
© Copyright 2011 Digital Enterprise Research Institute. All rights
reserved.

Digital Enterprise Research Institute www.deri.ie

Enabling networked knowledge

Part II:
Linked Stream Data Processing -

Building a Processing Engine
Danh Le-Phuoc, Josiane X. Parreira, and Manfred Hauswirth

DERI - National University of Ireland, Galway

Reasoning Web Summer School 2012

Digital Enterprise Research Institute www.deri.ie

n  Part I: Basic Concepts & Modeling (Josi)
¨  Linked Stream Data

¨  Data models

¨  Query Languages and Operators

¨  Choices/Challenges when designing a Linked Stream Data
processor

n  Part II: Building a Linked Stream Processing Engine
(Danh)
¨  Analysis of available Linked Stream Processing Engines

–  Design choices, implementation

–  Performance comparison

–  Open Challenges

Outline

Digital Enterprise Research Institute www.deri.ie

n  As an application developer
¨  What can I do with it?

¨  How does it work?

¨  How to choose one?

n  As a processing engine developer
¨  How to build one?

¨  How to build/identify a better one?

n  As a researcher
¨  What have been done? What left?

¨  Is there any interesting research problem?

¨  How to find room to improvement?

“Why should I care?”

Digital Enterprise Research Institute www.deri.ie

n  Focus of application logic
n  Let the experts deal with data operations on streams

n  Minimize the learning efforts
¨  Learn simple APIs using the engine

¨  Learn a simple query language

Why a continuous query
processing engine is needed?

Separation of concerns

Digital Enterprise Research Institute www.deri.ie

①  Initialize the engine (less than 5 lines of code)

②  Write and register the queries to the engine (1 line for
1 query)

③  Write codes for wiring output streams to the
application logic (depends on the application logic but
the each wiring code snippet ≈5 lines of code)

④  Connect input streams to engine (1-3 lines for each
stream)

How a stream-based application is built with
a stream processing engine?

Just 10-20 lines of code!!!

Digital Enterprise Research Institute www.deri.ie

n  Data model : relational, object-oriented, etc
n  Query model :

¨  Logical operators : sliding windows, relational algebras

¨  Query language: CQL, C-SPARQL,CQELS,etc

n  Build a processing engine
¨  Handling input streams

¨  Implement the execution engine

¨  Schedule the executions

¨  Optimization

What need to be done to build a processing engine?

Digital Enterprise Research Institute www.deri.ie

Building blocks of a query processing engine

Optimizer

Operator implementations

Access methods

Executor

Query

C

./124

./12 [[P3, t]]G

[[P1, t]]
!1
S [[P2, t]]

!2
S

...

S

n

o

w

r

a

n

g

e

2

� 3 � 4

� 1 � 2

�

...

S
out

Execution

database datastream

Digital Enterprise Research Institute www.deri.ie

n  Handling live and push-based data stream sources
¨  Time management

¨  Load shedding for bursty streams

n  Operator implementation for execution engine
¨  Data structure and physical storage

¨  Handling the new stream elements/expired ones

¨  Incremental execution

¨  Memory overflow

n  Optimization

n  Scheduling

Algorithms/technologies/solutions for stream processing

Digital Enterprise Research Institute www.deri.ie

Handling input streams
It is not always straightforward to decide how long a tu-

ple should be buffered by the input manager before it can
be presented to the query processor. For example, consider
our sensor application and suppose there are two separate
streams for temperature and pressure readings. Further,
suppose that the sensors are programmed to generate a tu-
ple only when the new reading differs from the previously
reported reading. If the pressure is changing while the tem-
perature is constant, there is a steady arrival of tuples on
one stream while the other stream is silent or “paused”.
However, it is not clear at the DSMS whether temperature
tuples are delayed, or (as is the case) there is no tempera-
ture data to transmit while application time for the temper-
ature stream nevertheless advances. Without this informa-
tion, the input manager cannot decide whether the tuples
on the pressure stream can be moved to the query processor
without violating the ordering requirement, or whether they
should be buffered until the arrival of further tuples on the
temperature stream.

In general, each tuple must eventually be moved from the
input manager to the query processor without violating the
ordering requirement, i.e., no tuple should be stalled indefi-
nitely in the input manager. We refer to this property as the
progress requirement. To meet the progress requirement we
propose the use of heartbeats. Informally, at any instant, a
heartbeat τ for a set of streams provides a guarantee to the
DSMS that all tuples arriving on those streams after that
instant will have a timestamp greater than τ . If the sources
themselves do not provide heartbeats, the DSMS needs to
deduce them, and doing so is a primary topic of this paper.
When a heartbeat τ arrives or is generated, the input man-
ager can move all tuples with timestamp ≤ τ to the query
processor.

Our approach to heartbeat generation is to quantify cer-
tain properties of the environment as parameters and gen-
erate heartbeats based on these parameters, along with the
stream data seen so far. For example, there may be a bound
on the skew between application clocks at different sources,
or the network latency for stream tuples to reach the DSMS
may be bounded. Our algorithm is simple, efficient, and
general enough to be applicable in a wide variety of envi-
ronments. When parameter values cannot be specified in
advance, we provide a technique for estimating them from
the stream data seen so far.

The main contributions of this paper are:

• We formalize the problem and define the parameters
needed for heartbeat generation (Section 2).

• Under the assumption that parameter values have been
specified, we give an algorithm for heartbeat genera-
tion and prove its correctness (Section 3).

• We demonstrate our approach on example data stream
application environments (Section 4).

• We discuss implementation and scalability issues of our
heartbeat generation algorithm (Section 5).

• For the case when parameter values cannot be specified
in advance, we describe how they may be estimated
based on the stream arrival pattern so far (Section 6).

• We show how heartbeats can be used in continuous
query plans for efficient execution (Section 7).

S1

φ
Source

1

> τv,<
> τv,<

> τv,<
> τv,<

L1 nL

Input
Manager

Buffered
tuples > τ

τ

Sn

φ
Source

n

Stream emission

Network

Stream arrival

Query
Processor Plans

Query

CQm

Answers

CQ CQ21
Tuples
< τ

Heartbeat

DSMS

Figure 1: The basic environment we consider

Finally we survey related work in Section 8 and conclude in
Section 9.

2. PRELIMINARIES AND PARAMETERS
Figure 1 depicts an abstraction of the environment we con-

sider. Continuous queries (CQ1, CQ2, . . . , CQm) are regis-
tered with the DSMS. These are executed over input data
streams (S1, S2, . . . , Sn) and stored relations (not shown).
We assume relation updates also are streamed to the sys-
tem, and hereafter do not consider them separately. Streams
are generated by possibly distributed sources φ1, φ2, . . . , φn.
Each stream tuple is comprised of a value v along with
an application-defined timestamp τ from some discrete, or-
dered domain. Streams are transmitted from their respec-
tive sources to the DSMS over a network which may have
some transmission latency, upper-bounded by L1, L2, . . . , Ln

respectively for each stream. Although a DSMS can be ex-
pected to handle multiple arbitrary time domains, we as-
sume a given query conforms to just one.

We will need to consider two different notions of time—
actual or “wall-clock” time, and application-defined time.
We use different notations for them for clarity: We use τ to
denote application timestamps and δ to denote differences
in application timestamps. An instant of wall-clock time is
denoted by c and intervals of wall-clock time by t. Network
latency is also an interval of wall-clock time and is denoted
by L. Without loss of generality, for implementation we
assume the DSMS system clock emulates wall-clock time.

