
Federation and Navigation in SPARQL 1.1

Jorge Pérez

Assistant Professor
Department of Computer Science

Universidad de Chile

Outline

Basics of SPARQL
Syntax and Semantics of SPARQL 1.0
What is new in SPARQL 1.1

Federation: SERVICE operator
Syntax and Semantics
Evaluation of SERVICE queries

Navigation: Property Paths
Navigating graphs with regular expressions
The history of paths (in SPARQL 1.1 specification)
Evaluation procedures and complexity

SPARQL query language for RDF

SPARQL query language for RDF

RDF Graph:

fmeza@utalca.cl
:name

:email

:phone

:name

:friendOf rgarrido@utalca.cl:email

Federico Meza
35-446928

Ruth Garrido

URI 2
URI 1

RDF-triples: (URI 2, :email, rgarrido@utalca.cl)

SPARQL query language for RDF

RDF Graph:

fmeza@utalca.cl
:name

:email

:phone

:name

:friendOf rgarrido@utalca.cl:email

Federico Meza
35-446928

Ruth Garrido

URI 2
URI 1

RDF-triples: (URI 2, :email, rgarrido@utalca.cl)

SPARQL Query:

SELECT ?N

WHERE

{

?X :name ?N .

}

SPARQL query language for RDF

RDF Graph:

fmeza@utalca.cl
:name

:email

:phone

:name

:friendOf rgarrido@utalca.cl:email

Federico Meza
35-446928

Ruth Garrido

URI 2
URI 1

RDF-triples: (URI 2, :email, rgarrido@utalca.cl)

SPARQL Query:

SELECT ?N ?E

WHERE

{

?X :name ?N .

?X :email ?E .

}

SPARQL query language for RDF

RDF Graph:

fmeza@utalca.cl
:name

:email

:phone

:name

:friendOf rgarrido@utalca.cl:email

Federico Meza
35-446928

Ruth Garrido

URI 2
URI 1

RDF-triples: (URI 2, :email, rgarrido@utalca.cl)

SPARQL Query:

SELECT ?N ?E

WHERE

{

?X :name ?N .

?X :email ?E .

?X :friendOf ?Y . ?Y :name "Ruth Garrido"

}

An example of an RDF graph to query: DBLP

inAMW:SarmaUW09 :Jeffrey D. Ullman

:Anish Das Sarma

:Jennifer Widom

inAMW:2009

"Schema Design for ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:partOf

dc:title
swrc:series

conf:amw

<http://purl.org/dc/terms/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inAMW: <http://dblp.l3s.de/d2r/resource/publications/conf/amw/>

swrc: <http://swrc.ontoware.org/ontology#>

dc:

dct:

<http://purl.org/dc/elements/1.1/>

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

Body: Pattern matching expression

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

But things can become more complex...

Interesting features of pattern
matching on graphs SELECT ?X1 ?X2 ...

{ P1 .

P2 }

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

SELECT ?X1 ?X2 ...

{{ P1 .

P2 }

{ P3 .

P4 }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7 } }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in
the upcoming version:
federation, navigation

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in
the upcoming version:
federation, navigation

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

What is the (formal) meaning of a general SPARQL query?

Outline

Basics of SPARQL
Syntax and Semantics of SPARQL 1.0
What is new in SPARQL 1.1

Federation: SERVICE operator
Syntax and Semantics
Evaluation of SERVICE queries

Navigation: Property Paths
Navigating graphs with regular expressions
The history of paths (in SPARQL 1.1 specification)
Evaluation procedures and complexity

RDF triples and graphs

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

RDF triples and graphs

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

RDF triples and graphs

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

RDF triples and graphs

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

In this talk, we do not consider blank nodes

◮ (s, p, o) ∈ U × U × (U ∪ L) is called an RDF triple

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

original SPARQL syntax algebraic syntax

{ P1 . P2 } (P1 AND P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

original SPARQL syntax algebraic syntax

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

original SPARQL syntax algebraic syntax

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

original SPARQL syntax algebraic syntax

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

A standard algebraic syntax (cont.)

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

t = (?X , name, ?Name)

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

t = (?X , name, ?Name)

µ(t) = (R1, name, john)

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

◮ µ(t) ∈ G

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG
{

µ = {?X → R1, ?E → J@ed.ex}
}

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

?X ?N
µ1 R1 john
µ2 R2 paul

J(?X , email, ?E)KG

?X ?E
µ R1 J@ed.ex

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG

J(R2, name, paul)KG

J(R3, name, ringo)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG
{ }

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG
{

µ∅ = { }
}

J(R3, name, ringo)KG
{ }

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

µ1 ∪ µ3 R1 john P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

µ1 ∪ µ3 R1 john P@edu.ex R2

µ∅ = { } is compatible with every mapping.

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 ⋊⋉ M2

◮ {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, and µ1, µ2 are compatibles}

◮ extending mappings in M1 with compatible mappings in M2

will be used to define AND

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 ⋊⋉ M2

◮ {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, and µ1, µ2 are compatibles}

◮ extending mappings in M1 with compatible mappings in M2

will be used to define AND

Definition

Union: M1 ∪M2

◮ {µ | µ ∈ M1 or µ ∈ M2}

◮ mappings in M1 plus mappings in M2 (the usual set union)

will be used to define UNION

Sets of mappings and operations

Definition

Difference: M1 rM2

◮ {µ ∈ M1 | for all µ′ ∈ M2, µ and µ′ are not compatibles}

◮ mappings in M1 that cannot be extended with mappings in M2

Sets of mappings and operations

Definition

Difference: M1 rM2

◮ {µ ∈ M1 | for all µ′ ∈ M2, µ and µ′ are not compatibles}

◮ mappings in M1 that cannot be extended with mappings in M2

Definition

Left outer join: M1 M2 = (M1 ⋊⋉ M2) ∪ (M1 rM2)

◮ extension of mappings in M1 with compatible mappings in M2

◮ plus the mappings in M1 that cannot be extended.

will be used to define OPT

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG ⋊⋉ JP2KG

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG ⋊⋉ JP2KG

◮ J(P1 UNION P2)KG = JP1KG ∪ JP2KG

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG ⋊⋉ JP2KG

◮ J(P1 UNION P2)KG = JP1KG ∪ JP2KG

◮ J(P1 OPT P2)KG = JP1KG JP2KG

the base case is the evaluation of a triple pattern.

