.deri.ie

Black box

Digital Enterprise Research Institute www.deri.ie

n  Current Linked Stream Data approaches follow/reuse
operators from relational DSMS

n  Continuous query
¨  Q(t): query results up to time t

¨  R(t) : unordered bag of tuples (relations) at time instant t

¨  Relation R: sequence R = [R(t)], t∈N, ordered by t.

n  Query algebra
¨  Stream-to-stream (Streaming SPARQL): stream-to-stream

operator

¨  Mixed (C-SPARQL, SPARQLStream, CQELS): stream-to-relation,
relation-to-relation and relation-to-stream operators

Continuous Semantics

Digital Enterprise Research Institute www.deri.ie

n  Stream-to-stream operator
¨  One-time queries in SQL that are continuously executed

n  Relation-to-relation operator
¨  As in traditional relational DBMS

n  Stream-to-relation operator è Windows
¨  Time-based (e.g. last 3 secs)

Query Algebra

Timestamp
(sec)

Person Loc

1001 1 loc1

1000 4 loc1

999 5 loc2

998 6 loc1

997 7 loc1

Digital Enterprise Research Institute www.deri.ie

n  Stream-to-stream operator
¨  One-time queries in SQL that are continuously executed

n  Relation-to-relation operator
¨  As in traditional relational DBMS

n  Stream-to-relation operator è Windows
¨  Time-based (e.g. last 3 secs)

¨  Tuple-based (e.g. last 4 tuples)

Query Algebra

Timestamp
(sec)

Person Loc

1001 1 loc1

1000 4 loc1

999 5 loc2

998 6 loc1

997 7 loc1

Digital Enterprise Research Institute www.deri.ie

n  Stream-to-stream operator
¨  One-time queries in SQL that are continuously executed

n  Relation-to-relation operator
¨  As in traditional relational DBMS

n  Stream-to-relation operator è Windows
¨  Time-based (e.g. last 3 secs)

¨  Tuple-based (e.g. last 4 tuples)

¨  Partitioned (e.g. Loc last tuple)

Query Algebra

Timestamp
(sec)

Person Loc

1001 1 loc1

1000 4 loc1

999 5 loc2

998 6 loc1

997 7 loc1

Digital Enterprise Research Institute www.deri.ie

n  Relation-to-stream operator: produces a stream from
relation R
¨  Istream (insert stream): add element <s,t> whenever s is in

R(t)−R(t-1)

¨  Dstream (delete stream): add element <s,t> whenever s is in
R(t-1)−R(t)

¨  Rstream (relation stream): add element <s,t> whenever s is
in R at time t.

Query Algebra

Istream

SELECT Istream(*)
FROM RFIDstream [RANGE Unbounded]
WHERE signalstrength>=85

Dstream

SELECT Dstream(tagid) FROM RFIDstream [60 seconds]

Rstream

SELECT Rstream(*)
FROM RFIDstream [NOW]
WHERE signalstrength>=85

Digital Enterprise Research Institute www.deri.ie

n  Timestamps are necessary to order stream elements
n  Application timestamp (source) vs. system

timestamp (DSMS)

n  Input manager: buffers to order tuples, ensure they
are processed in order
¨  Heartbeat (timestamp)

¨  Punctuation (pattern)

Time Management

Digital Enterprise Research Institute www.deri.ie

Time Management

Digital Enterprise Research Institute www.deri.ie

n  Eager re-evaluation vs. period re-evaluation
¨  Eager: too expensive if update rate is high

¨  Periodic: might cause stale results

n  Query evaluation needs to handle two types of
events
¨  Arrival of new stream elements

¨  Expiration of old stream elements

¨  Action upon events vary across operators, e.g. an arrival
might generate a new result (join) or trigger the removal of
an existing result (negation)

Query Evaluation

Digital Enterprise Research Institute www.deri.ie

n  Arrivals are triggered by stream source
n  Expiration needs to be handle by the query

processor
¨  Timestamp

¨  Negative tuple: for a window of length wl, a tuple inserted at
time t will generate a negative tuple at time t+wl

Query Evaluation

<s1, t>

<s2,t+1>

…

<sn, t +wl -1>

<-s1, t +wl>

<-s2, t+ wl + 1>

Window
length

Digital Enterprise Research Institute www.deri.ie

<a1,b1>

1 2 3 4 5 6 7 8

<b1,c1>

<a2,b2> <a3,b1>

<b2,c2>

<c1,d1>

<a1,b1,c1>

<b1,c1,d1>

<a2,b2,c2>

−<a1,b1>

−<b1,c1>

−<c1,d1>

−<a1,b1,c1>

−<b1,c1,d1>

W1=[TRIPLES 2]

W2=[RANGE 5]

W3=[RANGE 5]

€

W1W2

€

W2W3

Adding and evicting stream elements

Digital Enterprise Research Institute www.deri.ie

Linked Stream Data Processing 11

Fig. 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y) = f(X)[f(Y). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

n  Stateless operators: processed “on the fly” (directly
on stream)
¨  E.g. Selection, union.

n  Stateful operators: need to maintain

 processing states (probed at re-evaluation)
¨  E.g. window join, aggregation, duplication

 elimination, non-monotonic operators

Query Evaluation

Selection

Digital Enterprise Research Institute www.deri.ie

n  Window join : new arrival in one input triggers
probing on the other input

Query Evaluation Linked Stream Data Processing 11

Fig. 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y) = f(X)[f(Y). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

