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Outline EM
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m Part I: Basic Concepts & Modeling (Josi)
O Linked Stream Data
O Data models
O Query Languages and Operators

O Choices/Challenges when designing a Linked Stream Data
processor

m Part Il: Building a Linked Stream Processing Engine
(Danh)

O Analysis of available Linked Stream Processing Engines
— Design choices, implementation
— Performance comparison
— Open Challenges



“Why should | care?”
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m As an application developer
O What can | do with it?
0 How does it work?
0 How to choose one?
m As a processing engine developer
O How to build one?
O How to build/identify a better one?
m As a researcher
0 What have been done? What left?
O Is there any interesting research problem?
0 How to find room to improvement?



Why a continuous query nm
processing engine is needed?
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Separation of concerns

m Focus of application logic
m et the experts deal with data operations on streams

m Minimize the learning efforts
O Learn simple APIs using the engine
O Learn a simple query language



How a stream-based application is built with nm
a stream processing engine?
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@ |Initialize the engine (less than 5 lines of code)

@ Write and register the queries to the engine ( 1 line for
1 query)

® Write codes for wiring output streams to the
application logic (depends on the application logic but
the each wiring code snippet =5 lines of code)

@ Connect input streams to engine ( 1-3 lines for each

stream)

Just 10-20 lines of code!!!



What need to be done to build a processing engine? Em
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m Data model : relational, object-oriented, etc

m Query model :
O Logical operators : sliding windows, relational algebras
O Query language: CQL, C-SPARQL,CQELS,etc
m Build a processing engine
O Handling input streams
O Implement the execution engine
O Schedule the executions
0 Optimization



Building blocks of a query processing engine ﬁ
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Algorithms/technologies/solutions for stream processing Em
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m Handling live and push-based data stream sources
O Time management
O Load shedding for bursty streams
m Operator implementation for execution engine
O Data structure and physical storage
O Handling the new stream elements/expired ones
O Incremental execution
O Memory overflow
m Optimization
m Scheduling



Handling input streams o0 |oemt
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Execution engine & Operator implementation nm
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Data structure and physical storages for high-update-
rate processing buffers

Handling the new data stream elements/expired ones

Operators && Incremental execution
O Stateless

O Stateful
— Duplicate elimination
— Window Join
— Negation
— Aggregation

Memory overflow

m Dynamic Optimization of the continuous execution
m Schedule execution for fluctuate execution settings



Incremental execution of windowing operators nm
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What have “I” learned? Em
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m 12-15 years of techniques/algorithms/solutions for
general stream processing (DSMS)

m Only few prototypes and commercial products
0 STREAM ,Borealis/Aurora, etc

O StreamBase, IBM InfoSphere streams, etc

m Don’t take for granted!!!

m DSMS is not mature as DBMS(>40 years)



Processing Linked Stream Data In A Nutshell Em
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A. Linked Open Data cloud

B. Query

SELECT ?person
FROM ... [NOW]
WHERE {
?person ...

}

\

pre-processing

optimization

execution

e —————————————————

s

answer

C. Sensor Stream Data
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®
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Black-box approach
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C-SPARQL
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[ CSPARQL to SPARQL ]
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C-SPARQL execution process
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C-SPARQL query rewriting
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?broker‘ ?total ‘

7| [Pl = 5(Pell)

A

?broker‘ ?total ‘

[[Psll := me2broker, 2totan([[P7]Io)

A

?total ‘

REGISTER QUERY TotalAmountPerDayAndBroker AS Hyﬂf~ %m@r‘%mwm

T [[P7]lo := [IPs AGG A(v, f, p, G)llo
1A, f, p, G) := A(?total, sum, {?amount}, {?broker})

PREFIX Db: <http://brokerscentral.org/accounts#>”w
PREFIX x: <http://stockexchange.org/exchanges#>

?broker ‘ ?country ‘ ?tx ‘ ?amount ‘

[[Pe]lo := [[Ps FILTER Rllp

SELECT DISTINCT “broker ?total T R= (2c0untry = ‘CH' A 7speed > 10)
FROM <http://brokerscentral.org/brokers.rdf>.
?broker ‘ ?country ‘ ?tx ‘ ?amount ‘