Since stream tuples may not arrive at the DSMS in in-
creasing timestamp order, there is an input manager to buffer
tuples until they can be moved to the query processor with-
out violating the ordering requirement (Section 1). The de-
cision as to when a tuple can be moved to the query proces-
sor is based on heartbeats, and our general goal is to deduce
heartbeats for the set of streams S1, S2, . . . , Sn at the DSMS.

strictly temporal order

Load shedding for bursty rate

Unordered stream elements

Digital Enterprise Research Institute www.deri.ie

n  Data structure and physical storages for high-update-
rate processing buffers

n  Handling the new data stream elements/expired ones

n  Operators && Incremental execution
¨  Stateless

¨  Stateful
–  Duplicate elimination

–  Window Join
–  Negation

–  Aggregation

n  Memory overflow

n  Dynamic Optimization of the continuous execution
n  Schedule execution for fluctuate execution settings

Execution engine & Operator implementation

Digital Enterprise Research Institute www.deri.ie

Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data streams

case of aggregation, where a newly arrived tuple may produce new output if the aggregate value
for its group has changed. The time and space requirements of aggregation depend upon the type
of function being computed [116]. An aggregate f is distributive if, for two disjoint multi-sets
X and Y , f(X [Y) = f(X) [f(Y). Distributive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and time (per tuple). For instance, SUM is
evaluated by storing the current sum and continually adding to it the values of new tuples as they
arrive. Moreover, f is algebraic if it can be computed using the values of two or more distributive
aggregates using constant space and time (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and time. On the
other hand, f is holistic if, for two multi-sets X and Y , computing f(X [Y) requires space
proportional to the size of X [Y . Examples of holistic aggregates include TOP-k, QUANTILE, and
COUNT DISTINCT. For instance, multiplicities of each distinct value seen so far may have to be
maintained in order to identify the k most frequent item types at any point in time. This requires
⌦(n) space, where n is the number of stream tuples seen so far—consider a stream with n � 1
unique values and one of the values occurring twice.

Non-monotonic queries over unbounded streams are possible if previously reported results
can be removed if they cease to satisfy the query. This can be done by appending corresponding
negative tuples to the output stream [12, 125]. This way, negation over two streams, S

1

�S
2

, may
produce results that are valid at a given time and possibly invalidate them later. An example is
shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
did not exist any matching S

2

-tuples at that time. However, a negative tuple (denoted by d̄) was
generated on the output stream upon subsequent arrival of an S

2

-tuple with value d.

Incremental execution of windowing operators

Stateless Window Join
Duplicate

 elimination Aggregate

Negation

Digital Enterprise Research Institute www.deri.ie

n  12-15 years of techniques/algorithms/solutions for
general stream processing (DSMS)

n  Only few prototypes and commercial products

¨  STREAM ,Borealis/Aurora, etc

¨  StreamBase, IBM InfoSphere streams, etc

n  Don’t take for granted!!!

n  DSMS is not mature as DBMS(>40 years)

What have “I” learned?

Digital Enterprise Research Institute www.deri.ie

Processing Linked Stream Data In A Nutshell

Static RDF datasets
Stream Data in RDF

Continuous Query

Digital Enterprise Research Institute www.deri.ie

Black-box approach

Query rewriter

Orchestrator

Data transformation

SPA
R

Q
L-lik

e

Optimizer

Operator implementations

Access methods

Executor

Query

C

./124

./12 [[P3, t]]G

[[P1, t]]
!1
S [[P2, t]]

!2
S

...

S

n

o

w

r

a

n

g

e

2

� 3 � 4

� 1 � 2

�

...

S
out

Execution

Overhead

Digital Enterprise Research Institute www.deri.ie

SPARQL
Engine

C-SPARQL

Orchestrator

Query Rewriter

Data
transformation

ESPER

Query Rewriter

Data
transformation

C
-SPA

R
Q

L

CSPARQL to SPARQL

CSPARQL to EPSER EPL

RDF to Java objects

Digital Enterprise Research Institute www.deri.ie

C-SPARQL execution process

STREAM/CQL

RDF
Knowledge Base Data Streams

WHERE
Bindings

StreamingStatic

Stream Manager

Stream Transcoder

AGGREGATES
Bindings

RDF Data Streams

CONSTRUCT
DESCRIBE

QUERY
ASK

Variable BindingsRDF TriplesResult Projection

Sesame/SPARQL

FILTER

FILTER

Static RDF Data

Aggregation

Join

Figure 4: Query evaluation process

The variables bindings returned by this query are then
translated into a relation and materialized within the DSMS.
The statements required to do so are:

CREATE TABLE static (broker VARCHAR(32),
country VARCHAR(32),
PRIMARY KEY(broker, country)

)

INSERT INTO static
execute_sparql("SELECT ?broker ?country

WHERE { ... }")

Next, we will discuss the rewriting used to transform C-
SPARQL queries into CQL queries. Again, the D-Graph
is used to map the the RDF graph patterns to the schema
of the underlying relational stream. For our example, we
assume that this schema is given by:

market.trdf(broker: integer, tx: integer, amount: integer)

Then the following CQL statement corresponds to the stream-
ing part of the example C-SPARQL query represented by
the nodes in the lower right branch of the O-Graph. Note
that the stream operator and window operator nodes of the
O-Graph map to CQL features rather nicely, and therefore
this translation is straightforward.

CREATE VIEW streaming AS
SELECT *
FROM <http://stockexchange.org/market.trdf> [24 hours]

As a next step, the join operator node of the O-Graph
that combines the static and the streaming knowledge of the
query has to be evaluated. To do so, we create a compre-
hensive view that corresponds to the bindings of the WHERE

clause. At the same time, we use the view comprehensive to
also evaluate the filter operator node following the join oper-
ator node in the O-Graph. The SPARQL FILTER clauses are
computed by translating them into SQL/CQL WHERE clauses.

CREATE VIEW comprehensive AS
SELECT s.broker AS broker, country, tx, amount
FROM static s, streaming
WHERE s.broker = streaming.broker &&

country = ‘CH’ && amount >= 10

The last step of the query evaluation is the computation
of the aggregations specified in the C-SPARQL query. In
C-SPARQL, the semantics of aggregation is di↵erent than
in SQL and, incidentally, also CQL. Therefore, C-SPARQL
AGGREGATE clauses cannot be directly translated into an SQL
aggregation function together with a GROUP BY statement.
The main di↵erence between C-SPARQL and SQL is that
in C-SPARQL, aggregation does not reduce the cardinality
of the result set, whereas the SQL/CQL GROUP BY opera-
tion has this characteristic.However, the desired behavior
can easily be emulated in CQL by computing the aggrega-
tion in a separate view and then using an outer join to“add a
column”with the aggregated values to the comprehensive re-
lation given above. The following two SQL/CQL statements
evaluate the aggregation operator node of the example O-
Graph according to these semantics.

CREATE VIEW arregation1 AS
SELECT broker, SUM(amount) AS total
FROM filtered
GROUP BY broker

CREATE VIEW result AS
SELECT *
FROM comprehensive c

LEFT OUTER JOIN aggregation1 a1
ON c.broker = a1.broker

The last two nodes of the O-Graph—the select result op-
erator8 and solution modifier operator nodes following the
aggregation operator node—are evaluated by a final query
consisting simply of a projection over the variables broker

and total from the view result. If the query is registered
at the STREAM/CQL environment, its continuous output
is then produced.

5. OPTIMIZATIONS AND EVALUATION
Several transformations can be applied to the O-Graph,

some recalling well known results from classical relational
8The name of this node is based on [20]. We would prefer “pro-
jection operator node”.

