Clique-Width and Directed Width Measures for
Answer-Set Programming

Bernhard Bliem, Sebastian Ordyniak, and Stefan Woltran

TU Wien, Vienna, Austria

Abstract. Disjunctive Answer Set Programming (ASP) is a powerful declarative
programming paradigm whose main decision problems are located on the second
level of the polynomial hierarchy. Identifying tractable fragments and develop-
ing efficient algorithms for such fragments are thus important objectives in order
to complement the sophisticated ASP systems available to date. Problems are
fixed-parameter tractable (FPT) w.r.t. a parameter k if they can be solved in time
O(f(k) - n®W) for some function f, where n is the input size. While several
FPT results for ASP exist, parameters that relate to directed or signed graphs rep-
resenting the program at hand have been neglected so far. In this paper, we first
give some negative observations showing that directed width measures on the de-
pendency graph of a program do not lead to FPT results. We then consider the
graph parameter of signed clique-width and present a novel dynamic program-
ming algorithm that is FPT w.r.t. this parameter. Clique-width is more general
than the well-known treewidth, and, to the best of our knowledge, ours is the first
FPT algorithm for bounded clique-width for reasoning problems beyond SAT.

1 Introduction

Disjunctive Answer Set Programming (ASP) [11,27,40] is an active field of Al pro-
viding a declarative formalism for solving hard computational problems. Thanks to the
high sophistication of modern solvers [26], ASP was successfully used in several appli-
cations, including product configuration [47], decision support for space shuttle flight
controllers [2], team scheduling [44], and bio-informatics [31].

Since the main decision problems of propositional ASP are located at the second
level of the polynomial hierarchy [22,49], the quest for easier fragments are important
research contributions that could lead to improvements in ASP systems. An interesting
approach to dealing with intractable problems comes from parameterized complexity
theory [20] and is based on the fact that many hard problems become polynomial-time
tractable if some problem parameter is bounded by a fixed constant. If the order of the
polynomial bound on the runtime is independent of the parameter, one speaks of fixed-
parameter tractability (FPT). Results in this direction for the ASP domain include [39]
(parameter: size of answer sets), [38] (number of cycles), [5] (length of longest cycles),
[4] (number of non-Horn rules), and [24] (backdoors). Also related is the parameterized
complexity analysis of reasoning under subset-minimal models, see, e.g., [37].

As many prominent representations of logic programs are given in terms of directed
graphs (consider, e.g., the dependency graph), it is natural to investigate parameters for
ASP that apply to directed graphs. Over the past two decades, various width measures

for directed graphs have been introduced [35, 3, 6, 33, 45]. These are typically smaller
than, e.g., the popular parameter of treewidth [8]. In particular, all these measures are
zero on directed acyclic graphs (DAGs), but the treewidth of DAGs can be arbitrar-
ily high. Moreover, since these measures are based on some notion of “closeness” to
acyclicity and the complexity of ASP is closely related to the “cyclicity” of the rules
in a program, such measures seem promising for obtaining algorithms that solve ASP
in FPT time. Prominent applications of directed width measures include the k-Disjoint
Path Problem [35], query evaluation in graph databases [1], and model checking [10].

Another graph parameter for capturing the structural complexity of a graph is clique-
width [14, 16]. It applies to directed and undirected graphs, and in its general form
(known as signed clique-width) to edge-labeled graphs. It is defined via graph con-
struction where only a limited number of vertex labels is available; vertices that share
the same label at a certain point of the construction process must be treated uniformly
in subsequent steps. Constructions can be given by expressions in a graph grammar (so-
called cwd-expressions) and the minimal number of labels required for constructing a
graph G is the clique-width of G. While clique-width is in a certain way orthogonal
to other directed width measures, it is more general than treewidth; there are classes of
graphs with constant clique-width but arbitrarily high treewidth (e.g., complete graphs).
In contrast, graphs with bounded treewidth also have bounded clique-width [16].

By means of a meta-theorem due to Courcelle, Makowsky, and Rotics [15], one can
solve any graph problem that can be expressed in Monadic Second-Order Logic with
quantification on vertex sets (MSO7) in linear time for graphs of bounded clique-width.
This result is similar to Courcelle’s theorem [13] for graphs of bounded treewidth,
which has been used for the FPT result for ASP w.r.t. treewidth [29]. There, the in-
cidence graph of a program is used as an underlying graph structure (i.e., the graph
containing a vertex for each atom a and rule r of the program, with an edge between a
and r whenever a appears in r). Since the formula given in [29] is in MSO;, the FPT
result for ASP applies also to signed clique-width.

Clique-width is NP-hard to compute [23], which might be considered as an obstacle
toward practical applications. However, one can check in polynomial time whether the
width of a graph is bounded by a fixed k& [43]. (These algorithms involve an additive
approximation error that is bounded in terms of k). Recently, SAT solvers have been
used to obtain sequences of vertex partitions that correspond to cwd-expressions [32]
for a given graph. For some applications, it might not even be necessary to compute
clique-width and the underlying cwd-expression: As mentioned in [25, Section 1.4],
applications from the area of verification are supposed to already come with such an
expression. Moreover, it might even be possible to partially obtain cwd-expressions
during the grounding process of ASP.