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG ⋊⋉ J(?X , email, ?E)KG

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG ⋊⋉ J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG ⋊⋉ J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG ⋊⋉ J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

⋊⋉

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG ⋊⋉ J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

⋊⋉

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

?X ?Info
µ3 R3 www.ringo.com

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
µ3 R3 www.ringo.com

Boolean filter expressions (value constraints)

In filter expressions we consider

◮ the equality = among variables and RDF terms

◮ a unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

A mapping µ satisfies

◮ ?X = c if µ(?X) = c

◮ ?X =?Y if µ(?X) = µ(?Y)

◮ bound(?X) if µ is defined in ?X , i.e. ?X ∈ dom(µ)

Satisfaction of value constraints

◮ If P is a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Satisfaction of value constraints

◮ If P is a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Definition

Given a graph G

◮ J(P FILTER R)KG = {µ ∈ JPKG | µ satisfies R}
i.e. mappings in the evaluation of P that satisfy R .

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

?X ?N
µ2 R2 paul
µ3 R3 ringo

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

(a non-monotonic query)

Why do we need/want to formalize SPARQL

A formalization is beneficial

◮ clarifying corner cases

◮ helping in the implementation process

◮ providing solid foundations (we can actually prove properties!)

The evaluation decision problem

Evaluation problem for SPARQL patterns

Input: A mapping µ, an RDF graph G

a graph pattern P

Output: Is the mapping µ in the evaluation of pattern P

over the RDF graph G

Brief complexity-theory reminder

P

Brief complexity-theory reminder

NP

P

Brief complexity-theory reminder

PSPACE

NP

P

Complexity of the evaluation problem

Theorem (PAG09)

For patterns using only the AND operator,

the evaluation problem is in P

Complexity of the evaluation problem

Theorem (PAG09)

For patterns using only the AND operator,

the evaluation problem is in P

Theorem (SML10)

For patterns using AND and UNION operators,

the evaluation problem is NP-complete.

Complexity of the evaluation problem

Theorem (PAG09)

For patterns using only the AND operator,

the evaluation problem is in P

Theorem (SML10)

For patterns using AND and UNION operators,

the evaluation problem is NP-complete.

Theorem (PAG09,SML10)

For general patterns that include OPT operator,

the evaluation problem is PSPACE-complete.

Complexity of the evaluation problem

Theorem (PAG09)

For patterns using only the AND operator,

the evaluation problem is in P

Theorem (SML10)

For patterns using AND and UNION operators,

the evaluation problem is NP-complete.

Theorem (PAG09,SML10)

For general patterns that include OPT operator,

the evaluation problem is PSPACE-complete.

Good news: evaluation in P if the query is fixed (data complexity)

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)

if a variable occurs

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑

if a variable occurs inside B

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT,

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ⇑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ⇑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Example
[[

(?Y , name, paul) OPT (?X , email, ?Z)
]

AND (?X , name, john)
]

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ⇑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Example
[[

(?Y , name, paul) OPT (?X , email, ?Z)
]

AND (?X , name, john)
]

↑

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ⇑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Example
[[

(?Y , name, paul) OPT (?X , email, ?Z)
]

AND (?X , name, john)
]

↑ ↑

Well–designed patterns

Can we find a natural fragment with better complexity?

Definition

An AND-OPT pattern is well–designed iff for every OPT in the
pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ⇑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Example
[[

(?Y , name, paul) OPT (?X , email, ?Z)
]

AND (?X , name, john)
]

�� ↑ ↑

A bit more on complexity...

PSPACE

NP

P

A bit more on complexity...

PSPACE

coNPNP

P

Evaluation of well-designed patterns is in coNP-complete

Theorem (PAG09)

For AND-OPT well–designed graph patterns

the evaluation problem is coNP-complete

Evaluation of well-designed patterns is in coNP-complete

Theorem (PAG09)

For AND-OPT well–designed graph patterns

the evaluation problem is coNP-complete

Well-designed patterns also allow to study static analysis:

Theorem (LPPS12)

Equivalence of well-designed SPARQL patterns is in NP

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms

the most simple is SELECT

Definition

A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms

the most simple is SELECT

Definition

A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *

The evaluation of a SELECT query against G is

◮ J(SELECT W P)KG = {µ|W | µ ∈ JPKG}
where µ|W is the restriction of µ to domain W .

◮ J(SELECT * P)KG = JPKG

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

?N ?E
µ1|{?N,?E}

john J@ed.ex

µ2|{?N,?E}
ringo R@ed.ex

SPARQL 1.1 introduces several new features

In SPARQL 1.1:

◮ (SELECT W P) can be used as any other graph pattern
(ASK P) can be used as a constraint in FILTER
⇒ sub-queries

◮ Aggregations via ORDER-BY plus COUNT, SUM, etc.