448

Data transformation

Execution order
dictated by
rewriting rule

Digital Enterprise Research Institute www.deri.ie

C-SPARQL query rewriting

tx

Operator Meaning and Properties
Stream Accesses an RDF Stream identified by its

IRI.
Window Breaks down an RDF Stream using a win-

dow ! and returns an RDF graph.
Aggregation Based on an input set of variable bind-

ings, computes the aggregate values given
by A(v, f, p,G).

Filter Based on an input set of variable bindings,
filters out the bindings that do not match
the filtering condition R.

Table 1: Additional SQGM operator types

A logical window is defined as:
!l(R, ti, tf) = {(hs, p, oi, ⌧) 2 R | ti < ⌧ tf}
Let c(R, ti, tf) be a function which counts the items in R

which have timestamp in the range (ti, tf].
c(R, ti, tf) = | {(hs, p, oi, ⌧) 2 R | ti < ⌧ tf} |
A physical window is defined as:
!p(R,n) = {(hs, p, oi, ⌧) 2 !l(R, ti, tf) | c(R, ti, tf) = n}
A window ! can be sliding, with range ⇢ and step �. For

logical windows, ⇢ and � take the form of a time interval.
Logical windows (a) contain the most recent triples in a time
interval of length ⇢; and (b) are evaluated with frequency
1/�. For physical windows, ⇢ and � are integers. Physical
windows (a) contain the last ⇢ triples; and (b) are evaluated
whenever � new triples arrive in the stream. A window is
said to be as tumbling with range ⇢ if it is sliding with range
⇢ and step � = ⇢.

3.3 Timestamp Function
A variable v can occur multiple times in a graph pattern

P . When P is matched against D, v gets as many bindings
as are its occurrences in P . Some of these bindings may
derive from static data, others from streaming data. Each
of the bindings coming from the stream R is characterized
by the timestamp of the triple that matches one of the triple
patterns t 2 P such that v 2 dom(t). We denote the set of
timestamps associated with a variable by a triple pattern t

as TSset(v, t) and the set of all timestamps associated with
the variable by a graph pattern P as

TSset(v, P) = {⌧ | t 2 P ^ v 2 dom(t) ^ ⌧ 2 TSset(v, t)}
We can now define the timestamp function
ts(v, P) = max(TSset(v, P))
which returns the highest timestamp associated with v

among all bindings of v in P . The timestamp function re-
turns a value only if v has been matched at least once over
a triple hs, p, oi 2 R, ? otherwise.

3.4 Visual Representation
The operational semantics presented in this section is the

basis for the visual query representation which is called the
Operator Graph or O-Graph since its nodes correspond to
operators. O-Graphs are used for both query evaluation and
optimization and are, thus, the basis for Sections 4 and 5,
respectively.

The definition of O-Graphs is based on the SPARQL Query
Graph Model (SQGM) [20] which in turn is based on the
Query Graph Model (QGM) [27]. A SQGM is a directed la-
beled graph with vertices representing operators and edges
capturing the flow of data. In contrast to SQGM, however,

[[P6]]D := [[P5 FILTER R]]D
R := (?country = ‘CH’ ӳ ?speed Ա 10)

[[P7]]D := [[P6 AGG A(v, f, p, G)]]D
A(v, f, p, G) := A(?total, sum, {?amount}, {?broker})

?broker ?amount ?total

[[P9]] := Ŝ([[P8]]D)

?broker ?total

[[P8]] := Ũ{?broker, ?total}([[P7]]D)

?broker ?total

<http://.../market.trdf>

?broker ?amount?tx

?broker

?tx?broker

?amount

[[P1]]D := [[?broker a:from ?country]]D

[[P2]]D := [[?broker x:does ?tx]]D

<http://.../brokers.rdf>

[[P4]]D := [[P2 AND P3]]D

?broker

?tx

?amount

[[P3]]D := [[?tx x:with ?amount]]D

űlogical(24 hours)

[[P5]]D := [[P1 AND P4]]D

?country

?country

?tx

?broker ?amount?tx?country

Figure 1: O-Graph of the example query

that uses a proprietary notation to describe operators, we
propose to use in the nodes the extended formal semantics
of Pérez et al. [26] introduced in Section 3.
In order for SQGM to serve as a representation for all C-

SPARQL queries, the set of operator types defined in [20]
is extended with the additional operators given in Table 1.
We also propose to represent the SPARQL filter clause as
a node on its own instead of as an attribute of the graph
pattern operator node as suggested in [20]. This modifica-
tion of SQGM is necessary because filter clauses can also
be used in C-SPARQL within the AGGREGATE clause, which is
independent of the WHERE clause.
To illustrate the construction of O-Graphs, we use an ex-

ample query computing the daily sum of all transactions of
at least 10 Euros done by Swiss brokers. In C-SPARQL:

REGISTER QUERY TotalAmountPerDayAndBroker AS

PREFIX b: <http://brokerscentral.org/accounts#>
PREFIX x: <http://stockexchange.org/exchanges#>

SELECT DISTINCT ?broker ?total
FROM <http://brokerscentral.org/brokers.rdf>
FROM STREAM <http://stockexchange.org/market.trdf>

[RANGE 24h TUMBLING]
WHERE { ?broker b:is_from ?country .

?broker x:does ?tx .
?tx x:with ?amount .
FILTER (?country = ’CH’ && ?amount >= 10)

}
AGGREGATE { (?total, SUM(?amount), ?broker) }

The O-Graph corresponding to the example query is shown

Operator Meaning and Properties
Stream Accesses an RDF Stream identified by its

IRI.
Window Breaks down an RDF Stream using a win-

dow ! and returns an RDF graph.
Aggregation Based on an input set of variable bind-

ings, computes the aggregate values given
by A(v, f, p,G).

Filter Based on an input set of variable bindings,
filters out the bindings that do not match
the filtering condition R.

Table 1: Additional SQGM operator types

A logical window is defined as:
!l(R, ti, tf) = {(hs, p, oi, ⌧) 2 R | ti < ⌧ tf}
Let c(R, ti, tf) be a function which counts the items in R

which have timestamp in the range (ti, tf].
c(R, ti, tf) = | {(hs, p, oi, ⌧) 2 R | ti < ⌧ tf} |
A physical window is defined as:
!p(R,n) = {(hs, p, oi, ⌧) 2 !l(R, ti, tf) | c(R, ti, tf) = n}
A window ! can be sliding, with range ⇢ and step �. For

logical windows, ⇢ and � take the form of a time interval.
Logical windows (a) contain the most recent triples in a time
interval of length ⇢; and (b) are evaluated with frequency
1/�. For physical windows, ⇢ and � are integers. Physical
windows (a) contain the last ⇢ triples; and (b) are evaluated
whenever � new triples arrive in the stream. A window is
said to be as tumbling with range ⇢ if it is sliding with range
⇢ and step � = ⇢.

3.3 Timestamp Function
A variable v can occur multiple times in a graph pattern

P . When P is matched against D, v gets as many bindings
as are its occurrences in P . Some of these bindings may
derive from static data, others from streaming data. Each
of the bindings coming from the stream R is characterized
by the timestamp of the triple that matches one of the triple
patterns t 2 P such that v 2 dom(t). We denote the set of
timestamps associated with a variable by a triple pattern t

as TSset(v, t) and the set of all timestamps associated with
the variable by a graph pattern P as

TSset(v, P) = {⌧ | t 2 P ^ v 2 dom(t) ^ ⌧ 2 TSset(v, t)}
We can now define the timestamp function
ts(v, P) = max(TSset(v, P))
which returns the highest timestamp associated with v

among all bindings of v in P . The timestamp function re-
turns a value only if v has been matched at least once over
a triple hs, p, oi 2 R, ? otherwise.