FROM STREAM <http://stockexchange.org/market. trdf>
[RANGE 24h TUMBLING] :

WHERE { ?broker b:is from ?country"”

?broker x:does ?7tx

?tx x:with ?amount e s

FILTER (?country = ’'CH’ && 2amount >= 10y

[[Ps]lo := [[P1 AND P4]lp

?broker ‘ ?2tx ‘ ?amount ‘

[[P4]lo := [[P2 AND P3]lp

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

} -
AGGREGATE { (?total, SUM(?amount), ?broker) } ¢

T, ?brokér&‘ ?country ‘ 7 ‘ #amount ‘

[[Ps]lo := [[?tx x:with ?amount]]p

"[[p1]]o__;_= [[’.?'brgker a:from ?country]]p

?broker ‘ ?Mx ‘

‘ ":35."’: [[P2llo := [[?broker x:does ?tx]]o

D Opogical(24 hours)

<http://.../brokers.rdf> <http://.../market.trdf>




S PAR(ILStream
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SPARQL;,..m: Ontology-based mapping Em
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An example query of SPARQL;,c.m nm
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PREFIX fire: <http://www.semsorgriddenv .eu#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf —syntax—ns#>

SELECT RSTREAM ?WindSpeedAvg
FROM STREAM <www.semsorgrid4env.eu/SensorReadings.srdf> [FROM NOW — 10

MINUTES TO NOW STEP 1 MINUTE]
FROM STREAM <www.semsorgrid4env.eu/SensorArchiveReadings.srdf> [FROM NOW — 3

HOURS TO NOW —2 HOURS STEP 1 MINUTE]

WHERE {

{
SELECT AVG(?speed) AS ?WindSpeedAvg

WHERE
{

GRAPH <www.semsorgrid4env.eu/SensorReadings.srdf> {

?WindSpeed a fire:WindSpeedMeasurement;
fire:hasSpeed 7speed;}

} GROUP BY ?WindS&peed

{
SELECT AVG(?archivedSpeed) AS ?WindSpeedHistoryAvg
WHERE
{
GRAPH <www.semsorgridd4env.eu/SensorArchiveReadings.srdf> {

?ArchWindSpeed a fire:WindSpeedMeasurement;
fire :hasSpeed 7archivedSpeed; v}
} GROUP BY ?AY¥chWindSpeed

}
FILTER (?WindSpeedAvg > ?WindSpeedHistoryAvg)
}

every minute computes the average wind speed measurement for each sensor
over the last 10 minutes if it is higher than the average of the last 2 to 3 hours.



An example of mapping rule in S,
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streamschema—desc —
name MeteoSensors
has—stream SensorWind
streamType pushed
documentation "Wind measurements”
keycol—-desc measurementld
columnType integer

o K]

www.deri.ie

timestamp_desc measureTime . Relational stream to be mapped

columnType datetime
nonkeycol—desc 'measureSpeed
columnType float
nonkeycol—desc measureDirection
columnType float

conceptmap—def Wind /)
virtualStream <http://semsorgrid4env.eu/SensorReadings.srdf>
uri—as
concat(SensorWind . measurementlD)
applies—if

<cond—expr>
described —by
attributemap—def hasSpeed

virtualStream http://semsorgriddenv.eu/SensorReadings.srdf>
operation constant

has—column SensorWind . measureSpeed

— Map the columns with
ontological properties

S,0 declaration of a data stream schema and mapping

from a stream schema to an ontology conce

pt.



EP-SPARQL
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[ EP-SPARQL to Prolog ]
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EP-SPARQL o0 |oemt
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m Execution mechanism : Prolog-based event-driven
backward chaining (EDBC) rules

m Representation
O RDF triple (s,p,0) = predicate triple(s,p,0)
O Time-stamped RDF triple (s,p,0,t;,t,) = predicate
triple(s,p,0,T;,T,)

m Operators rewriting
O Operators (SeqgJoin, Filters, etc) are rewritten in Prolog rules

O Two types of EDBC rules

— Goal-insertion rules : to create intermediate goals of incoming
events

— Checking-rule: check if intermediate goals are triggered



Whitebox approach: Streaming SPARQL and CQELS nm
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Triple-based
physical operators

v

Data structures and
physical storage for triple-

Executor

based data elements
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Streaming SPARQL nﬁ
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Query