◮ More important for us: Federation and Navigation

Outline

Basics of SPARQL
Syntax and Semantics of SPARQL 1.0
What is new in SPARQL 1.1

Federation: SERVICE operator
Syntax and Semantics
Evaluation of SERVICE queries

Navigation: Property Paths
Navigating graphs with regular expressions
The history of paths (in SPARQL 1.1 specification)
Evaluation procedures and complexity

SPARQL endpoints and the SERVICE operator

◮ SPARQL endpoints are services that accepts HTTP requests
asking for SPARQL queries

◮ http://www.w3.org/wiki/SparqlEndpoints lists some

◮ SPARQL 1.1 allows to mix local and remote queries to
endpoints via the SERVICE operator

SPARQL endpoints and the SERVICE operator

◮ SPARQL endpoints are services that accepts HTTP requests
asking for SPARQL queries

◮ http://www.w3.org/wiki/SparqlEndpoints lists some

◮ SPARQL 1.1 allows to mix local and remote queries to
endpoints via the SERVICE operator

?SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

SPARQL endpoints and the SERVICE operator

◮ SPARQL endpoints are services that accepts HTTP requests
asking for SPARQL queries

◮ http://www.w3.org/wiki/SparqlEndpoints lists some

◮ SPARQL 1.1 allows to mix local and remote queries to
endpoints via the SERVICE operator

?SELECT ?Author ?Place

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

SERVICE dbpedia:service

{ ?Author dbpedia:birthPlace ?Place . }

}

Syntax of SERVICE

Syntax

If c ∈ U, ?X is a variable, and P is a graph pattern then

Syntax of SERVICE

Syntax

If c ∈ U, ?X is a variable, and P is a graph pattern then

◮ (SERVICE c P)

◮ (SERVICE ?X P)

are SERVICE graph patterns.

Syntax of SERVICE

Syntax

If c ∈ U, ?X is a variable, and P is a graph pattern then

◮ (SERVICE c P)

◮ (SERVICE ?X P)

are SERVICE graph patterns.

◮ SERVICE graph pattern are included recursively in the algebra
of graph patterns

◮ Variables are included in the SERVICE syntax to allow
dynamic choosing of endpoints

Semantics of SERVICE

We assume the existence of a partial function

ep : U → RDF graphs

intuitively, ep(c) is the (default) graph associated
to the SPARQL endpoint defined by c

Semantics of SERVICE

We assume the existence of a partial function

ep : U → RDF graphs

intuitively, ep(c) is the (default) graph associated
to the SPARQL endpoint defined by c

Definition

Given an RDF graph G , an element c ∈ U, and a graph pattern P

J(SERVICE c P)KG =

{

Semantics of SERVICE

We assume the existence of a partial function

ep : U → RDF graphs

intuitively, ep(c) is the (default) graph associated
to the SPARQL endpoint defined by c

Definition

Given an RDF graph G , an element c ∈ U, and a graph pattern P

J(SERVICE c P)KG =

{

JPKep(c) if c ∈ dom(ep)

Semantics of SERVICE

We assume the existence of a partial function

ep : U → RDF graphs

intuitively, ep(c) is the (default) graph associated
to the SPARQL endpoint defined by c

Definition

Given an RDF graph G , an element c ∈ U, and a graph pattern P

J(SERVICE c P)KG =

{

JPKep(c) if c ∈ dom(ep)

{µ∅} otherwise

Semantics of SERVICE

We assume the existence of a partial function

ep : U → RDF graphs

intuitively, ep(c) is the (default) graph associated
to the SPARQL endpoint defined by c

Definition

Given an RDF graph G , an element c ∈ U, and a graph pattern P

J(SERVICE c P)KG =

{

JPKep(c) if c ∈ dom(ep)

{µ∅} otherwise

but the interesting case is when the endpoint is a variable...

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG =

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG = JPKep(c)

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG = JPKep(c) ⋊⋉ {{?X → c}}

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG =
⋃

c∈dom(ep)

(

JPKep(c) ⋊⋉ {{?X → c}}

)

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG =
⋃

c∈dom(ep)

(

JPKep(c) ⋊⋉ {{?X → c}}

)

Semantics of SERVICE

Definition

Given an RDF graph G , a variable ?X , and a graph pattern P

J(SERVICE ?X P)KG =
⋃

c∈dom(ep)

(

JPKep(c) ⋊⋉ {{?X → c}}

)

can we effectively evaluate a SERVICE query?

SERVICE example

Some queries/patterns can be safely evaluated:

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

◮ ((SERVICE ?Y (?N , email, ?E)) AND (?X , service address, ?Y))

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

◮ ((SERVICE ?Y (?N , email, ?E)) AND (?X , service address, ?Y))

In both cases, the SERVICE variable is controlled by the data in
the initial graph

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

◮ ((SERVICE ?Y (?N , email, ?E)) AND (?X , service address, ?Y))

In both cases, the SERVICE variable is controlled by the data in
the initial graph

There is natural way of evaluating the query:

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

◮ ((SERVICE ?Y (?N , email, ?E)) AND (?X , service address, ?Y))

In both cases, the SERVICE variable is controlled by the data in
the initial graph

There is natural way of evaluating the query:

◮ Evaluate first (?X , service address, ?Y)

SERVICE example

Some queries/patterns can be safely evaluated:

◮ ((?X , service address, ?Y) AND (SERVICE ?Y (?N , email, ?E)))

◮ ((SERVICE ?Y (?N , email, ?E)) AND (?X , service address, ?Y))

In both cases, the SERVICE variable is controlled by the data in
the initial graph

There is natural way of evaluating the query:

◮ Evaluate first (?X , service address, ?Y)

◮ only for the obtained mappings evaluate the SERVICE on
endpoint µ(?Y)

Unbounded SERVICE queries

What about this pattern?

[

(

(?X , service description, ?Z) UNION (?X , service address, ?Y)
)

AND (SERVICE ?Y (?N , email, ?E))

]

Unbounded SERVICE queries

What about this pattern?

[

(

(?X , service description, ?Z) UNION (?X , service address, ?Y)
)

AND (SERVICE ?Y (?N , email, ?E))

]

:-(

Unbounded SERVICE queries

What about this pattern?