3.4 Visual Representation
The operational semantics presented in this section is the

basis for the visual query representation which is called the
Operator Graph or O-Graph since its nodes correspond to
operators. O-Graphs are used for both query evaluation and
optimization and are, thus, the basis for Sections 4 and 5,
respectively.

The definition of O-Graphs is based on the SPARQL Query
Graph Model (SQGM) [20] which in turn is based on the
Query Graph Model (QGM) [27]. A SQGM is a directed la-
beled graph with vertices representing operators and edges
capturing the flow of data. In contrast to SQGM, however,

[[P6]]D := [[P5 FILTER R]]D
R := (?country = ‘CH’ ӳ ?speed Ա 10)

[[P7]]D := [[P6 AGG A(v, f, p, G)]]D
A(v, f, p, G) := A(?total, sum, {?amount}, {?broker})

?broker ?amount ?total

[[P9]] := Ŝ([[P8]]D)

?broker ?total

[[P8]] := Ũ{?broker, ?total}([[P7]]D)

?broker ?total

<http://.../market.trdf>

?broker ?amount?tx

?broker

?tx?broker

?amount

[[P1]]D := [[?broker a:from ?country]]D

[[P2]]D := [[?broker x:does ?tx]]D

<http://.../brokers.rdf>

[[P4]]D := [[P2 AND P3]]D

?broker

?tx

?amount

[[P3]]D := [[?tx x:with ?amount]]D

űlogical(24 hours)

[[P5]]D := [[P1 AND P4]]D

?country

?country

?tx

?broker ?amount?tx?country

Figure 1: O-Graph of the example query

that uses a proprietary notation to describe operators, we
propose to use in the nodes the extended formal semantics
of Pérez et al. [26] introduced in Section 3.
In order for SQGM to serve as a representation for all C-

SPARQL queries, the set of operator types defined in [20]
is extended with the additional operators given in Table 1.
We also propose to represent the SPARQL filter clause as
a node on its own instead of as an attribute of the graph
pattern operator node as suggested in [20]. This modifica-
tion of SQGM is necessary because filter clauses can also
be used in C-SPARQL within the AGGREGATE clause, which is
independent of the WHERE clause.
To illustrate the construction of O-Graphs, we use an ex-

ample query computing the daily sum of all transactions of
at least 10 Euros done by Swiss brokers. In C-SPARQL:

REGISTER QUERY TotalAmountPerDayAndBroker AS

PREFIX b: <http://brokerscentral.org/accounts#>
PREFIX x: <http://stockexchange.org/exchanges#>

SELECT DISTINCT ?broker ?total
FROM <http://brokerscentral.org/brokers.rdf>
FROM STREAM <http://stockexchange.org/market.trdf>

[RANGE 24h TUMBLING]
WHERE { ?broker b:is_from ?country .

?broker x:does ?tx .
?tx x:with ?amount .
FILTER (?country = ’CH’ && ?amount >= 10)

}
AGGREGATE { (?total, SUM(?amount), ?broker) }

The O-Graph corresponding to the example query is shown

Digital Enterprise Research Institute www.deri.ie

SPARQLStream

Orchestrator

Query Rewriter

SNEE Engine

Data
transformation

SPARQLstream to SNEE language

Relation to RDF

SPA
R

Q
Lstream

Digital Enterprise Research Institute www.deri.ie

Fig. 1. Ontology-based streaming data access service

sparqlStream query, expressed in terms of the ontology, into queries in terms
of the data sources, a set of mappings must be specified. These mappings are
expressed in s

2

o, an extension of the r

2

o mapping language, which supports
streaming queries and data, most notably window and stream operators (see
Section 4.2). This transformation process is called query translation, and the
target is the continuous query language sneeql, which is expressive enough to
deal with both streaming and stored sources.

After the continuous query has been generated, the query processing phase
starts, and the evaluator uses distributed query processing techniques [14] to
extract the relevant data from the sources and perform the required query pro-
cessing, e.g. selection, projection, and joins. Note that query execution in sources
such as sensor networks may include in-network query processing, pull or push
based delivery of data between sources, and other data source specific settings.
The result of the query processing is a set of tuples that the data translation

process transforms into ontology instances.
This approach requires several contributions and extensions to the exist-

ing technologies for continuous data querying, ontology-based data access, and
sparql query processing. This paper focuses on a first stage that includes the
process of transforming the sparqlStream queries into queries over the streaming
data sources using sneeql as the target language. The following sections provide
the syntax and semantics for the querying of streaming rdf data and the map-
pings between streaming sources and an ontology. We will then provide details
of an actual implementation of this approach.

4 Query and Mapping Syntax

In this section we introduce the sparqlStream query language, an extension to
sparql for streaming rdf data, which has been inspired by previous propos-
als such as c-sparql [9] and sneeql [12]. However, significant improvements

5

SPARQLstream: Ontology-based mapping

Digital Enterprise Research Institute www.deri.ie

PREFIX f i r e : <ht tp : //www. s emso rg r i d4 env . eu#>
PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22� rd f�syntax�ns#>
SELECT RSTREAM ?WindSpeedAvg
FROM STREAM <www. s emso rg r i d4 env . eu/ Senso rRead ing s . s r d f> [FROM NOW � 10

MINUTES TO NOW STEP 1 MINUTE]
FROM STREAM <www. s emso rg r i d4 env . eu/ Sen so rA r ch i v eRead i ng s . s r d f> [FROM NOW � 3

HOURS TO NOW �2 HOURS STEP 1 MINUTE]
WHERE {

{
SELECT AVG(? speed) AS ?WindSpeedAvg
WHERE
{

GRAPH <www. s emso rg r i d4 env . eu/ Senso rRead ing s . s r d f> {
?WindSpeed a f i r e : WindSpeedMeasurement ;

f i r e : hasSpeed ? speed ; }
} GROUP BY ?WindSpeed

}
{

SELECT AVG(? a r ch i v edSpeed) AS ?WindSpeedHistoryAvg
WHERE
{

GRAPH <www. s emso rg r i d4 env . eu/ Sen so rA r ch i v eRead i ng s . s r d f> {
?ArchWindSpeed a f i r e : WindSpeedMeasurement ;
f i r e : hasSpeed ? a r ch i v edSpeed ; }

} GROUP BY ?ArchWindSpeed
}
FILTER (?WindSpeedAvg > ?WindSpeedHistoryAvg)

}
Listing 1. An example sparqlStream query which every minute computes the
average wind speed measurement for each sensor over the last 10 minutes if it is
higher than the average of the last 2 to 3 hours.

4.2 S2O: Expressing Stream-to-Ontology Mappings

The mapping document that describes how to transform the data source elements
to ontology elements is written in the s

2

omapping language, an extended version
of r

2

o [1]. An r

2

o mapping document includes a section that describes the
database relations, dbscehma-desc. In order to support data streams, r

2

o has
been extended to also describe the data stream schema. A new component called
streamschema-desc has been created, as shown in the top part of Listing 2.