This all calls for dedicated algorithms for solving ASP for programs of bounded
clique-width. In contrast to treewidth where the FPT result from [29] has been used for
designing [34] and implementing [41] a dynamic programming algorithm, to the best
of our knowledge there are no algorithms yet that explicitly exploit the fixed-parameter
tractability of ASP on bounded clique-width. In fact, we are not aware of any FPT
algorithm for bounded clique-width for a reasoning problem located on the second level
of the polynomial hierarchy (except [21] from the area of abstract argumentation).

The main contributions of this paper are as follows. First, we show some negative
results for several directed width measures, indicating that the structure of the depen-
dency graph and of various natural directed versions of the signed incidence graph does
not adequately measure the complexity of evaluating the corresponding program.

Second, concerning signed clique-width, we give a novel dynamic programming
algorithm that runs in polynomial time for programs where this parameter is bounded on
their incidence graphs. We do so by suitably generalizing the seminal approach of [25]
for the SAT problem. We also give a preliminary analysis how many signs are required
in order to obtain FPT.

This work is an extended abstract of [7], which contains proofs that we omitted.

2 Preliminaries

Graphs We use standard graph terminology, see for instance the handbook [19]. All
our graphs are simple. An undirected graph G is a tuple (V, E'), where V or V (QG) is the
vertex set and F or E(G) is the edge set. For a subset V' C V(G), we denote by G[V'],
the induced subgraph of G induced by the vertices in V', i.e., G[V’] has vertices V' and
edges { {u,v} € E(G) | u,v € V' }. We also denote by G\ V' the graph G[V (G)\V"].
Similarly to undirected graphs, a digraph D is a tuple (V, A), where V or V(D) is the
vertex set and A or A(D) is the arc set. A strongly connected component of a digraph
D is a maximal subgraph Z of D that is strongly connected, i.e., Z contains a directed
path between each pair of vertices in Z. We denote by UND(D) the symmetric closure
of D, i.e., the graph with vertex set V(D) and arc set { (u,v), (v,u) | (u,v) € A(D) }.
Finally, for a directed graph D, we denote by DI(G), the undirected graph with vertex
set V(G) and edge set { {u,v} | (u,v) € A(D) }.

Parameterized Complexity In parameterized algorithmics [20] the runtime of an algo-
rithm is studied with respect to a parameter k£ € N and input size n. The most favorable
class is FPT (fixed-parameter tractable) which contains all problems that can be de-
cided by an algorithm running in time f(k) - n®(), where f is a computable function.
We also call such an algorithm fixed-parameter tractable, or FPT for short. Formally,
a parameterized problem is a subset of 2* x N, where X is the input alphabet. Let
Ly € X xNand Ly C X5 x N be two parameterized problems. A parameterized
reduction (or FPT-reduction) from Ly to Ly is a mapping P : X7 x N — X5 x N
such that: (1) (z,k) € Ly iff P(x,k) € Lo, (2) the mapping can be computed by
an FPT-algorithm w.r.t. parameter k, and (3) there is a computable function g such
that k' < g(k), where (2/, k") = P(x, k). The class W[1] captures parameterized in-
tractability and contains all problems that are FPT-reducible to PARTITIONED CLIQUE
(the problem of deciding if a k-partite graph contains a clique of size k) when parame-
terized by the size of the solution. Showing W[1]-hardness for a problem rules out the
existence of an FPT-algorithm under the usual assumption FPT # W[1].

Answer Set Programming A program II consists of a set A(II) of propositional
atoms and a set R(II) of rules of the form

a1 V-V ap &= Qgis - my, mt s - - - O,

undirected cycle-rank

directed pathwidth
directed treewidth

Fig. 1. Propagation of hardness results for the considered width measures. An arc (A4, B) in-
dicates that any hardness result parameterized by measure A implies a corresponding hardness
result parameterized by B.

where n > m > land a; € A(II) for 1 < i < n.Eachrule r € R(II) consists of
ahead h(r) = {a1,...,a;} and a body given by p(r) = {a;4+1,...,am} and n(r) =
{@m+1s---san}. Aset M C A(IT) is a called a model of r if p(r) C M and n(r) N
M = 0 imply h(r) N M # (. We denote the set of models of r by Mods(r) and the
models of IT are given by Mods(II) = (", ez Mods(r).

The reduct IT of a program IT with respect to a set of atoms I C A(IT) is the
program IT1 with A(IT!) = A(IT) and R(ITY) = {r* | r € R(II), n(r) NI = ()},
where 7T denotes rule r without negative body, i.e., h(r*) = h(r), p(r™) = p(r), and
n(r™) = 0. Following [27], M C A(II) is an answer set of II if M € Mods(II) and
forno N C M, we have N € Mods(IT M). In what follows, we consider the problem
of ASP consistency, i.e., the problem of deciding whether a given program has at least
one answer set. As shown by Eiter and Gottlob, this problem is X -complete [22].

Graphical Representations of ASP Let I be a program. The dependency graph of
I1, denoted by DEP(IT), is the directed graph with vertex set A(I7) and that contains
an arc (z,y) if there is a rule r € R(IT) such that either z € h(r) and y € p(r) U n(r)
or xz,y € h(r) [24]. Note that there are other notions of dependency graphs used in the
literature, most of them, however, are given as subgraphs of DEP(IT). As we will see
later, our definition of dependency graphs allows us to draw immediate conclusions for
such other notions.

