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n  Part I: Basic Concepts & Modeling (Josi) 
¨  Linked Stream Data 

¨  Data models 

¨  Query Languages and Operators 

¨  Choices/Challenges when designing a Linked Stream Data 
processor 

n  Part II: Building a Linked Stream Processing Engine 
(Danh) 
¨  Analysis of available Linked Stream Processing Engines 

–  Design choices, implementation 

–  Performance comparison 

–  Open Challenges 

Outline 
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Streams everywhere 
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Application Domains 

Enterprise Environments 

Telehealth 

Smart Cities 
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n  Heterogeneous data representations 
n  Lack of semantics 

n  A priori knowledge of data sources needed 
n  Disconnected 

Sorry, I can’t understand you… 

Integration Problem! 
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n  Semantic Web 
¨  Collaborative movement to promote common data formats 

on the World Wide Web.  

¨  Inclusion of semantic content in web pages 

¨  From unstructured and semi-structured documents to a 
“Web of data” 

n  Linked Data 
¨  Best practices to represent, publish, link data on the 

Semantic Web 

¨  Linked Data Cloud: collection of datasets that have been 
published in Linked Data format 

Semantic Web, Linked Data 
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LINKED STREAM DATA 
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Linked Stream Data 
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Linked Stream Data 
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n  Semantically enriched stream data 
n  Linked Stream Data examples 

¨  W3C Semantic Sensor Network Incubator Group 

¨  RDF wrappers for Twitter, Facebook, etc 

n  Data integration, connects dynamic and static data 

n  Linked Data + DSMS 
¨  Stream Data representation/processing different from 

standard RDF/SPARQL 
–  Temporal aspect, continuous query processing  

¨  DSMS use relational storage model 
–  Efficient RDF processing requires heavy replication 

Linked Stream Data 
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Running example 
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n  Tracking system (e.g RFID tags) : Stream data 
n  Attendees information (e.g. DBLP records, FOAF) 

n  Building information (e.g. layout, connections, room 
names) 

n  Different sources (no common schema) 

n  Linked data used as unified model 

Running Example – Conference scenario 
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Running Example 

PREFIX lv: http://deri.org/floorplan/ 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
  
SELECT ?locName ?locDesc 
FROM NAMED <http://deri.org/floorplan/>  
WHERE {  
STREAM <http://deri.org/streams/rfid> [NOW] {?person lv:detectedat ?loc} 
 GRAPH <http://deri.org/floorplan/>  

  {?loc lv:name ?locName. ?loc lv:desc ?locDesc}  
?person foaf:name ‘‘$Name$’’.  
}  
 

(Q1)  Inform a participant about the name and 
description of the location he currently is 
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n  Linked Data principles applied to stream data 
n  Extensions to deal with the temporal aspects  

¨  Data modeling 

¨  Query languages 

¨  Query operators 

¨  System design and architectures 

Linked Stream Data 
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DATA MODELS, QUERY  
LANGUAGES AND 

OPERATORS 
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n  Extends the definition of RDF nodes and RDF triples 
¨  RDF node: I, B, and L, which are pair-wise disjoint infinite 

sets of Information Resource Identifiers (IRIs), blank nodes 
and literals 

¨  RDF triple: (s, p, o) ∈ IB × I × IBL, where IL = I ∪ L, IB = I ∪ B 
and IBL = I ∪ B ∪ L 

n  Stream element: RDF triple with temporal 
annotations 
¨  Interval-based (e.g. ⟨:John :at :office,[7,9]⟩) – Streaming 

SPARQL 

¨  Point-based (e.g. ⟨John :at :office,7⟩, ⟨:John :at :office,8⟩, 
⟨:John :at :office,9⟩) – EP-SPARQL, C-SPARQL, SPARQLStream, 
CQELS 

¨  Point-based (maybe) redundant, but instantaneous (more 
practical) 

Linked Stream Data model 
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n  RDF Stream: bag of elements ⟨(s,p,o) : [t]⟩ 
¨  (s,p,o) : RDF triple  