The description of the stream is similar to a relation. An additional attribute
streamType has been added, it denotes the kind of stream in terms of data acqui-
sition, i.e. event or acquistional. In the same way as key and non-key attributes
are defined, a new timestamp-desc element has been added to provide support for
declaring the stream timestamp attribute. Since s

2

o extends r
2

o, relations can
also be specified using the existing r

2

o mechanism. For the class and property
mappings, the existing r

2

o definitions can be used for stream schemas just as
it was for relational schemas. This is specified in the conceptmap-def element as
shown in the bottom part of Listing 2.

In addition, although they are not explicitly mapped, the timestamp attribute
of stream tuples could be used in some of the mapping definitions, for instance in
the uri construction (uri-as element). Finally, a sparqlStream streaming query
requires an rdf stream to have an iri identifier. s

2

o creates a virtual rdf stream

7

An example query of SPARQLstream

every minute computes the average wind speed measurement for each sensor
 over the last 10 minutes if it is higher than the average of the last 2 to 3 hours.

Digital Enterprise Research Institute www.deri.ie

An example of mapping rule in S2O
and its iri is specified in the s

2

o mapping using the virtualStream element. It
can be specified at the conceptmap-def level or at the attributemap-def level.

streamschema�desc
name MeteoSensors
has�stream SensorWind

streamType pushed
documentat ion ”Wind measurements ”
keyco l�desc measurementId

columnType i n t e g e r
timestamp�desc measureTime

columnType da te t ime
nonkeycol�desc measureSpeed

columnType f l o a t
nonkeycol�desc mea su r eD i r e c t i o n

columnType f l o a t
. . .
conceptmap�def Wind

v i r t u a l S t r e am <ht tp : // s emso rg r i d4 env . eu/ Senso rRead ing s . s r d f>
u r i�as

concat (SensorWind . measurementID)
app l i e s� i f
<cond�expr>

desc r i bed�by
attr ibutemap�def hasSpeed

v i r t u a l S t r e am ht tp : // s emso rg r i d4 env . eu/ Senso rRead ing s . s r d f>
ope ra t i on con s t an t

has�column SensorWind . measureSpeed

Listing 2. An example s

2

o declaration of a data stream schema and mapping
from a stream schema to an ontology concept.

5 Semantics of the Streaming Extensions

Now that the syntax of sparqlStream and s

2

o have been presented, we define
their semantics.

5.1 SPARQLStream Semantics

The sparql extensions presented here are based on the formalisation of Pérez
et al. [15]. An rdf stream S is defined as a sequence of pairs (T, ⌧) where T is
a triple hs, p, oi and ⌧ is a timestamp in the infinite set of timestamps T. More
formally,

S = {(hs, p, oi, ⌧) | hs, p, oi 2 ((I [B)⇥ I ⇥ (I [B [L)), ⌧ 2 T},
where I, B and L are sets of iris, blank nodes and literals. Each of these pairs
can be called a tagged triple.

We define a stream of windows as a sequence of pairs (!, ⌧) where ! is a set
of triples, each of the form hs, p, oi, and ⌧ is a timestamp in the infinite set of
timestamps T, and represents when the window was evaluated. More formally,
we define the triples that are contained in a time-based window evaluated at
time ⌧ 2 T, denoted !

⌧ , as

!

⌧

t

s

,t

e

,�

(S) = {hs, p, oi | (hs, p, oi, ⌧
i

) 2 S, t

s

 ⌧

i

 t

e

}

8

S2O declaration of a data stream schema and mapping
from a stream schema to an ontology concept.

Relational stream to be mapped

Map the columns with
ontological properties

Digital Enterprise Research Institute www.deri.ie

EP-SPARQL

Orchestrator

Query Rewriter

Prolog Engine

Data
transformation

EP-SPARQL to Prolog

EP-SPARQL

RDF to prolog facts

EP-SPA
R

Q
L

Digital Enterprise Research Institute www.deri.ie

EP-SPARQL

n  Execution mechanism : Prolog-based event-driven
backward chaining (EDBC) rules

n  Representation
¨  RDF triple (s,p,o) èpredicate triple(s,p,o)
¨  Time-stamped RDF triple (s,p,o,t1,t2) è predicate

triple(s,p,o,T1,T2)

n  Operators rewriting
¨  Operators (SeqJoin, Filters, etc) are rewritten in Prolog rules

¨  Two types of EDBC rules
–  Goal-insertion rules : to create intermediate goals of incoming

events

–  Checking-rule: check if intermediate goals are triggered

Digital Enterprise Research Institute www.deri.ie

Whitebox approach: Streaming SPARQL and CQELS

Optimizer

Operator implementations

Access methods

Executor

Query

C

./124

./12 [[P3, t]]G

[[P1, t]]
!1
S [[P2, t]]

!2
S

...

S

n

o

w

r

a

n

g

e

2

� 3 � 4

� 1 � 2

�

...

S
out

Execution

RDF
datasets

RDF stream

Triple-based
physical operators

Data structures and
physical storage for triple-
based data elements

Digital Enterprise Research Institute www.deri.ie

Streaming SPARQL

Optimizer

Operator implementations

Access methods

Executor

Query

C

./124

./12 [[P3, t]]G

[[P1, t]]
!1
S [[P2, t]]

!2
S

...

S

n

o

w

r

a

n

g

e

2

� 3 � 4

� 1 � 2

�

...

S
out

Execution

RDF
datasets

RDF stream

Extension of SPARQL
physical operators for
windowing graph patterns

Extends SweepArea for
triple-based stream
elements

Digital Enterprise Research Institute www.deri.ie

Examples of executing physical operators of
Streaming SPARQL engine

456 A. Bolles, M. Grawunder, and J. Jacobi

SELECT ?w ? x ?y ? z
FROM h t t p : s r c . n e t g raph . r d f
WHERE ?w my:name ?x UNION ? y my:power ? z

Listing 1.2. Query 1

Fig. 1. Query plan for Query 1 Fig. 2. Query plan for Query 2

As you can see, the triple patterns and are
both transformed to one triple pattern matching operator. By this, the RDF statements
are filtered from the source and transformed into SPARQL solutions. Afterwards, the
union and project operators can process the triple pattern matching results.

Window definitions in the FROM parts of a query are placed directly before the
corresponding triple pattern matching operator as demonstrated in Query 2 in Listing
1.3 and Figure 2.

SELECT ?w ? x ?y ? z
FROM STREAM h t t p : s r c . n e t g raph . r d f WINDOW RANGE 1000 SLIDE
WHERE ?w my:name ?x UNION ? y my:power ? z

Listing 1.3. Query 2

Fig. 3. Query plan for query 1.1

PREFIX wtur: <http:iec.org/61400-25/root/ln/classes/WTUR#>
SELECT ?x ?y ?z
FROM STREAM <http:/iec.org/61400-25/root/td.Rdf>
 WINDOW RANGE 30 MINUTE SLIDE
 WHERE {?x wtur:StrCnt ?y .
OPTIONAL {?x wtur:StopCnt ?z .

 {WINDOW ELEMS 1500}}

456 A. Bolles, M. Grawunder, and J. Jacobi

SELECT ?w ? x ?y ? z
FROM h t t p : s r c . n e t g raph . r d f
WHERE ?w my:name ?x UNION ? y my:power ? z

Listing 1.2. Query 1

Fig. 1. Query plan for Query 1 Fig. 2. Query plan for Query 2

As you can see, the triple patterns and are
both transformed to one triple pattern matching operator. By this, the RDF statements
are filtered from the source and transformed into SPARQL solutions. Afterwards, the
union and project operators can process the triple pattern matching results.

Window definitions in the FROM parts of a query are placed directly before the
corresponding triple pattern matching operator as demonstrated in Query 2 in Listing
1.3 and Figure 2.