[

(

(?X , service description, ?Z) UNION (?X , service address, ?Y)
)

AND (SERVICE ?Y (?N , email, ?E))

]

:-(

Idea: force the SERVICE variable to be bound in every solution.

Boundedness

Definition

A variable ?X is bound in graph pattern P if
for every graph G and every µ ∈ JPKG it holds that:

◮ ?X ∈ dom(µ), and

◮ µ(?X) is a value in G .

Boundedness

Definition

A variable ?X is bound in graph pattern P if
for every graph G and every µ ∈ JPKG it holds that:

◮ ?X ∈ dom(µ), and

◮ µ(?X) is a value in G .

We only need a procedure to ensure that every variable mentioned
in SERVICE is bounded!

Boundedness

Definition

A variable ?X is bound in graph pattern P if
for every graph G and every µ ∈ JPKG it holds that:

◮ ?X ∈ dom(µ), and

◮ µ(?X) is a value in G .

We only need a procedure to ensure that every variable mentioned
in SERVICE is bounded! Oh wait...

Boundedness

Definition

A variable ?X is bound in graph pattern P if
for every graph G and every µ ∈ JPKG it holds that:

◮ ?X ∈ dom(µ), and

◮ µ(?X) is a value in G .

We only need a procedure to ensure that every variable mentioned
in SERVICE is bounded! Oh wait...

Theorem (BAC11)

The problem of checking if a variable is bound in a graph pattern

is undecidable.

Boundedness

Definition

A variable ?X is bound in graph pattern P if
for every graph G and every µ ∈ JPKG it holds that:

◮ ?X ∈ dom(µ), and

◮ µ(?X) is a value in G .

We only need a procedure to ensure that every variable mentioned
in SERVICE is bounded! Oh wait...

Theorem (BAC11)

The problem of checking if a variable is bound in a graph pattern

is undecidable.

:-(

Undecidability of boundedness

Proof idea

◮ From [AG08]: it is undecidable to check if a SPARQL pattern
P is satisfiable (if JPKG 6= ∅ for some G).

Undecidability of boundedness

Proof idea

◮ From [AG08]: it is undecidable to check if a SPARQL pattern
P is satisfiable (if JPKG 6= ∅ for some G).

◮ Assume P does not mention ?X , and let
Q = ((?X , ?Y , ?Z) UNION P):

Undecidability of boundedness

Proof idea

◮ From [AG08]: it is undecidable to check if a SPARQL pattern
P is satisfiable (if JPKG 6= ∅ for some G).

◮ Assume P does not mention ?X , and let
Q = ((?X , ?Y , ?Z) UNION P):

?X is bound in Q iff P is not satisfiable.

Undecidability of boundedness

Proof idea

◮ From [AG08]: it is undecidable to check if a SPARQL pattern
P is satisfiable (if JPKG 6= ∅ for some G).

◮ Assume P does not mention ?X , and let
Q = ((?X , ?Y , ?Z) UNION P):

?X is bound in Q iff P is not satisfiable.

Undecidable: the SPARQL engine cannot check for boundedness...

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then SB(P) = W ∩ SB(P1)

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then SB(P) = W ∩ SB(P1)

◮ if P is a SERVICE pattern, then

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then SB(P) = W ∩ SB(P1)

◮ if P is a SERVICE pattern, then SB(P) = ∅

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then SB(P) = W ∩ SB(P1)

◮ if P is a SERVICE pattern, then SB(P) = ∅

Proposition (BAC11)

If ?X ∈ SB(P) then ?X is bound in P.

A sufficient condition for boundedness

Definition [BAC11]

The set of strongly bounded variables in a pattern P , denoted by
SB(P) is defined recursively as follows.

◮ if P is a triple pattern t, then SB(P) = var(t)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (SELECT W P1), then SB(P) = W ∩ SB(P1)

◮ if P is a SERVICE pattern, then SB(P) = ∅

Proposition (BAC11)

If ?X ∈ SB(P) then ?X is bound in P.

(SB(P) can be efficiently computed)

(Strongly) boundedness is not enough

Are we happy now?

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

.

(Strongly) boundedness is not enough

Are we happy now?

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

.

◮ ?Y is not bound in P1 (nor strongly bound)

(Strongly) boundedness is not enough

Are we happy now?

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

.

◮ ?Y is not bound in P1 (nor strongly bound)

◮ nevertheless there is a natural evaluation of this pattern

(Strongly) boundedness is not enough

Are we happy now?

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

.

◮ ?Y is not bound in P1 (nor strongly bound)

◮ nevertheless there is a natural evaluation of this pattern

(?Y is bounded in the important part!)

(Strongly) boundedness is not enough

Are we happy now?

(Strongly) boundedness is not enough

Are we happy now?

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

.

(Strongly) boundedness is not enough

Are we happy now?

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

.

◮ ?U1 and ?U2 are strongly bounded, but

(Strongly) boundedness is not enough

Are we happy now?

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

.

◮ ?U1 and ?U2 are strongly bounded, but

◮ can we effectively evaluate this query?

(?U2 is unbounded in the important part!)

(Strongly) boundedness is not enough

Are we happy now?

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

.

◮ ?U1 and ?U2 are strongly bounded, but

◮ can we effectively evaluate this query?

(?U2 is unbounded in the important part!)

we need to define what the important part is...