Window join

Digital Enterprise Research Institute www.deri.ie

n  Aggregation
¨  Expirations must be dealt with immediately

¨  Time and space requirements depends on the

 aggregation function

n  Distributive aggregates
¨  Computed incrementally, constant time/space

 requirements

¨  E.g. COUNT, SUM, MAX, MIN

n  Algebraic aggregates
¨  Computed using values from distributive

 aggregates. Constant time/space requirements

¨  E.g. AVG (SUM/COUNT)

Query Evaluation

Aggregation

Linked Stream Data Processing 11

Fig. 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y) = f(X)[f(Y). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

Digital Enterprise Research Institute www.deri.ie

n  Holistic aggregates: space consumption linear to
input sizes
¨  E.g. TOP-k, COUNT DISTINCT

n  Duplicate elimination
¨  Distinct values are kept

¨  Expirations are handled eagerly

Query Evaluation

Duplicate elimination

Linked Stream Data Processing 11

Fig. 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y) = f(X)[f(Y). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

Digital Enterprise Research Institute www.deri.ie

n  Non-monotonic operators
¨  Previous results removed when they no longer satisfy query

¨  E.g. negation

¨  Negative tuples can be used

Query Evaluation

Negation

Linked Stream Data Processing 11

Fig. 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y) = f(X)[f(Y). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

Digital Enterprise Research Institute www.deri.ie

n  Some join operators already handles memory
overflow by sending input partitions to disk.

n  Use of secondary storage requires indexes
¨  Expensive under high update rates

n  Alternative: Partition the data to make updates
“local”
¨  Sort tuples chronologically

¨  Inserts in newer partition only

¨  Deletes in older partition only

¨  Problem: search is not efficient. Assumes insertion/
expiration order is the same

–  Sub-indexes

–  Doubly partitioned indexes

Memory Overflow

Digital Enterprise Research Institute www.deri.ie

n  Re-arrange query operators for more efficient
execution
¨  Traditional selectivity estimates can’t be applied

¨  Alternative: join reordering based on update rates

Query Optimization

C

./

./

[now] [range 3s]

G

C

./

./

[now]

[range 3s]

G

C

./

./

[now] [range 3s]

G

C

./

./

[now]

[range 3s]

G

C

./

./

[now][range 3s]

G

C

./

./ [now]

[range 3s] G

C

./

./

[now][range 3s]

G

C

./

./ [now]

[range 3s] G

Digital Enterprise Research Institute www.deri.ie

Enabling Networked Knowledge

Digital Enterprise Research Institute

Motivation: Linked Stream Data

! Sensor data available following the Linked Data
principles.
! Easier and seamless integration with other data
sources, as in the Linked Open Data (LOD) cloud.
! Allows a new range of real-time applications.
! Highly dynamic nature of sensor data requires new
approaches for data management and processing.

CQELS

! “Continuous Query Evaluation over Linked Streams".
! Scalable processing model for unified Linked Stream
Data and Linked Open Data.
! Combines data pre-processing and an adaptive cost-
based query optimization algorithm.
! Experimental evaluation shows great performance
(w.r.t. response time and scalability).

Adaptive Cost-based Optimization Algorithm

CQELS’s
Query

Optim
ize

r

Algorit
hm “Notify two people who are

co-authors of a paper if they
are in the same location
(within the last 30 seconds)"

CQELS's Unifying Processing Model

!"#$%&#'%$(")

*+((,-).-,/)
01-23)4&%")

5(2)-%6+)4+3,#6%&)
(4-2%/(2)#")/+-)
01-237)6(841/-)

#/,)6(,/,)

9%#"/%#")%)
,1.,-/)(:)
4(,,#.&-)

-;-61$(")4&%",)

<4=%/-)6(,/,)(:)
%>-6/-=)
(4-2%/(2,)

?-@6(841/-)
01-23)4&%")6(,/,)

A-B)
=%/%)
6(8-,)

n  Adaptivity is key!
¨  Processor must be able to reorder query operators on the fly

¨  Changes in:
–  operator costs (processing time),

–  update rate,

–  input selectivity

Query Optimization

Digital Enterprise Research Institute www.deri.ie

n  Operators routing (instead of fixed query plan tree)
¨  Eddies: estimate which operators are faster/more selective

¨  Overhead: migration of internal state of query plan

n  Continuous query: multi-query optimization possible
¨  Better memory usage

¨  Trade-offs exists (e.g. join -> selection vs. selection -> join)

Query Optimization

SA
SB

Linked Stream Data Processing 19

modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T)}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as)t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P) : [t01]i 2 S ^ hµ2(P) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [[[P2]]

σ1 σ2

SA

SB

Linked Stream Data Processing 19

modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T)}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as)t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P) : [t01]i 2 S ^ hµ2(P) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [[[P2]]σ1

SA

SB

Linked Stream Data Processing 19

modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T)}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as)t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P) : [t01]i 2 S ^ hµ2(P) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [[[P2]]σ2

Digital Enterprise Research Institute www.deri.ie

n  Data first push into queues, then consumed by
operators

n  Scheduler determiners which data in which queue to
process next
¨  Different scheduling strategies (e.g. round robin, arrival

time, time slice)

¨  Choice depends on factors such as stream arrival patterns,
max/avg output latency.

Scheduling