Extension of SPARQL
physical operators for

Optimizer windowing graph patterns
Extends SweepArea for
v triple-based stream
Executor e|ements

Agcess methjods

RDF RDF stream



Examples of executing physical operators of nm
Streaming SPARQL engine
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w X ?y ?z

SELECT ?w ?x ?y ?z U+
FROM STREAM <http:src.net/graph.rdf> WINDOW RANGE 1000 SLIDE
WHERE {?w my:name ?x} UNION {?y my:power ?z} #/' \

p = ?w-my:name ?x = ?y my:power ?z

—-C

|
w

slide slide
4
1000 \Umoo
X ?y ?z
PREFIX wtur: <http:iec.org/61400-25/root/In/classes/WTUR#> /
SELECT ?x ?y ?z count
FROM STREAM <http:/iec.org/61400-25/root/td.Rdf> q U w
WINDOW [RANGE 30 MINUTE SLIDE ?x wiur: StrCnt 7y 1500
WHERE {?x wtur:StrCnt ?y .
OPTIONAL {?x wtur:StopCnt ?z .
{WINDOW ELEMS 1500}}

slide U
Uu 30 min ?x wtur:StopCnt ?z



CQELS architecture for adaptive and native processin
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RDF streams/SPARQL-Result streams
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Adaptive execution of CQELS
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CONSTRUCT {?personl lwv:reachable ?person2?}
FROM NAMED <http://deri.org/floorplan/>

WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?personl lv:detectedAt ?locl}
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2?2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?locl lv:connected ?loc2} }

! G N\ [range 3s] \ |
\ \ \ \
\ \ \ \
\ \ \ \

[now] [range 3s] [now] G [range 3s] [now] [range 3s] G

(a) From window now (b) From window range 3s



System Comparisons nm
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Input Query language Extras
Streaming SPARQL RDF stream
C-SPARQL RDF Stream & RDF TF
EP-SPARQL RDF Stream & RDF EVENT,TF Event operators
SPARQLstream Relational stream NEST Ontology-based mapping
CQELS RDF Stream & RDF VoS,NEST Disk spilling

TF: built-in time functions EVENT: event pattern NEST: nested patterns VoS: Variables on streams ID

Architecture Re-execution Scheduling Optimisation
Streaming SPARQL whitebox periodical Logical plan Algebraic & Static
C-SPARQL blackbox periodical Logical plan Algebraic & Static
EP-SPARQL blackbox eager Logic program Externalised
SPARQLstream blackbox periodical External call Externalised
CQELS whitebox eager Adaptive Physical & Adaptive

physical plans




Experiment setup for performance comparisons Em
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m Conference scenario : combine linked stream from RFID tags
(physical relationships) with DBLP data (social relationships)

m Setup
0 Systems : CQELS vs ETALIS and C-SPARQL

O Datasets

— Replayed RFID data from Open Beacon deployments
— Simulated DBLP by SP2Bench

O Queries : 5 query templates with different complexities
— QI1: selection,
— Q2: stream joins, Q3,Q4 : Stream and non-stream joins
— Q5: aggregation

O Experiments
— Single query : generate 10 query instances of each template by varying the constants
— Vary size of the DBLP (104-10"triples)
— Multiple queries : register 2M instances at the same time(0<M<10)



Performance comparison- Query execution time
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m  CQELS perform fasters by orders of magnitudes

CQELS
C-SPARQL

ETALIS

-

0.51

331.68

7 Q) Ve I
0.47 3.90
332.46 99.84

0.06 /@7'47\ y

Simple selection : ETALIS perform bes

I

@.95

~

0.53

395.18

469.23 /

Stream join :
25 times faster than C-SPARQL
8 times faster than ETALIS

/

www.deri.ie

0 N
21.83
322.64
Q60.83 y

Aggregation:

ANE

15 times faster than C-SPARQL
8 times faster than ETALIS

Stream and non-stream joins :
>600 times faster than C-SPARQL
150-850 times faster than ETALIS




Performance comparison- Scalability (non-stream data size) Em
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Non-stream data size : logarithmic to size of static intermediate results
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Performance comparison- Scalability (number of queries) EM
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Performance comparison-Maximum input throughput Em
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Performance comparison - Memory consumptionnm
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Are they ready for production? nﬂ
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m Not quite !!l(just 4-6 years)
m Why?