SELECT ?w ? x ?y ? z
FROM STREAM h t t p : s r c . n e t g raph . r d f WINDOW RANGE 1000 SLIDE
WHERE ?w my:name ?x UNION ? y my:power ? z

Listing 1.3. Query 2

Fig. 3. Query plan for query 1.1

SELECT ?w ?x ?y ?z
FROM STREAM <http:src.net/graph.rdf> WINDOW RANGE 1000 SLIDE
WHERE {?w my:name ?x} UNION {?y my:power ?z}

Digital Enterprise Research Institute www.deri.ie

A
d

a
p

tiv
e
 O

p
tim

iz
e
r

Dynamic Executor

D
ic

ti
o

n
a
ry

Encoder

Input Manager Cache Fetcher

RDF stores/SPARQL
Endpoints!

Decoder
CQ

ELS!queries!

RDF!streams!

C

./

./

[now][range 3s]

G

C

./

./ [now]

[range 3s] G
C

./

./

[now] [range 3s]

G

C

./

./

[now]

[range 3s]

G

RDF!streams/SPARQL6Result!streams!

Window'
'Buffer'Manager' Cache'Manager'

CQELS architecture for adaptive and native processing

Digital Enterprise Research Institute www.deri.ie

Adaptive execution of CQELS

12 D. Le-Phuoc, M. Dao-Tran, J. X. Parreira and M. Hauswirth

C

./

./

[now] [range 3s]

G

C

./

./

[now]

[range 3s]

G

(a) From window now

C

./

./

[now][range 3s]

G

C

./

./ [now]

[range 3s] G

(b) From window range 3s

Fig. 3: Left-deep data flows for the query in the localisation scenario.

Algorithm 2: findNextOp(O, t)

Input: O : operator, t : timestamp
nextOp := null
for unaryOp 2 nextUnaryOp(O) do

if unaryOp is a filter operator then return unaryOp else nextOp := unaryOp

mincard := +1
for binaryOp 2 nextBinaryOpOnLeftDeepTree(O) do

if mincard > card(binaryOp.rightChildOp, t) then
mincard := card(binaryOp.rightChildOp, t)
nextOp := binaryOp

return nextOp

operators like filters closer to the data sources. The rationale here is that the earlier we prune
the triples that will not make it to the final output, the better, since operators will then process
fewer triples. The second looks at the cardinality of the operators’ output and sorts them
in increasing order of this value, which also helps in reducing the number of mappings to
process.

Function nextUnaryOp(O) returns the set of possible next unary operators that O can
route data to, while nextBinaryOpOnLeftDeepTree(O) returns the binary ones. Examples of
unary operators are filters and projections, and they can be directly executed on the output pro-
duced by O. Binary operators, such as joins and unions, have two inputs, called left and right
child, due to the tree shape of the data flows. O will be the left child, since the data flows are
all left-deep. The right child is given by the rightChildOp attribute. For each binary operator,
we obtain the cardinality of the right child at time t from card(binaryOp.rightChildOp, t).
We then route the output of O to the one whose cardinality function returns the smallest value.

5 Experimental Evaluation

To evaluate the performance of CQELS, we compare it against two existing systems that
also offer integrated processing of Linked Streams and Linked Data – C-SPARQL [9] and
ETALIS [3].8 Note that EP-SPARQL is implemented on top of ETALIS. We first planned to
express our queries in EP-SPARQL, which would then be translated into the language used
in ETALIS. However, the translation from EP-SPARQL to ETALIS is currently not mature
enough to handle all queries in our setup, so we decided to represent the queries directly in the
ETALIS language. We also considered comparing our system against SPARQLstream [14],

8 We would like to thank the C-SPARQL, ETALIS, and SPARQLstream teams for their support in
providing their implementations and helping us to understand and correctly use their systems.

10 D. Le-Phuoc, M. Dao-Tran, J. X. Parreira and M. Hauswirth

CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

SELECT ?editorName
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 30s] {?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc2 lv:name ?locName. loc2 lv:connected ?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data encoding

When dealing with large data collections, it is very likely that data will not fit into the
machine’s main memory for processing, and parts of it will have to be temporarily stored on
disk. In the particular case of RDF data, with IRIs or literals stored as strings, a simple join
operation on strings could generate enough data to trigger a large number of disk reads/writes.
However, these are among the most expensive operations in query processing and should be
avoided whenever possible. While we cannot entirely avoid disk access, we try to reduce it by
encoding the data such that more triples can fit into main memory.

We apply dictionary encoding, a method commonly used by triple stores [1, 16, 13]. An
RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The encoded
version of an RDF node is considerably smaller than the original, allowing more data to fit
into memory. Moreover, since data comparison is now done on integers rather than strings,
operations like pattern matching, perhaps the most common operator in RDF streams and
datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF nodes
into dictionary if they can be represented in 63 bits. As such, a node identifier is presented as
a 64-bit integer. The first bit is used to indicate whether the RDF node is encoded or not. If

Digital Enterprise Research Institute www.deri.ie

System Comparisons

32 D. Le-Phuoc, J. X. Parreira and M. Hauswirth

Input Query language Extras

Streaming SPARQL RDF stream

C-SPARQL RDF Stream & RDF TF

EP-SPARQL RDF Stream & RDF EVENT,TF Event operators

SPARQLstream Relational stream NEST Ontology-based mapping

CQELS RDF Stream & RDF VoS,NEST Disk spilling

Table 3: System comparison by features.

data and computing environment. As considering triples as the first-class data
elements, CQELS engine employs both e�cient data structures for sliding win-
dows and triple storages to provide high-throughput native access methods on
RDF dataset and RDF data streams. By adapting the implementations of the
physical operators introduced in Section 2.4, CQELS is equipped with an adap-
tive caching mechanism [14] and indexing schema [63,125,50,130] to accelerate
the processing in physical operators and access methods.

Similar to other systems, CQELS engine extended SPARQL 1.1 for contin-
uous query, called CQELS language. However, CQELS language supports up-
dates in RDF datasets as well as variables for stream identifiers. By expressing
variables in stream identifiers, users can ask queries that continuously discover
streams that can provided matched properties of interest as shown in section 3.3.
Unlike other systems that only support in-memory processing, CQELS supports
disk-based processing when the main memory is not enough to accommodate all
data. By applying the techniques for memory overflow handling from Section 2.5,
the size of the RDF data involved in the CQELS queries is not restricted to the
capacity of the main memory. Details about CQELS’s implementation can be
found at http://code.google.com/p/cqels/

System Comparisons. Table 3 gives a comparison of all the systems accord-
ing to features supported. Unlike the other systems, SPARQLstream takes re-
lational stream as input other than RDF streams. C-SPARQL, EP-SPARQL
and CQELS support correlation of RDF streams and RDF datasets. All systems
extend SPARQL for stream processing, but each of their languages support
some special patterns as shown in the column “query language”. TF stands for
support built-in time functions in the query patterns. EVENT corresponds to
event-based patterns. NEST means that the engine support nested queries. VoS
indicates that the query language allow using variable for the Stream’s URI.
The “Extras” column shows the extra features supported by the corresponding
engines.

To compare the systems’ execution mechanisms, Table 4 categorises the sys-
tems by architecture, re-execution strategy, how the engine schedules the execu-
tion and what type of optimisation is supported. Since Streaming SPARQL and
C-SPARQL schedule the execution at logical level, the optimisation can only be
done at algebraic level and statically. On the contrary, CQELS is able to choose

Linked Stream Data Processing 33

Architecture Re-execution Scheduling Optimisation

Streaming SPARQL whitebox periodical Logical plan Algebraic & Static

C-SPARQL blackbox periodical Logical plan Algebraic & Static

EP-SPARQL blackbox eager Logic program Externalised

SPARQLstream blackbox periodical External call Externalised

CQELS whitebox eager Adaptive Physical & Adaptive
physical plans

Table 4: Comparisons by execution mechanism.