¨  t : timestamp 

¨   stream elements from stream S with timestamp ≤ t  

  S≤t ={⟨(s,p,o):[t’]⟩ ∈ S | t’ ≤ t}  

n  Non-stream data (RDF datasets) also need to follow 
the Linked Stream Data model to allow integration è 
Instantaneous RDF dataset: G(t) 

n   G(t) : set of RDF triples valid at time t, called 
instantaneous RDF dataset.  

n  RDF dataset : sequence G = [G(t)], t∈N, ordered by t. 
¨  Static RDF dataset (Gs): G(t) = G(t+1) for all t ≥ 0 

Linked Stream Data model 
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n  Pattern matching as basic operator (extended from 
SPARQL) 
¨  Mappings which are defined as partial functions  

 

where V is an infinite set of variables disjoint from IBL, 
and dom(μ) is the subset of V where μ is defined.  

n  Compatible mappings 

Query Operators 
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An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples
valid at time t, called instantaneous RDF dataset. An RDF dataset is a sequence
G = [G(t)], t 2 N, ordered by t. When it holds that G(t) = G(t+1) for all t � 0,
we call G a static RDF dataset and denote Gs = G(t).

Query operators. The primitive operation on RDF stream and instantaneous
RDF dataset is pattern matching which is extended from the triple pattern of
SPARQL semantics [90]. Each output of a pattern matching operator consists
of a mapping which is defined as partial functions. Let V be an infinite set of
variables disjoint from IBL, a partial function µ from V to IBL denoted as

µ : V 7�! IBL. (7)

The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings
µ1 and µ2 are compatible, denoted as µ1

.
= µ2 if :

µ1
.
= µ2 () 8x 2 dom(µ1) \ dom(µ2) ) µ1(x) = µ2(x) (8)

For a given triple pattern ⌧ , the triple obtained by replacing variables within
⌧ according to µ is denoted as µ(⌧).

Let ⌦1 and ⌦2 be two mapping sets. The join, union, di↵erence and left
outer-join operators over ⌦1 and ⌦2 are defined as following:

⌦1 ./ ⌦2 = {µ1 [ µ2 | µ1 2 ⌦1 ^ µ2 2 ⌦2 ^ µ1
.
= µ2} (9)

⌦1 [ ⌦2 = {µ | µ1 2 ⌦1 _ µ2 2 ⌦2} (10)

⌦1 \ ⌦2 = {µ 2 ⌦1 | ¬9µ0 2 ⌦2, µ
0 .
= µ} (11)

⌦1 ./ ⌦2 = (⌦1 ./ ⌦2) [ (⌦1 \ ⌦2) (12)

Three primitive operators on RDF dataset and RDF stream, namely, triple
matching pattern operator, window matching operator and sequential operator,
can be defined from the above operators. Similar to SPARQL, the triple matching
pattern operator on an instantaneous RDF dataset at timestamp t is defined as

[[P, t]]G = {µ | dom(µ) = var(P ) ^ µ(P ) 2 G(t)} (13)

where P 2 (I [ V ) ⇥ (I [ V ) ⇥ (IL [ V ).
A window matching operator [[P, t]]!S over an RDF stream S is then defined

by extending the operator above as follows:

[[P, t]]!S = {µ | dom(µ) = var(P ) ^ hµ(P ) : [t0]i 2 S ^ t0 2 !(t)} (14)

where !(t) : N ! 2N is a function mapping a timestamp to a (possibly infinite) set
of timestamps. This gives the flexibility to choose between the di↵erent window
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n  Join, union, different and left outer-join follow 
mappings (Ω1 and Ω2 are mapping sets) 

Query Operators 
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n  Triple matching operator 

¨  Triple pattern P ∈(I∪V)×(I∪V)×(IL∪V) 

¨   μ(P): triple obtained by replacing variables within P 
according to μ 

n  Window matching operator 

¨  ω(t): N → 2N : function mapping a timestamp to a (possibly 
infinite) set of timestamps (N : set of natural numbers) 

¨  ω(t) will depend on the type of the window (e.g. time-based, 
tuple-based) 