The incidence graph of I, denoted by INC(II), is the undirected graph with ver-
tices A(IT) U R(II) that contains an edge between a rule vertex v € R(II) and a atom
vertex a € A(II') whenever a € h(r) U p(r) Un(r). The signed incidence graph of II,
denoted by SINC(IT), is the graph INC(IT), where addionally every edge of INC(IT)
between an atom « and a rule r is annotated with a label from {h, p,n} depending on
whether a occurs in h(r), p(r), or n(r).

3 Directed Width Measures

Since many representations of ASP programs are in terms of directed graphs, it is nat-
ural to consider parameters for ASP that are tailor-made for directed graphs. Over the
past two decades various width measures for directed graphs have been introduced,

which are better suited for directed graphs than treewidth, on which they are based.
The most prominent of those are directed treewidth [35], directed pathwidth [3], DAG-
width [6], Kelly-width [33], and D-width [45] (see also [18]). Since these width mea-
sures are usually smaller on directed graphs than treewidth, it is worth considering them
for problems that have already been shown to be fixed-parameter tractable parameter-
ized by treewidth. In particular, all of these measure are zero on directed acyclic graphs
(DAGs), but the treewidth of DAGs can be arbitrary high. Moreover, since these mea-
sures are based on some notion of “closeness” to acyclicity and the complexity of ASP
is closely related to the “cyclicity” of the logical rules, one would consider such mea-
sures as promising for obtaining efficient algorithms for ASP.

In this section, we give results for directed width measures when applied to depen-
dency graphs as defined in Section 2. To state our results in the most general manner,
we will employ the parameter cycle-rank [12]. Since the cycle-rank is always greater
or equal to any of the above mentioned directed width measures [30], any (parameter-
ized) hardness result obtained for cycle-rank carries over to the aforementioned width
measures for directed graphs.

Definition 1. Ler D = (V, A) be a directed graph. The cycle-rank of D, denoted by
cr(D), is inductively defined as follows: if D is acyclic, then cr(D) = 0. Moreover, if D
is strongly connected, then cr(D) = 1+ min,cy cr(D \ {v}). Otherwise the cycle-rank
of D is the maximum cycle-rank of any strongly connected component of D.

For example, the cycle-rank of a disjoint union of cycles is 1, and the cycle-rank of a
graph with an edge between each pair of vertices is equal to the number of vertices.

We will also consider a natural “undirected version” of the cycle-rank for directed
graphs, i.e., we define the undirected cycle-rank of a directed graph D, denoted by
cr? (D), to be the cycle-rank of UND(D). It is also well known (see, e.g., [28]) that
the cycle-rank of UND(D) is equal to the treedepth of DI(D), i.e., the underlying undi-
rected graph of D, and that the treedepth is always an upper bound for the pathwidth
and the treewidth of an undirected graph [9]. Putting these facts together implies that
any hardness result obtained for the undirected cycle-rank implies hardness for path-
width, treewidth, treedepth as well as the aforementioned directed width measures. See
also Figure 1 for an illustration how hardness results for the considered width measures
propagate.

Finally, we would like to remark that both the cycle-rank and the undirected cycle-
rank are easily seen to be closed under taking subgraphs, i.e., the (undirected) cycle-
rank of a graph is always larger or equal to the (undirected) cycle-rank of every subgraph
of the graph.

Hardness Results We show that ASP consistency remains as hard as in the general
setting even for instances that have a dependency graph of constant width in terms of
any of the directed width measures introduced.

For our hardness results, we employ the reduction given in [22] showing that ASP
consistency is X1’ -hard in general. The reduction is given from the validity problem for
quantified Boolean formulas (QBF) of the form: @ := dx - - - 3z, Vy1 - - - Yy, \/;:1 D;
where each D; is a conjunction of at most three literals over the variables z1, ...,z

1 V1 Y1 Z1
x1 Vv — T V V2 —
<> <>
Y1 V21 Yo \V 29 O O O O
Y2 22

Y1 —w Yo — W L2 U2

Z1 — W Z9 — W OQC}\
w < Y1, 21 w < Y2, 22

W < T1, 22 w < V2,Y2

— —w

w
Fig. 2. Left: The program II(®) for the formula @ := Jz13z2Vy1Vy2 (x1 A —y2) V (mz2 A y2).
Right: The symmetric closure of the dependency graph of I7(®)

and y1,...,Ymn. We will denote the set of all QBF formulas of the above form in the
following by QBFIQ)EF.

Given ¢ < QBFQEF, a program II(®) is constructed as follows. The atoms of
II(P) are 1, V1, ..., T, Uny Y1, 215 - « - 5 Y, 2m» and w and IT(P) contains the follow-
ing rules:

— forevery ¢ with 1 < ¢ < n, the rule z; V v; <,

— forevery ¢ with 1 <4 < m,therules y; V z; <, y; < w, 2; < w, and w < y;, 2;,

— forevery j with 1 < j < r, the rule w < o(L;1),0(Lj2),0(L;3), where L;;
(for I € {1,2,3}) is the I-th literal that occurs in D; (if |D;| < 3, the respective
parts are omitted) and the function o is defined by setting o (L) to v; if L = —x;,
to z; if L = —y;, and to L otherwise.

— the rule <~ —w (i.e., with an empty disjunction in the head).