Q1 Q2 Q3 Q4 Q5

CQELS 0.47 3.90 0.51 0.53 21.83
C-SPARQL 332.46 99.84 331.68 395.18 322.64
ETALIS 0.06 27.47 79.95 469.23 160.83

Table 5: Average query execution time for single queries (in milliseconds).

the alternative execution plans composed from available physical implementa-
tions of operators, thus, the optimiser can adaptively optimise the execution at
physical level. EP-SPARQL and SPARQLstream schedule the execution via a
declarative query or a logic program, so, it completely externalises the optimi-
sation to other systems.

The work in [94] provides the only experimental evaluation comparison avail-
able so far. It compares the average query execution time among C-SPARQL,
ETALIS/EP-SPARQL and CQELS on five queries Q1,Q2,Q3,Q4 and Q5 intro-
duced in section 3.3. For the RFID stream data, the evaluation uses the RFID-
based tracking data streams provided by the Open Beacon community.7 The
data is generated from active RFID tags, the same hardware used in the Live
Social Semantics deployment [4]. For user profiles, the simulated DBLP datasets
generated from SP2Bench [96] are used.

The table 5 shows the evaluation for a single query instance. The figure 9
reports the experiments on varying the size of static RDF dataset. The evalua-
tion for multiple queries instances is showed in figure 10. In overall EP-SPARQL
performed best for a single query pattern and small datasets and CQELS con-
sistently outperformed to others for other cases.

4 Challenges in Linked Stream Data Processing

There are still a number of open challenge regarding Linked Stream Data pro-
cessing. One of them is related to query optimisation. The continuous queries
need to be optimised adaptively to cope with arbitrary changes in the stream
characteristics and system conditions. The systems using the blackbox architec-
ture only support the algebraic optimisation which is done in the query compiling

7 http://www.openbeacon.org/

TF: built-in time functions EVENT: event pattern NEST: nested patterns VoS: Variables on streams ID

Digital Enterprise Research Institute www.deri.ie

Experiment setup for performance comparisons

n  Conference scenario : combine linked stream from RFID tags
(physical relationships) with DBLP data (social relationships)

n  Setup

¨  Systems : CQELS vs ETALIS and C-SPARQL

¨  Datasets

–  Replayed RFID data from Open Beacon deployments

–  Simulated DBLP by SP2Bench

¨  Queries : 5 query templates with different complexities
–  Q1: selection,

–  Q2: stream joins, Q3,Q4 : Stream and non-stream joins

–  Q5: aggregation

¨  Experiments
–  Single query : generate 10 query instances of each template by varying the constants
–  Vary size of the DBLP (104-107triples)
–  Multiple queries : register 2M instances at the same time(0≤M≤10)

Digital Enterprise Research Institute www.deri.ie

Performance comparison- Query execution time

n  CQELS perform fasters by orders of magnitudes

Query 1 Query 2 Query 3 Query 4 Query5

CQELS 0.47 3.90 0.51 0.53 21.83

C-SPARQL 332.46 99.84 331.68 395.18 322.64

ETALIS 0.06 27.47 79.95 469.23 160.83

Simple selection : ETALIS perform best

Stream join :
25 times faster than C-SPARQL
8 times faster than ETALIS

Stream and non-stream joins :
>600 times faster than C-SPARQL
150-850 times faster than ETALIS

Aggregation:
15 times faster than C-SPARQL
8 times faster than ETALIS

Digital Enterprise Research Institute www.deri.ie

Performance comparison– Scalability (non-stream data size)

Non-stream data size : logarithmic to size of static intermediate results

 0.01

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

a
vg

.
q
u
e
ry

 e
xc

.
tim

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of triples from DBLP

Q1

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

a
vg

.
q
u
e
ry

 e
xc

.
tim

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of triples from DBLP

Q3

CQELS
C-SPARQL

ETALIS

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

a
vg

.
q
u
e
ry

 e
xc

.
tim

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of triples from DBLP

Q5

CQELS
C-SPARQL

ETALIS

Digital Enterprise Research Institute www.deri.ie

Performance comparison- Scalability (number of queries)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

a
vg

.
q
u
e
ry

 e
xc

.
tim

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of queries

Q1

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

a
vg

.
q
u
e
ry

 e
xc

.
tim

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of queries

Q3

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

a
vg

.
q
u
e
ry

 e
xc

 t
im

e
 (

m
s)

 -
 lo

g
 s

ca
le

Number of queries

Q4

CQELS
C-SPARQL

ETALIS

No multiple query optimization

Digital Enterprise Research Institute www.deri.ie

Performance comparison-Maximum input throughput

www.sti-innsbruck.at

Evaluation
Throughput (time window [ms])

• Pattern 1, schema has
329 classes, target
product type has 40
subclasses

• Sparkwave is
significantly better only
for smaller time
windows

• Impact of reasoning
over Sparkwave
performance is limited
(15-20%)

20

C-SPARQL gives better throughput than CQELS?

Digital Enterprise Research Institute www.deri.ie

Performance comparison – Memory consumption

www.sti-innsbruck.at 22

Evaluation
Memory consumption

• Pattern 1, schema has
329 classes, target
product type has 40
subclasses

• Memory consumption
is lower but rises

Digital Enterprise Research Institute www.deri.ie

n  Not quite !!!(just 4-6 years)
n  Why?

¨  Functionality

¨  Performance

¨  Scalability

n  But interesting to test/compete/extend/study
¨  Vast amount of interesting of heterogeneous data streams

and open Linked Data sources

¨  Plethora of use cases/applications

¨  New interesting research problems

Are they ready for production?

Digital Enterprise Research Institute www.deri.ie

n  Serialization of RDF-based stream elements

n  Optimization & Scheduling

n  How to measure and compare performances

n  Early-stage
¨  Expressiveness

¨  Reasoning

n  Lack of functionalities
¨  Disk-based stream processing

¨  Distributed processing for large-scale data

Open challenges

Digital Enterprise Research Institute www.deri.ie

:dublinAirport

:aHumidity

:aTemperature

:weatherStation

:latestWeather

:readings

:humidValue :tempValue

“18”^xsd:flo
at

“Celcius” “60”^xsd:flo
at “%”

ssn:featureOfInterest

ssn:observedBy

ssn:observes
ssn:observes

ssn:isPropertyOf ssn:isPropertyOf

ssm:observedPropery ssm:observedPropery

ssm:value ssm:value ssm:unit ssm:unit

ssn:hasValue ssn:hasValue

ssn:observationResult

Sensor metadata

Stream data snapshot at 2011-07-08T21:32:52

How to serialize the RDF stream elements-
Graph-based stream layout

Digital Enterprise Research Institute www.deri.ie

How to serialize the RDF stream elements

triples) in order to periodically count how many cars have
entered the city from each district in the last 30 minutes. In
this example the window is sliding with a step of five min-
utes. From now on, the c: and t: prefixes will be omitted
for brevity.

REGISTER QUERY CarsEnteringCityCenterPerDistrict
COMPUTED EVERY 5m AS

SELECT DISTINCT ?district ?passages
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 30m STEP 5m]
WHERE { ?tollgate t:registers ?car .