Query Operators 
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n  Sequential Operator 

n  AND, UNION, OPT, FILTER, AGG can be derived from 
operators introduced so far 

Query Operators 

Linked Stream Data Processing 19

modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T )}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as )t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [ µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P ) : [t01]i 2 S ^ hµ2(P ) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P ) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [ [[P2]]

1 2 
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n  Extensions of SPARQL grammar for continuous 
queries 
¨  Few different languages have been proposed 

¨  Clauses to handle streams and to add window operators 

n  StreamingSPARQL: DatastreamClause, Window 

Query Languages 
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n  C-SPARQL: FromStrClause, Window 

n  CQELS: StreamGraphPattern (IRIs for streams) 

Query Languages 
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(Q1)  Inform a participant about the name and 
description of the location he just entered 

n  C-SPARQL 

n  CQELS 

Query Example: 1 stream 

SELECT ?locName ?locDesc 
FROM STREAM <http://deri.org/streams/rfid> [NOW] 
FROM NAMED <http://deri.org/floorplan/> 
WHERE {  
?person lv:detectedat ?loc. ?loc lv:name ?locName.  
?loc lv:desc ?locDesc  
?person foaf:name ‘‘$Name’’. 
}$ ’’. }  

SELECT ?locName ?locDesc 
FROM NAMED <http://deri.org/floorplan/>  
WHERE { 
STREAM <http://deri.org/streams/rfid> [NOW] {?person lv:detectedat ?loc}  
GRAPH <http://deri.org/floorplan/> 
{?loc lv:name ?locName. ?loc lv:desc ?locDesc} ?person foaf:name ‘‘$Name
$ ’’. 
} 
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(Q2)  Notify two people when they can reach each other 
from two different and directly connected (from now on 

called nearby) locations.  

n  Streaming SPARQL and C-SPARQL don’t allow 
multiple windows in one stream in their grammar 
¨  C-SPARQL solution: create two virtual streams 

n  CQELS 

Query Example: 2+ windows on streams 

CONSTRUCT {?person1 lv:reachable ?person2}  
FROM NAMED <http://deri.org/floorplan/>  
WHERE { 
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedat ?loc1}  
STREAM <http://deri.org/streams//rfid> [RANGE 3s] {?person2 lv:detectedat ?loc2}  
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} 
} 
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n  Different streams can provide the same pattern 
 

Q3: Name of location of people nearby the DERI 
building 

n  CQELS (queries all streams that provide “nearby” info) 

Query Example: Stream as var 

SELECT ?name ?locName 
FROM NAMED <http://deri.org/floorplan/>  
WHERE { 
STREAM ?streamURI [NOW] {?person lv:detectedat ?loc} 
GRAPH <http://deri.org/floorplan/> 
{  
?streamURI lv:nearby :DERI_Building. ?loc lv:name ?locName. 
?person foaf:name ?name. 
 } 
} 
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n  EP-SPARQL and C-SPARQL allow functions to deal 
with timestamps 
¨  Timestamp can be retrieved and bound to a variable 

¨  Timestamp of a bound stream element can be retrieved 

n  Q4: Return pairs of people that were detected in a 
location in consecutive times (in the last 30min) 

n  EP-SPARQL 

Query Example: Timestamps 

CONSTRUCT {?person2 lv:comesAfter ?person1} { 
SELECT ?person1 ?person2 
WHERE { 
{?person1 lv:detectedat ?loc}  
SEQ {?person2 lv:detectedat ?loc} 
} 
FILTER (getDURATION()<"P30m"^^xsd:duration) 
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DESIGN CHOICES & 
CHALLENGES 
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n  Current available systems can be classified into two 
categories based on their architecture design 

n  White box architecture 
¨  Implements all required components 

–  physical operators (e.g. windows, join, triple pattern matching) 

–  data structures (e.g. B+-Trees, hashtables) 

–  query generator/optimizer/executor 

n  Black box architecture 
¨  Uses existing RDF and data stream processing systems as 

sub-components 

¨  Query rewriter, data translator and orchestrator among sub-
components is needed 

n  Black box easier to implement, but no full-control 
and data transformation overhead 