It has been shown [22, Theorem 38] that a QBFIQ)EF formula @ is valid iff I7(®) has

an answer set. As checking validity of QBFIQ)E,F formulas is Ef -complete [48], this

reduction shows that ASP is Y£’-hard.
Lemma 1. Let & be a QBFYY', then cr* (DEP(11(®))) < 2.

Together with our considerations from above, we obtain:

Theorem 1. ASP consistency is XL -complete even for instances whose dependency
graph has width at most two for any of the following width measures: undirected cycle-
rank, pathwidth, treewidth, treedepth, cycle-rank, directed treewidth, directed path-
width, DAG-width, Kelly-width, and D-width.

Observe that because the undirected cycle-rank is closed under taking subgraphs and
we chose the “richest” variant of the dependency graph, the above result carries over to
the other notions of dependency graphs of ASP programs considered in the literature.
The above result draws a very negative picture of the complexity of ASP w.r.t. re-
strictions on the dependency graph. In particular, not even structural restrictions of the
dependency graph by the usually very successful parameter treewidth can be employed
for ASP. This is in contrast to our second graphical representation of ASP, the incidence
graph, for which it is known that ASP is fixed-parameter tractable parameterized by the
treewidth [34]. It is hence natural to ask whether the same still holds under restrictions
provided by one of the directed width measures under consideration. We first need to
discuss how to obtain a directed version of the usually undirected incidence graph.

For this, observe that the incidence graph, unlike the signed incidence graph, provides
merely an incomplete model of the underlying ASP instance. Namely, it misses the in-
formation about how atoms occur in rules, i.e., whether they occur in the head, in the
positive body, or in the negative body of a rule. A directed version of the incidence
graph should therefore use the additional expressiveness provided by the direction of
the arcs to incorporate the information given by the labels of the signed incidence graph.
For instance, a natural directed version of the incidence graph could orient the edges
depending on whether an atom occurs in the head or in the body of a rule. Clearly, there
are many ways to orient the edges and it is not a priori clear which of those orientations
leads to a directed version of the incidence graph that is best suited for an application of
the directed width measures. Every orientation should, however, be consistent with the
labels of the signed incidence graph, i.e., whenever two atoms are connected to a rule
via edges having the same label, their arcs should be oriented in the same way. We call
such an orientation of the incidence graph a homogeneous orientation.

Lemma 2. Let ® be a QBFg gF , then the cycle-rank of any homogeneous orientation of
the incidence graph of II(P) is at most one.

We can thus state the following result:

Theorem 2. ASP consistency is $.% -complete even for instances whose directed inci-
dence graph has width at most one for any of the following width measures: cycle-rank,
directed treewidth, directed pathwidth, DAG-width, Kelly-width, and D-width.

4 Clique-Width

The results in [29] imply that bounding the clique-width of the signed incidence graph
of a program leads to tractability.

Proposition 1. For a program II such that the clique-width of its signed incidence
graph is bounded by a constant, we can decide in linear time whether II has an answer
set.

This result has been established via a formulation of ASP consistency as an MSO;
formula. Formulating a problem in this logic automatically gives us an FPT algorithm.
However, such algorithms are primarily of theoretical interest due to huge constant
factors, and for actually solving problems, it is preferable to explicitly design dynamic
programming algorithms [17].

Since our main tractability result considers the clique-width of an edge-labeled
graph, i.e., the signed incidence graph, we will introduce clique-width for edge-labeled
graphs. This definition also applies to graphs without edge-labels by considering all
edges to be labeled with the same label. A k-graph, for k > 0, is a graph whose ver-
tices are labeled by integers from {1, ..., k} =: [k]. Additionally, we also allow for the
edges of a k-graph to be labeled by some arbitrary but finite set of labels (in our case
the labels will correspond to the signs of the signed incidence graph). The labeling of
the vertices of a graph G = (V, E) is formally denoted by a function £ : V' — [k].
We consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call the

3(y) x

— 3
e O~ P32 =1 5 —) 2(r) r < > s
s —&_ Sy T

1(z)

Fig. 3. A parse tree (left) of a 3-expression for SINC(IT) (right), where IT is the program con-
sisting of the rules z <— —y and <— =, ~y

k-graph consisting of exactly one vertex v (say, labeled by ¢ € [k]) an initial k-graph
and denote it by i(v).

Graphs can be constructed from initial k-graphs by means of repeated application
of the following three operations.

— Disjoint union (denoted by &);

— Relabeling: changing all labels 7 to j (denoted by p;_;);

— Edge insertion: connecting all vertices labeled by ¢ with all vertices labeled by j
via an edge with label ¢ (denoted by nﬁ ;); @ # j; already existing edges are not
doubled.

A construction of a k-graph G using the above operations can be represented by an
algebraic term composed of i(v), &, p;—;, and nﬁj, (1,5 € [k], and v a vertex). Such
a term is then called a cwd-expression defining G. For any cwd-expression o, we use
L, : V — [K] to denote the labeling of the graph defined by o. A k-expression is a
cwd-expression in which at most % different labels occur. The set of all k-expressions
is denoted by C'Wj.

Definition 2. The clique-width of a graph G, cwd(G), is the smallest integer k such
that G can be defined by a k-expression.

For instance, trees have clique-width 3 and co-graphs have clique-width 2 (co-
graphs are exactly given by the graphs which are P;-free, i.e., whenever there is a path
(a, b, c,d) in the graph then {a, c}, {a, d} or {b, d} is also an edge of the graph).