Parse tree of a pattern

We need first to formalize the tree of subexpressions of a pattern

(

(?Y , a, ?Z) UNION
(

(?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))
)

)

Parse tree of a pattern

We need first to formalize the tree of subexpressions of a pattern

(

(?Y , a, ?Z) UNION
(

(?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))
)

)

u6 : (?Y , a, ?Z)

u1 : ((?Y , a, ?Z) UNION ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))))

u2 : (?Y , a, ?Z) u3 : ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z)))

u4 : (?X , b, c) u5 : (SERVICE ?X (?Y , a, ?Z))

Parse tree of a pattern

We need first to formalize the tree of subexpressions of a pattern

(

(?Y , a, ?Z) UNION
(

(?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))
)

)

u6 : (?Y , a, ?Z)

u1 : ((?Y , a, ?Z) UNION ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))))

u2 : (?Y , a, ?Z) u3 : ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z)))

u4 : (?X , b, c) u5 : (SERVICE ?X (?Y , a, ?Z))

We denote by T (P) the tree of subexpressions of P .

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t. ?X is
bound in P2, and

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t. ?X is
bound in P2, and

2. P1 is service-bound.

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t. ?X is
bound in P2, and

2. P1 is service-bound.

Unfortunately... (and not so surprisingly anymore)

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t. ?X is
bound in P2, and

2. P1 is service-bound.

Unfortunately... (and not so surprisingly anymore)

Theorem (BAC11)

Checking if a pattern is service-bound is undecidable.

Service-boundedness

Notion of boundedness considering the important part

Definition

A pattern P is service-bound if for every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t. ?X is
bound in P2, and

2. P1 is service-bound.

Unfortunately... (and not so surprisingly anymore)

Theorem (BAC11)

Checking if a pattern is service-bound is undecidable.

Exercise: prove the theorem.

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Definition

A pattern P is service-safe if of every node u in T (P) with label
(SERVICE ?X P1) it holds that:

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Definition

A pattern P is service-safe if of every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t.
?X ∈ SB(P2), and

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Definition

A pattern P is service-safe if of every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t.
?X ∈ SB(P2), and

2. P1 is service-safe.

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Definition

A pattern P is service-safe if of every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t.
?X ∈ SB(P2), and

2. P1 is service-safe.

Proposition (BAC11)

If P is service-safe the it is service-bound.

Service-safeness

We need a decidable sufficient condition.

Idea: replace bound by SB(·) in the previous notion.

Definition

A pattern P is service-safe if of every node u in T (P) with label
(SERVICE ?X P1) it holds that:

1. There exists an ancestor of u in T (P) with label P2 s.t.
?X ∈ SB(P2), and

2. P1 is service-safe.

Proposition (BAC11)

If P is service-safe the it is service-bound.

We finally have our desired decidable condition.

Applying service-safeness

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

Applying service-safeness

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

is service-safe.

Applying service-safeness

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

is service-safe.

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

Applying service-safeness

P1 =

[

(?X , service description, ?Z) UNION

(

(?X , service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))

)]

is service-safe.

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))

))]

is not service-safe.

Closing words on SERVICE

SERVICE: several interesting research question

◮ Optimization (rewriting, reordering, containment?)

◮ Cost analysis: in practice we cannot query all that we may
want

◮ Different endpoints provide different completeness certificates
(regarding the data they return)

◮ Several implementations challenges

Outline

Basics of SPARQL
Syntax and Semantics of SPARQL 1.0
What is new in SPARQL 1.1

Federation: SERVICE operator
Syntax and Semantics
Evaluation of SERVICE queries

Navigation: Property Paths
Navigating graphs with regular expressions
The history of paths (in SPARQL 1.1 specification)
Evaluation procedures and complexity

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

You (should) already know that Datalog can express this query.

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

You (should) already know that Datalog can express this query.

We can consider a new predicate reach and the program

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

You (should) already know that Datalog can express this query.

We can consider a new predicate reach and the program

(?X , reach, ?Y) ← (?X , connected, ?Y)

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

You (should) already know that Datalog can express this query.

We can consider a new predicate reach and the program

(?X , reach, ?Y) ← (?X , connected, ?Y)
(?X , reach, ?Y) ← (?X , reach, ?Z), (?Z , connected, ?Y)

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

You (should) already know that Datalog can express this query.

We can consider a new predicate reach and the program

(?X , reach, ?Y) ← (?X , connected, ?Y)
(?X , reach, ?Y) ← (?X , reach, ?Z), (?Z , connected, ?Y)

but do we want to integrate Datalog and SPARQL?

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X :friendOf ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X :friendOf ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y . ← SPARQL 1.1 property path

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y . ← SPARQL 1.1 property path

?Y :name "Maria" .

}

Idea: navigate RDF graphs using regular expressions

General navigation using regular expressions

Regular expressions define sets of strings using

◮ concatenation: /

◮ disjunction: |

◮ Kleene star: *

Example

Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb · · · bbba.

General navigation using regular expressions

Regular expressions define sets of strings using

◮ concatenation: /

◮ disjunction: |

◮ Kleene star: *

Example

Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb · · · bbba.

Idea: use regular expressions to define paths

◮ a path p satisfies a regular expression r if the string composed
of the sequence of edges of p satisfies expression r

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)* Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school

{ ?X (:conn)* ?Y .

?X (:conn)* ?Z .

?Y :sameSchool ?Z }

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

◮ Mid 2012: semantics change to overcome the raised issues

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

◮ Mid 2012: semantics change to overcome the raised issues

The following experimental study is based on [ACP12].

SPARQL 1.1 implementations

had a poor performance

Data:
◮ cliques (complete graphs) of different size
◮ from 2 nodes (87 bytes) to 13 nodes (970 bytes)

:p
:a0

:a1

:a3

:p

:p

:p

:p

:p

:a2

RDF clique with 4 nodes (127 bytes)

SPARQL 1.1 implementations

had a poor performance

1

10

100

1000

2 4 6 8 10 12 14 16

ARQ

+ + + + + + +
+

+

+

+
+

RDFQ

× × × ×
×

×

×

×

×

×
KGram

∗ ∗ ∗ ∗ ∗
∗
∗

∗

∗

∗
Sesame

� � � �

�

�

�

�

�

[ACP12]

SELECT * WHERE { :a0 (:p)* :a1 }

Poor performance with real Web data of small size

Data:

◮ Social Network data given by foaf:knows links

◮ Crawled from Axel Polleres’ foaf document (3 steps)

◮ Different documents, deleting some nodes

foaf:knows

axel:me

ivan:me

bizer:chris

richard:cygri

...