System design & Architectures 
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White box 
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Black box 
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n  Current Linked Stream Data approaches follow/reuse 
operators from relational DSMS 

n  Continuous query 
¨  Q(t): query results up to time t 

¨  R(t) : unordered bag of tuples (relations) at time instant t 

¨  Relation R: sequence R = [R(t)], t∈N, ordered by t. 

n  Query algebra 
¨  Stream-to-stream (Streaming SPARQL): stream-to-stream 

operator 

¨  Mixed (C-SPARQL, SPARQLStream, CQELS): stream-to-relation, 
relation-to-relation and relation-to-stream operators 

Continuous Semantics 
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n  Stream-to-stream operator 
¨  One-time queries in SQL that are continuously executed 

n  Relation-to-relation operator 
¨  As in traditional relational DBMS 

n  Stream-to-relation operator è Windows 
¨  Time-based (e.g. last 3 secs) 

Query Algebra 

Timestamp 
(sec) 

Person Loc 

1001 1 loc1 

1000 4 loc1 

999 5 loc2 

998 6 loc1 

997 7 loc1 
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n  Stream-to-stream operator 
¨  One-time queries in SQL that are continuously executed 

n  Relation-to-relation operator 
¨  As in traditional relational DBMS 

n  Stream-to-relation operator è Windows 
¨  Time-based (e.g. last 3 secs) 

¨  Tuple-based (e.g. last 4 tuples) 

Query Algebra 

Timestamp 
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n  Stream-to-stream operator 
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Timestamp 
(sec) 

Person Loc 

1001 1 loc1 

1000 4 loc1 

999 5 loc2 

998 6 loc1 

997 7 loc1 
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n  Relation-to-stream operator: produces a stream from 
relation R 
¨  Istream (insert stream): add element <s,t> whenever s is in 

R(t)−R(t-1) 

¨  Dstream (delete stream): add element <s,t> whenever s is in 
R(t-1)−R(t) 

¨  Rstream (relation stream): add element <s,t> whenever s is 
in R at time t. 

Query Algebra 

Istream 
 
SELECT Istream(*) 
FROM RFIDstream [RANGE Unbounded] 
WHERE signalstrength>=85 

Dstream 
 
SELECT Dstream(tagid) FROM RFIDstream [60 seconds]  

Rstream 
 
SELECT Rstream(*) 
FROM RFIDstream [NOW]  
WHERE signalstrength>=85  
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n  Timestamps are necessary to order stream elements 
n  Application timestamp (source) vs. system 

timestamp (DSMS) 

n  Input manager: buffers to order tuples, ensure they 
are processed in order 
¨  Heartbeat (timestamp) 

¨  Punctuation (pattern) 

Time Management 
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Time Management 
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n  Eager re-evaluation vs. period re-evaluation 
¨  Eager: too expensive if update rate is high 

¨  Periodic: might cause stale results 

n  Query evaluation needs to handle two types of 
events 
¨  Arrival of new stream elements 

¨  Expiration of old stream elements 

¨  Action upon events vary across operators, e.g. an arrival 
might generate a new result (join) or trigger the removal of 
an existing result (negation) 

Query Evaluation 
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n  Arrivals are triggered by stream source 
n  Expiration needs to be handle by the query 

processor 
¨  Timestamp 

¨  Negative tuple: for a window of length wl, a tuple inserted at 
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Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [ Y ) = f(X) [ f(Y ). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [ Y ) requires space
proportional to the size of X [ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y ) = f(X)[f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is

n  Stateless operators: processed “on the fly” (directly 
on stream) 
¨  E.g. Selection, union. 

n  Stateful operators: need to maintain 

   processing states (probed at re-evaluation) 
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case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [ Y ) = f(X) [ f(Y ). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [ Y ) requires space
proportional to the size of X [ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y ) = f(X)[f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is
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case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [ Y ) = f(X) [ f(Y ). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [ Y ) requires space
proportional to the size of X [ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y ) = f(X)[f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is
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case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [ Y ) = f(X) [ f(Y ). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [ Y ) requires space
proportional to the size of X [ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y ) = f(X)[f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is
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case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [ Y ) = f(X) [ f(Y ). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [ Y ) requires space
proportional to the size of X [ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
�(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S1 �S2, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S2-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S2-tuple with value d.

aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [61, 119, 74] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [54]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X[Y ) = f(X)[f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is
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n  Re-arrange query operators for more efficient 
execution 
¨  Traditional selectivity estimates can’t be applied 

¨  Alternative: join reordering based on update rates 
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Motivation: Linked Stream Data 

! Sensor data available following the Linked Data 
principles. 
! Easier and seamless integration with other data 
sources, as in the Linked Open Data (LOD) cloud. 
! Allows a new range of real-time applications. 
! Highly dynamic nature of sensor data requires new 
approaches for data management and processing. 

CQELS 

! “Continuous Query Evaluation over Linked Streams". 
! Scalable processing model for unified Linked Stream 
Data and Linked Open Data. 
! Combines data pre-processing and an adaptive cost-
based query optimization algorithm. 
! Experimental evaluation shows great performance 
(w.r.t. response time and scalability). 
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n  Adaptivity is key! 
¨  Processor must be able to reorder query operators on the fly 

¨  Changes in: 
–  operator costs (processing time),  

–  update rate,  

–  input selectivity 

Query Optimization 
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n  Operators routing (instead of fixed query plan tree) 
¨  Eddies: estimate which operators are faster/more selective 

¨  Overhead: migration of internal state of query plan 

n  Continuous query: multi-query optimization possible 
¨  Better memory usage 

¨  Trade-offs exists (e.g. join -> selection vs. selection -> join)  
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modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T )}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as )t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [ µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P ) : [t01]i 2 S ^ hµ2(P ) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P ) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [ [[P2]]

σ1 σ2 

SA 

SB 
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modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T )}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as )t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [ µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P ) : [t01]i 2 S ^ hµ2(P ) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P ) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [ [[P2]]σ1 

SA 

SB 
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modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as !RANGE (t) = {t0 | t0  t ^ t0 �
max(0, t�T )}, and a window that extracts only events happening at the current
time corresponds to !NOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as )t, can be defined by using above operator notations
as following :

[[P1)tP2]]
!
S = {µ1 [ µ2 | µ1 2 [[P1, t]]

!
S ^ µ2 2 [[P2, t]]

!
S ^ µ1

.
= µ2

^hµ1(P ) : [t01]i 2 S ^ hµ2(P ) : [t02]i 2 S ^ t01 t02} (15)

Other temporal relations introduced in [126, 3, 7, 6] can be formalized simi-
larly to the sequential operator.

3.3 Query languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FITLER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (9)-
(12).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping µa : V 7!IBL, where
dom(µa) = va[Ga; also ||µa|| = ||Ga|| + ||va|| = ||Ga|| + 1 where ||µ|| is the car-
dinality of dom(µ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, µa /2dom(P ) and, therefore, calling µp the mapping
that evaluate [[P]] and µp

.
= µa.

The result of the evaluation produces a table of bindings, having one column
for each variable v2dom(µ). µ(i) can be referred as a specific row in this table,
and to a specified column is given by µ[v]. The i � th binding of v is therefore
µ(i)[v].

The values to be bound to a variable va are computed as 8i 2 [1, ||µ||], µ(i))[va] =
fa(pa, µ[Ga]), where f(pa, [Ga]) is the evaluation of the function fa 2 (SUM, COUNT,
AV G, MAX, MIN) with parameters pa over the groups of values in µ[Ga]. The
set of groups of values in µ[Ga] is made of all the distinct tuples µ(i)[Ga] i.e.,
the subset of the mapping µ[Ga] without duplicate rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] ./ [[P2]]
2. [[P1 OPT P2]] = [[P1]] ./ [[P2]]
3. [[P1 UNION P2]] = [[P1]] [ [[P2]]σ2 
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n  Data first push into queues, then consumed by 
operators 

n  Scheduler determiners which data in which queue to 
process next 
¨  Different scheduling strategies (e.g. round robin, arrival 

time, time slice) 

¨  Choice depends on factors such as stream arrival patterns, 
max/avg output latency. 

Scheduling 