We have already introduced the notion of incidence graphs (resp. signed incidence
graphs) of a program in Section 2. We thus can use cwd-expressions to represent pro-
grams.

Example 1. Let IT be the program with A(IT) = {x,y} and R(II) = {r, s}, where r
is the rule & < —y and s is the rule < x, —y. Its signed incidence graph SINC(IT) can
be constructed by the 3-expression 75 (p3_>2 (1] s(nt 2 (1(z)®2(r)) B3(s))) 693(y)),
as depicted in Figure 3.

Since every k-expression of the signed incidence graph can be transformed into a
k-expression of the unsigned incidence graph (by replacing all operations of the form
nf’j with 7§*;, where « is new label), it holds that cwd(INC(I1)) < cwd(SINC(IT)).

Proposition 2. Let IT be a program. It holds that cwd(INC(IT)) < cwd(SINC(IT)),
and there is a class C of programs such that, for each IT € C, cwd(INC(IT)) = 2 but
cwd(SINC(IT)) is unbounded.

For showing the second statement of the above proposition, consider a program I7,, that
has n? atoms and n? rules (for some n € N), such that every atom occurs in every rule
of IT,,. Because the incidence graph is a complete bipartite graph it has clique-width
two and moreover it contains a grid G of size n x n as a subgraph. Assume that 7,
is defined in such a way that an atom a occurring in a rule r is in the head of r if the
edge between a and r occurs in the grid G' and otherwise a is in the (positive) body of
7. Then, the clique-width of SINC(I1,,) is at least the clique-width of the n x n grid G,
which grows with n [36]. Hence, the class C containing II,, for every n € N shows the
second statement of the above proposition.

4.1 Algorithms

In this section, we provide our dynamic programming algorithms for deciding existence
of an answer set. We start with the classical semantics for programs, where it is suffi-
cient to just slightly adapt (a simplified version of) the algorithm for SAT by [25]. For
answer-set semantics, we then extend this algorithm in order to deal with the intrinsic
higher complexity of this semantics.

Both algorithms follow the same basic principles by making use of a k-expression
o defining a program 7 via its signed incidence graph in the following way: We assign
certain objects to each subexpression of ¢ and manipulate these objects in a bottom-up
traversal of the parse tree of the k-expression such that the objects in the root of the parse
tree then provide the necessary information to decide the problem under consideration.
The size of these objects is bounded in terms of k£ (and independent of the size of IT)
and the number of such objects required is linear in the size of I7. Most importantly, we
will show that these objects can also be efficiently computed for bounded k. Thus, we
will obtain the desired linear running time.

Classical Semantics
Definition 3. A tuple Q = (T, F,U) with T, F,U C [k] is called a k-triple, and we
refer to its parts using Qp = T, Qr = F, and Qu = U. The set of all k-triples is
given by Q..

The intuition of a triple (T, F, U) is to characterize a set of interpretations I in the
following way:

— For each i € T, at least one atom with label 7 is true in [;
— for each 7 € F, at least one atom with label 7 is false in [;
— for each ¢ € U, there is at least one rule with label ¢ that is “not satisfied yet”.

Formally, the “semantics” of a k-triple () with respect to a given program I7 is given
as follows.

Definition 4. Ler QQ € Oy, and II be a program whose signed incidence graph (V, E)
is labeled by L : V' — [k]. A IT-interpretation of Q is a set I C A(II) that satisfies

Qr ={L(a) [a €1},
Qr ={L(a) |a € A(IT)\ I}, and
Qu ={L(r) | r € R(II), I ¢ Mods(r)}.

Example 2. Consider again program /I from Example 1 and the 3-expression o from
Figure 3. Let @ be the 3-triple ({1}, {3}, {2}). Observe that {x} is a IT-interpretation
of Q: It sets x to true and y to false, and £, (z) € Qr and L, (y) € Q r hold as required;
the rule s is not satisfied by {«}, and indeed £, (s) € Qu. We can easily verify that no
other subset of A(IT) is a IT-interpretation of): Each IT-interpretation of) must set
x to true and y to false, as these are the only atoms labeled with 1 and 3, respectively.

We use the following notation for k-triples @, Q’, and set S C [].

- ReQ =(QrUQr,QrUQEQuUQy)

- Q7 =(Q7,Q% "7, Q") where for S C [k,
S77 = S\ {i} U {j}ifi € Sand S"77 = S otherwise.

- Q%% = (Qr,Qr,Qu\ {7}) if i € 8 Q%" = Q otherwise.

Using these abbreviations, we define our dynamic programming algorithm: We as-
sign to each subexpression o of a given k-expression a set of triples by recursively
defining a function f, which associates to ¢ a set of k-triples as follows.