· · ·

andreas:ah

· · ·

· · ·

Poor performance with real Web data of small size

SELECT * WHERE { axel:me (foaf:knows)* ?x }

Poor performance with real Web data of small size

SELECT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame
9.2KB 5.13 75.70 313.37 –

10.9KB 8.20 325.83 – –
11.4KB 65.87 – – –
13.2KB 292.43 – – –
14.8KB – – – –
17.2KB – – – –
20.5KB – – – –
25.8KB – – – – [ACP12]

(time in seconds, timeout = 1hr)

Poor performance with real Web data of small size

SELECT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame
9.2KB 5.13 75.70 313.37 –

10.9KB 8.20 325.83 – –
11.4KB 65.87 – – –
13.2KB 292.43 – – –
14.8KB – – – –
17.2KB – – – –
20.5KB – – – –
25.8KB – – – – [ACP12]

(time in seconds, timeout = 1hr)

Is this a problem of these particular implementations?

This is a problem of the specification

[ACP12]

Any implementation that follows SPARQL 1.1 standard
(as of January 2012) is doomed to show the same behavior

This is a problem of the specification

[ACP12]

Any implementation that follows SPARQL 1.1 standard
(as of January 2012) is doomed to show the same behavior

The main sources of complexity is counting

This is a problem of the specification

[ACP12]

Any implementation that follows SPARQL 1.1 standard
(as of January 2012) is doomed to show the same behavior

The main sources of complexity is counting

Impact on W3C standard:

◮ Standard semantics of SPARQL 1.1 property paths
was changed in July 2012 to overcome these issues

SPARQL 1.1 property paths match regular expressions

but also count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

SPARQL 1.1 property paths match regular expressions

but also count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

?X
:a

:b

:c

:d

:d

SPARQL 1.1 property paths match regular expressions

but also count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

?X
:a

:b

:c

:d

:d

SPARQL 1.1 property paths match regular expressions

but also count

:p:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

?X
:a

:b

:c

:d

:d

SPARQL 1.1 property paths match regular expressions

but also count

:p:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

?X
:a

:b

:c

:d

:d

:c

:d

SPARQL 1.1 property paths match regular expressions

but also count

:p:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?X

WHERE { :a (:p)* ?X }

?X
:a

:b

:c

:d

:d

:c

:d

But what if we have cycles?

SPARQL 1.1 document provides a special procedure

to handle cycles (and make the count)

Evaluation of path*

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

SPARQL 1.1 Last Call (Jan 2012)

SPARQL 1.1 document provides a special procedure

to handle cycles (and make the count)

Evaluation of path*

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

SPARQL 1.1 Last Call (Jan 2012)

◮ W3C document provides a procedure (ArbitraryLengthPath)

◮ This procedure was formalized in [ACP12]

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 }

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 } { :a0 (((:p)*)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

Counting the number of solutions...

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 } { :a0 (((:p)*)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

n # Sol.
2 1
3 42
4 –

every solution is a copy of the empty mapping µ∅ (| | in ARQ)

More on counting the number of solutions...

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

More on counting the number of solutions...

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

More on counting the number of solutions...

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

What is really happening here?

More on counting the number of solutions...

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

What is really happening here?

Theory can help!

A bit more on complexity classes...

Complexity can be measured by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

A bit more on complexity classes...

Complexity can be measured by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

Formally

A function f (·) on strings is in #P if there exists a
polynomial-time non-deterministic TM M such that

f (x) = number of accepting computations of M with input x

A bit more on complexity classes...

Complexity can be measured by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

Formally

A function f (·) on strings is in #P if there exists a
polynomial-time non-deterministic TM M such that

f (x) = number of accepting computations of M with input x

◮ CountSat is #P-complete

Counting problem for property paths

CountW3C

Input: RDF graph G

Property path triple { :a path :b }

Output: Count the number of solutions of { :a path :b } over G
(according to the semantics proposed by W3C)

The complexity of property paths is intractable

Theorem (ACP12)

CountW3C is outside #P

The complexity of property paths is intractable

Theorem (ACP12)

CountW3C is outside #P

CountW3C is hard to solve even if P = NP

A doubly exponential lower bound for counting

◮ Let paths be a property path of the form

(· · ·((:p)*)*)· · ·)*

with s nested stars

A doubly exponential lower bound for counting

◮ Let paths be a property path of the form

(· · ·((:p)*)*)· · ·)*

with s nested stars

◮ Let Kn be a clique with n nodes

A doubly exponential lower bound for counting

◮ Let paths be a property path of the form

(· · ·((:p)*)*)· · ·)*

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of
{ :a0 paths :a1 } over Kn

A doubly exponential lower bound for counting

◮ Let paths be a property path of the form

(· · ·((:p)*)*)· · ·)*

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of
{ :a0 paths :a1 } over Kn

Lemma (ACP12)

CountClique(s , n) ≥ (n − 2)!(n−1)s−1

A doubly exponential lower bound for counting

◮ Let paths be a property path of the form

(· · ·((:p)*)*)· · ·)*

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of
{ :a0 paths :a1 } over Kn

Lemma (ACP12)

CountClique(s , n) ≥ (n − 2)!(n−1)s−1

In [ACP12]: A recursive formula for calculating CountClique(s , n)