O Functionality

O Performance

O Scalability

m But interesting to test/compete/extend/study

0 Vast amount of interesting of heterogeneous data streams
and open Linked Data sources

O Plethora of use cases/applications
O New interesting research problems



Open challenges Em
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m Serialization of RDF-based stream elements
m Optimization & Scheduling
m How to measure and compare performances

m Early-stage
O Expressiveness
0 Reasoning
m Lack of functionalities

O Disk-based stream processing
O Distributed processing for large-scale data



How to serialize the RDF stream elements- Em
Graph-based stream layout
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ssniobservedBy

ssn:isPropertyOf w

ssn:isPropertyOf —

:dublinAirport

ssm:observedPropery :
| ssn:featureOfinterest !

1
A}
1
o 1
|

v

'\
v

latestWeather ‘ Loy

& >
2
¥ &
g}r& - e
S /7 ssm:valu &
O ol S
o
...»’,/l M » >
18”Axsd:flo “60"Axsd:flo

“Celcius” “opn

at at

Stream data snapshot at 2011-07-08T21:32:52




How to serialize the RDF stream elements
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Extension of NTRIPLE: line-based, plain text format

triple Timestamp
c:Distrl t:has—-entering-cars "100" t400
c:DistrZ2 t:has—-entering-cars "75" 1400
c:Distrl t:has-entering-cars "130" 1401
c:DistrZ2 t:has—entering-cars "95" t401
c:Distr3 t:has—-entering-cars "65" t401

= Lack of standard way to serialize RDF Stream

= N-Triple-like representation is inefficient

= 100-500 bytes to represent 1 integer reading

= 100Kk triples/sec=>»10-50MB/sec=> 80-400Mbps bandwidth

= |s it necessary in text-line format? Binary format?



Optimization & Scheduling ﬂﬁ
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m At logical plan level =»inefficient and restricted on
highly dynamic settings of the stream processing.

m Few at physical level but only with naive/simplistic
algorithms/strategies.

m None support multiple query optimization

= Needs more studies on optimization and scheduling
graph-based query patterns



How to compare performance EM
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m There are only few stream benchmarking systems
O Linear Road benchmark (VLDB 2004)
O LSBench (to appear at ISWC 2012)
0 SRBench (to appear at ISWC 2012)
m How to define the measurement to compare
O Execution time/Response time?
O Throughput?
m Too many elements to cause differences in outputs
O Difference in semantics
O The execution mechanisms
O Execution environments and settings



Early-stage work
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m Expressiveness

O SPARQL extensions based on relational algebra is not
expressive enough for stream/event processing applications

O Higher expressive continuous query language?
— Recursive expression
— Rule-based expression
— Support uncertainty in matching pattern

m Stream reasoning based on RDF data model

0 Emerging topic with some early work

— Barbieri et al. Incremental Reasoning on Streams and Rich
Background Knowledge (ESWC’2010).

— Komazec et al. Sparkwave: continuous schema-enhanced
pattern matching over RDF data streams (DEBS’2012)

O Complexity vs low latency = need quantitative metrics to
judge the advantages of each stream reasoner



Lack of functionalities nﬁ
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m Disk-based stream processing
O Big windows
O Big linked data sets

m Distributed stream processing

0 Some general distributed stream processing platform/
systems
— Borealis, StreamBase, IBM Stream Spheres, etc
— S4, Storm, Kafka, etc

O Use black-box approach delegate processing = How to deal
with the over head and restriction of optimization?

O Use whitebox approach = which physical processing can be
reused from such platform/system? Can it be better?



Summary o |oem
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m What is Linked Stream Data?

m Data models for Linked Stream Data

m Query operators and query languages

m How to build a Linked Stream Processing Engine

m Comparisons and analysis of State-Of-The-Art systems

m Open challenges
0 Serialization of RDF-based stream elements
O Optimization & Scheduling
0 How to measure and compare performances
O Early-stage & Lack of functionalities