Definition 5. The function f : CWy — 22 is recursively defined along the structure
of k-expressions as follows.

i(v) = {{({i},@,[b), (0,{i},0)} ifvis an atom node
{(@) {})} if v is a rule node

~

(

(01@02) ={Q® Q" | Q € f(01),Q" € f(o2)}
(pﬂ 0)) ={Q"™7 Qe f(o)}

(nit;(0)) = f(n;(0)) = {Q¥" [Q € f(o)}
(o)) ={Q9r " | Q € f(0)}

P
]
Example 3. Consider again program I7 from Example 1 and the 3-expression depicted
in Figure 3. To break down the structure of o, let o, . . . , 0 be subexpressions of o such
that ¢ = % 5(01), 01 = 02 © 3(y), 02 = p32(03), 03 = 1] 3(04), 04 = 05 @ 3(s),
05 = 1 5(06) and 06 = 1(z) & 2(r). We get f(1(z)) = {({1},0,0),(0.{1},0)}
and f(2(r)) = {(0,0,{2})}. These sets are then combined to f(c6) = {({1},0,{2}),
(0,{1},{2})}. The program defined by og consists of atom x and rule r, but z does
not occur in r yet. Accordingly, the k-triple ({1}, 0, {2}) models the situation where z
is set to true, which does not satisfy r (since the head and body of r are still empty),
hence the label of r is in the last component; the 3-triple (0, {1}, {2}) represents z be-
ing set to false, which does not satisfy r either. Next, o5 causes all atoms with label
1 (i.e., just x) to be inserted into the head of all rules with label 2 (i.e., just r), and
we get f(o5) = {({1},0,0), (0,{1},{2})}. We obtain the first element ({1},0,0) =
QOm12 from Q = ({1}, 0, {2}) by removing the label 2 from Qy; because 1 € Q.
The idea is that the heads of all rules labeled with 2 now contain all atoms labeled
with 1, so these rules become satisfied by every interpretation that sets some atom
labeled with 1 to true. Next, o4 adds the rule s with label 3 and we get f(04) =
{({1},0,{3}),(0,{1},{2,3})}. The edge added by o3 adds all atoms with label 1

o

7

(i.e., just x) into the positive body of all rules with label 3 (i.e., just s), which results
in f(o3) = {({1},0,{3}), (0, {1}, {2})}. Observe that the last component of the sec-
ond element no longer contains 3, i.e., setting x to false makes s true. Now the label
3 is renamed to 2, and we get f(o2) = {({1},0,{2}), (0, {1}, {2})}. Note that now
r and s are no longer distinguishable since they now share the same label. Hence all
operations that add edges to r will also add edges to s and vice versa. In o1, atom y
is added with label 3 and we get four 3-triples in f(oy): From ({1},0,{2}) in f(o2)
we obtain ({1,3},0,{2}) and ({1}, {3}, {2}), and from (0, {1}, {2}) in f(o2) we get
({3},{1},{2}) and (0, {1, 3},{2}). In o, we add a negative edge from all atoms la-
beled with 3 (i.e., just) to all rules labeled with 2 (both r and s). From ({1, 3}, 0, {2})
in f(o1) we now get ({1,3},0,0), from ({3}, {1}, {2}) we get ({3}, {1}, D), and the
3-triples ({1}, {3},{2}) and (0, {1, 3}, {2}) from f(o1) occur unmodified in (o). As
we will prove shortly, for each k-triple @ in f(c), there is a II-interpretation of Q. So
if there is a k-triple @ in f (o) such that Qy = (), then IT has a classical model due to
the definition of Q. For instance, ({1, 3}, 0, () has a II-interpretation {x,y}, which is
obviously a model of I].

Lemma 3. Let IT be a program and 0 be a k-expression for SINC(II). For every set
I C A(ID), there is a k-triple Q € f(0) such that I is a II-interpretation of Q, and for
every k-triple QQ € f(0) there is a set I C A(IT) such that I is a II-interpretation of
Q.

Theorem 3. Let k be an integer and II be a program. Given a k-expression for the
signed incidence graph of 11, we can decide in linear time whether 1I has a model.

Answer-Set Semantics For full disjunctive ASP we need a more involved data struc-
ture.

Definition 6. A pair (Q, ") with with Q € Qy and I’ C Qy, is called a k-pair. The set
of all k-pairs is given by Py.

Given a k-pair (Q, I), the purpose of @ is, as for classical semantics, to represent
II-interpretations I (that in the end correspond to models). Every k-triple in I” repre-
sents sets J of atoms such that J C I. If, in the end, there is such a set .J that still
satisfies every rule in the reduct w.r.t. I, then we conclude that I is not an answer set.

Definition 7. Let Q € Qy, let IT be a program whose signed incidence graph (V, E)
is labeled by L : V — [k], and let I C A(II). A IT!-interpretation of Q is a set
J C A(IT) such that

Qr={L(a)|a € J},

Qr ={L(a) |a € A(IT)\ J}, and

Qu ={L(r) |r € RUI), n(r)NI =10, J ¢ Mods(r™)}.

We can now define our dynamic programming algorithm for ASP:

Definition 8. The function g : CW;, — 2P* is recursively defined along the structure
of k-expressions as follows.