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1
3 6
4 305
5 418,576
6 –
7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6
4 305
5 418,576
6 –
7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305
5 418,576
6 –
7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576
6 –
7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 –
7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 –
8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 –

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

79 Yottabytes for the answer over a file of 379 bytes

We can explain the experimental results

CountClique(s, n) allows to fill in the blanks

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

79 Yottabytes for the answer over a file of 379 bytes

1 Yottabyte > the estimated capacity of all digital storage in the world

Data complexity of property path is still intractable

Common assumption in Databases:

◮ queries are much smaller than data sources

Data complexity of property path is still intractable

Common assumption in Databases:

◮ queries are much smaller than data sources

Data complexity

◮ measure the complexity considering the query fixed

Data complexity of property path is still intractable

Common assumption in Databases:

◮ queries are much smaller than data sources

Data complexity

◮ measure the complexity considering the query fixed

◮ Data complexity of SQL, XPath, SPARQL 1.0, etc.
are all polynomial

Data complexity of property path is still intractable

Common assumption in Databases:

◮ queries are much smaller than data sources

Data complexity

◮ measure the complexity considering the query fixed

◮ Data complexity of SQL, XPath, SPARQL 1.0, etc.
are all polynomial

Theorem (ACP12)

Data complexity of CountW3C is #P-complete

Data complexity of property path is still intractable

Common assumption in Databases:

◮ queries are much smaller than data sources

Data complexity

◮ measure the complexity considering the query fixed

◮ Data complexity of SQL, XPath, SPARQL 1.0, etc.
are all polynomial

Theorem (ACP12)

Data complexity of CountW3C is #P-complete

Corollary

SPARQL 1.1 query evaluation (as of January 2012)
is intractable in Data Complexity

Existential semantics: a possible alternative

Possible solution

Do not count

Just check whether there exists a path
satisfying the property path expression

Existential semantics: a possible alternative

Possible solution

Do not count

Just check whether there exists a path
satisfying the property path expression

Years of experiences (theory and practice) in:

◮ Graph Databases

◮ XML

◮ SPARQL 1.0 (PSPARQL, Gleen)

+ equivalent regular expressions giving equivalent results

Existential semantics: decision problems

Input: RDF graph G

Property path triple { :a path :b }

ExistsPath

Question: Is there a path from :a to :b in G satisfying
the regular expression path?

ExistsW3C

Question: Is the number of solutions of { :a path :b } over G
greater than 0 (according to W3C semantics)?

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

2. construct from path an NFA Apath

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

2. construct from path an NFA Apath

3. construct the product automaton G ×Apath:

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

2. construct from path an NFA Apath

3. construct the product automaton G ×Apath:
◮ whenever (x , r , y) ∈ G and (p, r , q) is a transition in Apath

add a transition ((x , p), r , (y , q)) to G ×Apath

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

2. construct from path an NFA Apath

3. construct the product automaton G ×Apath:
◮ whenever (x , r , y) ∈ G and (p, r , q) is a transition in Apath

add a transition ((x , p), r , (y , q)) to G ×Apath

4. check if we can go from (:a, q0) to (:b, qf) in G ×Apath

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | × |path|)

Can be proved by using automata theory:

1. consider G as an NFA with :a initial state and :b final state

2. construct from path an NFA Apath

3. construct the product automaton G ×Apath:
◮ whenever (x , r , y) ∈ G and (p, r , q) is a transition in Apath

add a transition ((x , p), r , (y , q)) to G ×Apath

4. check if we can go from (:a, q0) to (:b, qf) in G ×Apath

with q0 initial state of Apath and qf some final state of Apath

Relationship between ExistsPath and ExistsW3C

Theorem (ACP12)

ExistsPath and ExistsW3C are equivalent decision problems

Relationship between ExistsPath and ExistsW3C

Theorem (ACP12)

ExistsPath and ExistsW3C are equivalent decision problems

Corollary (ACP12)

ExistsW3C can be solved in O(|G | × |path|)

So there are possibilities for optimization

SPARQL includes an operator to eliminate duplicates (DISTINCT)

So there are possibilities for optimization

SPARQL includes an operator to eliminate duplicates (DISTINCT)

Corollary

Property path queries with SELECT DISTINCT

can be efficiently evaluated

So there are possibilities for optimization

SPARQL includes an operator to eliminate duplicates (DISTINCT)

Corollary

Property path queries with SELECT DISTINCT

can be efficiently evaluated

And we can also use DISTINCT over general queries

Theorem

SELECT DISTINCT SPARQL 1.1 queries are tractable in Data Complexity

SPARQL 1.1 implementations

do not take advantage of SELECT DISTINCT

SELECT DISTINCT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame Psparql Gleen

SPARQL 1.1 implementations

do not take advantage of SELECT DISTINCT

SELECT DISTINCT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame Psparql Gleen

SPARQL 1.1 implementations

do not take advantage of SELECT DISTINCT

SELECT DISTINCT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame Psparql Gleen
9.2KB 2.24 47.31 2.37 – 0.29 1.39

10.9KB 2.60 204.95 6.43 – 0.30 1.32
11.4KB 6.88 3222.47 80.73 – 0.30 1.34
13.2KB 24.42 – 394.61 – 0.31 1.38
14.8KB – – – – 0.33 1.38
17.2KB – – – – 0.35 1.42
20.5KB – – – – 0.44 1.50
25.8KB – – – – 0.45 1.52

SPARQL 1.1 implementations

do not take advantage of SELECT DISTINCT

SELECT DISTINCT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame Psparql Gleen
9.2KB 2.24 47.31 2.37 – 0.29 1.39

10.9KB 2.60 204.95 6.43 – 0.30 1.32
11.4KB 6.88 3222.47 80.73 – 0.30 1.34
13.2KB 24.42 – 394.61 – 0.31 1.38
14.8KB – – – – 0.33 1.38
17.2KB – – – – 0.35 1.42
20.5KB – – – – 0.44 1.50
25.8KB – – – – 0.45 1.52