?tollgate c:placedIn ?street .
?district c:contains ?street . }

AGGREGATE {(?passages, COUNT, {?district})}

The query is executed as follows. As in the previous query,
all pairs of bindings of tollgates with the car they register
are extracted from the current window over the stream, and
joined to a graph pattern used to extract from the RDF
repository the pair of bindings of tollgates with their district.
Then, the number of cars registered by the tollgates in each
district is counted into the new variable passages. Finally,
pairs of distinct districts and passages are projected.

2.5 Stream Registration
The result of a C-SPARQL query can be a set of bind-

ings, but also a new RDF stream. In order to generate a
stream, the query must be registered through the following
statement:

Registration ! ‘REGISTER STREAM’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

Only queries in the CONSTRUCT and DESCRIBE form5 can be
registered as generators of RDF streams, as they produce
RDF triples, associated with a timestamp as an e↵ect of the
query execution.

Example. The following example shows the construction
of a new RDF data stream by means of the registration of
a CONSTRUCT query. We consider again the previous example,
and modify it so as to generate a stream:

REGISTER STREAM CarsEnteringCityCenterPerDistrict
COMPUTED EVERY 5m AS

CONSTRUCT {?district t:has-entering-cars ?passages}
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 30m STEP 5m]
WHERE { ?tollgate t:registers ?car .

?district c:contains ?street .
?tollgate c:placedIn ?street . }

AGGREGATE {(?passages,
COUNT, {?district, ?tollgate, ?car})}

This query uses the same logical conditions as the previous
one, but constructs the output in the format of a stream of
RDF triples. Every query execution may produce from a
minimum of one triple to a maximum of an entire graph, but
the timestamp is always dependent on the query execution
time only. Thus, in the former case, a di↵erent timestamp
is assigned to every triple, while in the latter case the same

5There are four query forms in SPARQL, di↵erent in the first
clause: SELECT returns variables bound in a query pattern match.
CONSTRUCT returns an RDF graph constructed by substituting
variables in a set of triple templates. ASK returns a boolean indi-
cating whether a query pattern matches or not. DESCRIBE returns
an RDF graph that describes the resources found. Please refer
to [28] for further explanations.

timestamp is assigned to all the triples of a graph. In both
cases timestamps are system-generated in monotonic non-
decreasing order. Results of two evaluations of the previous
query are presented in the table below.

triple Timestamp

c:Distr1 t:has-entering-cars "100" t400

c:Distr2 t:has-entering-cars "75" t400

c:Distr1 t:has-entering-cars "130" t401

c:Distr2 t:has-entering-cars "95" t401

c:Distr3 t:has-entering-cars "65" t401

The first evaluation occurs at t400. Suppose that only data
from two sources (i.e., c:Distr1 and c:Distr2) are present in
the window. Then, the evaluation generates two triples with
the same timestamp (i.e., t400).
The second evaluation occurs at t401. Suppose that part

of the data elaborated by the previous query are still in the
window and that new data related to uc:Distr3 entered in
the window. Then, the evaluation produces 3 triples; all of
them have the same new timestamp t401.

2.6 Multiple Streams
C-SPARQL queries can combine triples from more than

one RDF stream, as shown in the next example.
Example. We now consider, in addition to tollgates, the

presence of cameras as a second means of tra�c control,
placed on top of cross lights. Data from cameras flow within
a second stream. We then consider a query in which cars
seen by cameras or passing through tollgates are summed
up, in order to return all the streets which have been full for
more than 80% of their capacity in the last 5 minutes.

REGISTER QUERY FullStreets AS

SELECT ?street ?passages
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 5m TUMBLING]
FROM STREAM <http://streams.org/citycameras.trdf>

[RANGE 5m TUMBLING]
WHERE {

?street c:hasCapacity ?capacity .
{
GRAPH <http://streams.org/citytollgates.trdf> {

?tollgate t:registers ?car .
?tollgate c:placedIn ?street . }

}
UNION
{
GRAPH <http://streams.org/citycameras.trdf> {

?camera t:registers ?car .
?camera c:placedAt ?light .
?light c:crossing ?street . }

}
}
AGGREGATE { (?passages, COUNT, {?street})

FILTER (?passages > (0.8 * ?capacity))}

The query is executed as follows. Pairs of bindings of
tollgates and cars are extracted from the first graph, us-
ing a window over the tollgate stream, and from the second
graph, using a window over the control camera stream. Also,
the capacity of each street is extracted from the RDF static
repository. The bindings are combined following the seman-
tics of the UNION patter evaluation in SPARQL, and the new
variable ?passages can count the cars registered by the toll-
gates and the cameras. Finally the streets that satisfy the
filter predicate are selected, and distinct pairs of street and
passages are projected.

444

Quad-form representation
§  Lack of standard way to serialize RDF Stream

§  N-Triple-like representation is inefficient

§  100-500 bytes to represent 1 integer reading

§  100k triples/secè10-50MB/secè 80-400Mbps bandwidth

§  Is it necessary in text-line format? Binary format?

 Extension of NTRIPLE: line-based, plain text format

Digital Enterprise Research Institute www.deri.ie

n  At logical plan level èinefficient and restricted on
highly dynamic settings of the stream processing.

n  Few at physical level but only with naïve/simplistic
algorithms/strategies.

n  None support multiple query optimization

☞  Needs more studies on optimization and scheduling
graph-based query patterns

Optimization & Scheduling

Digital Enterprise Research Institute www.deri.ie

n  There are only few stream benchmarking systems
¨  Linear Road benchmark (VLDB 2004)

¨  LSBench (to appear at ISWC 2012)

¨  SRBench (to appear at ISWC 2012)

n  How to define the measurement to compare
¨  Execution time/Response time?

¨  Throughput?

n  Too many elements to cause differences in outputs
¨  Difference in semantics

¨  The execution mechanisms

¨  Execution environments and settings

How to compare performance

Digital Enterprise Research Institute www.deri.ie

n  Expressiveness
¨  SPARQL extensions based on relational algebra is not

expressive enough for stream/event processing applications

¨  Higher expressive continuous query language?
–  Recursive expression

–  Rule-based expression

–  Support uncertainty in matching pattern

n  Stream reasoning based on RDF data model
¨  Emerging topic with some early work

–  Barbieri et al. Incremental Reasoning on Streams and Rich
Background Knowledge (ESWC’2010).

–  Komazec et al. Sparkwave: continuous schema-enhanced
pattern matching over RDF data streams (DEBS’2012)

¨  Complexity vs low latency è need quantitative metrics to
judge the advantages of each stream reasoner

Early-stage work

Digital Enterprise Research Institute www.deri.ie

n  Disk-based stream processing
¨  Big windows

¨  Big linked data sets

n  Distributed stream processing
¨  Some general distributed stream processing platform/

systems
–  Borealis, StreamBase, IBM Stream Spheres, etc

–  S4, Storm, Kafka, etc

¨  Use black-box approach delegate processing è How to deal
with the over head and restriction of optimization?

¨  Use whitebox approach è which physical processing can be
reused from such platform/system? Can it be better?

Lack of functionalities

Digital Enterprise Research Institute www.deri.ie

n  What is Linked Stream Data?

n  Data models for Linked Stream Data

n  Query operators and query languages

n  How to build a Linked Stream Processing Engine

n  Comparisons and analysis of State-Of-The-Art systems

n  Open challenges
¨  Serialization of RDF-based stream elements

¨  Optimization & Scheduling

¨  How to measure and compare performances

¨  Early-stage & Lack of functionalities

Summary