- 96) = {({.0.0). {0410}, (0.:}.0), 0)}
if v is at atom node

- g(i(v)) = {((@,@, {i}), @)} if v is a rule node

- 9(01@02) = {(Ql@QQ’RQl,Qz,Fl,F2 | (le) € g(al))}’ where RQ17Q27F1,F2 =
{Sl ® Ss ‘ S; GFi}.U'{Ql_@tSWSEFQ}U{S@QZ | S€F1}>

- 9(pi-j(0) ={((Q"7 {R"™ |ReT}) | (Q,T) € g(o)}

= g(n};(0)) = {(Q9 {R"T | Re I'}) [(Q,T) € g(0)}
= g(nf;(0)) = {(Q9rI {RFr"7 | Re I'}) | (Q. 1) € g(o)}
- g(np;(0)) = {(Q9* {Re"" | Re T'}) | (Q,T) € g(0)}

Note the use of Q7 in R¥7:%J in the definition of g(ni;(o)): Whenever an inter-
pretation I represented by () sets an atom from the negative body of a rule r to true, the
rule has no counterpart in the reduct w.r.t. I, so, for each subset J of I, we remove r
from the set of rules whose counterpart in the reduct is not yet satisfied by .J.

Example 4. Let II be the program consisting of a single rule <— —z, which we denote
by r, and let 0 = n}5(1(x) ® 2(r)). Let (Q, I") be the k-pair in g(1(x)) with Q =
({1},0,0) and I" = {(0,{1},0)}. The k-triple Q represents the set of atoms {x}.
Since this set has the proper subset (), there is a k-triple in I" that indeed corresponds to
this subset. Now let (Q,I") = ((0,{1},0),) be the other k-pair in g(1(x)). Here Q
represents the empty set of atoms, which has no proper subsets, hence I is empty. For
the single k-pair ((0,0, {2}),) in g(2(r)), the situation is similar. Next, at g(1(z) &
2(r)), we combine every k-pair (Q1, I'1) from g(1(x)) with every k-pair (Q2, I'3) from
9(2(r)) to a new k-pair. For instance, consider Q1 = ({1}, 0, 0) and I1 = {S}, where

= (0,{1},0), as well as Q2 = (0,0,{2}) and I = (. By definition of g, we
obtain a new k-pair (Q,I"), where Q = Q1 ® Q2 = ({1},0,{2}), and I" contains the
single element Q2 & S = (0, {1}, {2}). Recall that the purpose of @ is to represent
sets of atoms I, and each element of I" shall represent proper subsets of I; in this
case, @ represents {x}, and the element Q2 & S in I" represents the proper subset (.
Next, at g(o) we introduce a negative edge from « to r. From the k-pair (@, {S}) in
g(1(z) @ 2(r)), where Q = ({1},0,{2}) and S = (0, {1}, {2}), we obtain the k-pair
(Q',{S"}) in g(o), where Q' = Q97+ = ({1},0,0) (i.e., the label 2 from Q; has
disappeared) and " = S9743 = ((), {1},0). Here 2 has disappeared from Sy; because
the reduct w.r.t. all sets of atoms represented by Q' no longer contains any rule labeled
with 2. Note that the classical model {x} represented by @’ is no answer set even though

7, = (0. The reason is that S” witnesses (by S, = 0)) that) € Mods(IT{#1).

Lemma 4. Ler IT be a program and 0 be a k-expression for SINC(IT). For every set
I C A(II) there is a k-pair (Q,I") € g(0) such that (i) I is a II-interpretation of Q
and (ii) for every set J C I there is a k-triple R € I such that J is a I1! -interpretation
of R. Moreover, for every k-pair (Q,I") € g(0) there is a set I C A(IT) such that (i’)
1 is a II-interpretation of Q) and (ii’) for each k-triple R € I', there is a set J C I such
that J is a IT' -interpretation of R.

Theorem 4. Let k be a constant and I be a program. Given a k-expression for SINC(IT),
we can decide in linear time whether II has an answer set.

4.2 The Role of Signs for Results on Clique-Width

As we have seen, ASP parameterized by the clique-width of the signed incidence graph
is FPT. As the clique-width of the (unsigned) incidence graph is at most the clique-width
of the signed incidence graph (Proposition 2), an FPT result w.r.t. the clique-width of
the (unsigned) incidence graph would be significantly stronger. The propositional satis-
fiability problem (SAT) was shown in [25] to be FPT parameterized by the clique-width
of the signed incidence graph, and the authors conjectured that the same should hold for
the unsigned version. Surprisingly, it turned out not to be the case [42]. The situation
for ASP is slightly more involved. While there are only two signs for SAT (i.e., whether
a variable occurs positively or negatively in a clause), ASP has three signs (h, p, n). So
how many signs are necessary to obtain tractability for ASP? For this, let SINC, (I7),
for L C {h,p,n}, be the (“semi-signed”) incidence graph obtained from SINC(IT)
by joining all labels in L, i.e., every label in L is renamed to a new label a. We show
that joining any set L of labels other than {h,n} leads to intractability for ASP param-
eterized by the clique-width of SINC,(IT). Together with our tractability result w.r.t.
the clique-width of SINC(IT) (Theorem 4), this provides an almost complete picture of
the complexity of ASP parameterized by clique-width. We leave it open whether ASP
parameterized by the clique-width of SINCyy, ,,3 (IT) is FPT.

Theorem 5. Let L. C {h,p,n} with |L| > 1 and L # {h,n}, then ASP is W[1]-hard
parameterized by the clique-width of SINCy,(II).