Optimization possibilities can remain hidden
in a complicated specification

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

For example, consider path1, path2, and path3 not using * then
when evaluating

{ :a path1/(path2)*/path3 :b }

one should (intuitively):

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

For example, consider path1, path2, and path3 not using * then
when evaluating

{ :a path1/(path2)*/path3 :b }

one should (intuitively):

◮ consider all the paths from :a to some intermediate :c1
satisfying path1

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

For example, consider path1, path2, and path3 not using * then
when evaluating

{ :a path1/(path2)*/path3 :b }

one should (intuitively):

◮ consider all the paths from :a to some intermediate :c1
satisfying path1

◮ check if there exists :c2 reachable from :c1 following
(path2)*

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

For example, consider path1, path2, and path3 not using * then
when evaluating

{ :a path1/(path2)*/path3 :b }

one should (intuitively):

◮ consider all the paths from :a to some intermediate :c1
satisfying path1

◮ check if there exists :c2 reachable from :c1 following
(path2)*

◮ consider all the paths from :c2 to :b satisfying path3

New semantics for property paths (July 2012)

◮ Paths constructed only from / and | should be counted

◮ As soon as * is used, duplicates are eliminated (from that part
of the expression)

For example, consider path1, path2, and path3 not using * then
when evaluating

{ :a path1/(path2)*/path3 :b }

one should (intuitively):

◮ consider all the paths from :a to some intermediate :c1
satisfying path1

◮ check if there exists :c2 reachable from :c1 following
(path2)*

◮ consider all the paths from :c2 to :b satisfying path3

◮ make the count (to produce copies)

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

◮ count the number of simple paths

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

◮ count the number of simple paths

◮ does someone from the audience have another in mind?

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

◮ count the number of simple paths

◮ does someone from the audience have another in mind?

In all the above cases you have to decide what exactly you count:

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

◮ count the number of simple paths

◮ does someone from the audience have another in mind?

In all the above cases you have to decide what exactly you count:

◮ the number of paths satisfying the expression?

◮ the number of ways that the expr can be satisfied? (W3C)

Is the new semantics the right one?

W3C definitely wants to count paths.
Are there more reasonable alternatives?

◮ to have different operators for counting (e.g. . and ||)
so the user can decide.

◮ the honest approach: just make the count and output
infininty in the presence of cycles

◮ count the number of simple paths

◮ does someone from the audience have another in mind?

In all the above cases you have to decide what exactly you count:

◮ the number of paths satisfying the expression?

◮ the number of ways that the expr can be satisfied? (W3C)

(they are not the same! consider for example (a|a))

Several work to do on navigational queries for graphs!

Other lines of research with open questions:

◮ Nested regular expressions and nSPARQL [PAG09,BPR12]

◮ Queries that can output paths (e.g. ECRPQs [BLHW10])

◮ More complexity results on counting paths [LM12]

What is the right language (and the right semantics)
for navigating RDF graphs?

Outline

Basics of SPARQL
Syntax and Semantics of SPARQL 1.0
What is new in SPARQL 1.1

Federation: SERVICE operator
Syntax and Semantics
Evaluation of SERVICE queries

Navigation: Property Paths
Navigating graphs with regular expressions
The history of paths (in SPARQL 1.1 specification)
Evaluation procedures and complexity

Concluding remarks

◮ Federation and Navigation are fundamental features in
SPARQL 1.1

◮ They need formalization and (serious) study

Concluding remarks

◮ Federation and Navigation are fundamental features in
SPARQL 1.1

◮ They need formalization and (serious) study

◮ Do not runaway from Theory! it can really help (and has
helped) to understand the implications of design decisions

Concluding remarks

◮ Federation and Navigation are fundamental features in
SPARQL 1.1

◮ They need formalization and (serious) study

◮ Do not runaway from Theory! it can really help (and has
helped) to understand the implications of design decisions

Big challenge:

◮ Can we integrate everything to effectively query Linked Data?

◮ Is SPARQL 1.1 the ultimate query language for Linked Data?

Concluding remarks

◮ Federation and Navigation are fundamental features in
SPARQL 1.1

◮ They need formalization and (serious) study

◮ Do not runaway from Theory! it can really help (and has
helped) to understand the implications of design decisions

Big challenge:

◮ Can we integrate everything to effectively query Linked Data?

◮ Is SPARQL 1.1 the ultimate query language for Linked Data?

A lot of work to do, so lets start! and I’m happy to collaborate! :-)

Federation and Navigation in SPARQL 1.1

Jorge Pérez

Assistant Professor
Department of Computer Science

Universidad de Chile

References

ACP12 Counting Beyond a Yottabyte ..., WWW 2012

AG08 The Expressive Power of SPARQL, ISWC 2008

BAC11 Sem & Opt of SPARQL 1.1 Federation Extensions, ISWC 2011

BLHMW10 Expressive Query Languages for Path Queries, PODS 2010

BPR12 Relative Expressiveness of Nested Regular Expressions, AMW 2012

LPSS12 Static Analysis and Optimization of SemWeb Queries, PODS 2012

LM12 Complexity of Evaluating Path Expressions in SPARQL, PODS 2012

PAG06-09 Semantics and Complexity of SPARQL, ISWC 2006, TODS 2009

	Basics of SPARQL
	Syntax and Semantics of SPARQL 1.0
	What is new in SPARQL 1.1

	Federation: SERVICE operator
	Syntax and Semantics
	Evaluation of SERVICE queries

	Navigation: Property Paths
	Navigating graphs with regular expressions
	The history of paths (in SPARQL 1.1 specification)
	Evaluation procedures and complexity