5 Conclusion

In this paper, we contributed to the parameterized complexity analysis of ASP. We
first gave negative results: Most directed width measures (applied to the dependency
graph or incidence graph of a program) do not lead to FPT. Then we turned a theo-
retical tractability result (which follows from [29]) for the parameter clique-width (of
the signed incidence graph of a program) into a novel dynamic programming algorithm,
which is applicable to arbitrary programs when given a k-expression. It is expected to be
efficient for small k, i.e., programs whose signed incidence graph has low clique-width.
Beside studying different parameters (e.g., rank-width), future work includes the
complexity of ASP parameterized by the clique-width of SINCyy, 3 (I7) and of the
unsigned incidence graph (where SAT is in the class XP [46]). Another topic is which
classes of non-ground ASP programs preserve bounded clique-width of the input.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF)
projects P25518 and Y698.

References

1. Bagan, G., Bonifati, A., Groz, B.: A trichotomy for regular simple path queries on graphs.
In: Proc. PODS. pp. 261-272. ACM (2013)

2. Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems.
Ann. Math. Artif. Intell. 47(1-2), 183-219 (2006)

10.

11.

12.

13.

14.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

. Bardt, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combina-

torics 22(2), 161-172 (2006)

. Ben-Eliyahu, R.: A hierarchy of tractable subsets for computing stable models. J. Artif. Intell.

Res. (JAIR) 5, 27-52 (1996)

. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann.

Math. Artif. Intell. 12(1-2), 53—-87 (1994)

. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzélek, J.: The dag-width of directed

graphs. Journal of Combinatorial Theory, Series B 102(4), 900-923 (2012)

. Bliem, B., Ordyniak, S., Woltran, S.: Clique-width and directed width measures for answer-

set programming. CoRR abs/1606.09449 (2016), http://arxiv.org/abs/1606.
09449

. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1-21 (1993)
. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, path-

width, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238-255 (1995)
Bojaiczyk, M., Dittmann, C., Kreutzer, S.: Decomposition theorems and model-checking
for the modal p-calculus. In: Proc. CLS/LICS. pp. 17:1-17:10. ACM (2014)

Brewka, G., Eiter, T., Truszczysiski, M.: Answer set programming at a glance. Comm. ACM
54(12), 92-103 (2011)

Cohen, R.S.: Transition graphs and the star height problem. In: Proc. of the 9th Annual Sym-
posium on Switching and Automata Theory. pp. 383-394. IEEE Computer Society (1968)
Courcelle, B.: Recognizability and second-order definability for sets of finite graphs. Tech.
Rep. 1-8634, Université de Bordeaux (1987)

Courcelle, B., Engelfriet, J., Rozenberg, G.: Context-free handle-rewriting hypergraph gram-
mars. In: Proc. Graph-Grammars. LNCS, vol. 532, pp. 253-268 (1991)

. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on

graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125-150 (2000)

Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discr. Appl. Math.
101(1-3), 77-114 (2000)

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

. Dehmer, M., Emmert-Streib, F. (eds.): Quantitative Graph Theory, chap. Width-Measures for

Directed Graphs and Algorithmic Applications. CRC Press (2014)

Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173. Springer
(2012)

Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Com-
puter Science, Springer (2013)

Dvordk, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded
clique-width. In: Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol.
216, pp. 219-230. IOS Press (2010)

Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Ann. Math. Artif. Intell. 15(3—4), 289-323 (1995)

Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM
J. Discrete Math. 23(2), 909-939 (2009)

Fichte, J., Szeider, S.: Backdoors to tractable answer set programming. Artif. Intell. 220,
64-103 (2015)

Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of
bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511-529 (2008)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-
lishers (2012)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365-386 (1991)

Giannopoulou, A.C., Hunter, P., Thilikos, D.M.: LIFO-search: A min-max theorem and a
searching game for cycle-rank and tree-depth. Discrete Applied Mathematics 160(15), 2089—
2097 (2012)

Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge
representation and reasoning. Artif. Intell. 174(1), 105-132 (2010)

Gruber, H.: Digraph complexity measures and applications in formal language theory. Dis-
crete Mathematics & Theoretical Computer Science 14(2), 189-204 (2012)

Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez,
J.: Exhaustively characterizing feasible logic models of a signaling network using answer
set programming. Bioinformatics 29(18), 2320-2326 (2013), erratum see Bioinformatics 30,
13, 1942.

Heule, M., Szeider, S.: A SAT approach to clique-width. ACM Trans. Comput. Log. 16(3),
24 (2015)

Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings.
TCS 399(3), 206-219 (2008)

Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth. In: Proc.
IJCAL pp. 816-822 (2009)

Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Com-
binatorial Theory, Series B 82(1), 138-154 (2001)

Kaminski, M., Lozin, V.V., Milanic, M.: Recent developments on graphs of bounded clique-
width. Discrete Applied Mathematics 157(12), 2747-2761 (2009)

Lackner, M., Pfandler, A.: Fixed-parameter algorithms for finding minimal models. In: Proc.
KR. pp. 85-95. AAAI Press (2012)

Lin, F, Zhao, X.: On odd and even cycles in normal logic programs. In: Proc. AAAI pp.
80-85. AAAI Press / The MIT Press (2004)

Lonc, Z., Truszczynski, M.: Fixed-parameter complexity of semantics for logic programs.
ACM Trans. Comput. Log. 4(1), 91-119 (2003)

Marek, V.W., Truszczyniski, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: The Logic Programming Paradigm — A 25-Year Perspective, pp. 375-398.
Springer Verlag (1999)

Morak, M., Pichler, R., Riimmele, S., Woltran, S.: A dynamic-programming based ASP-
solver. In: Proc. JELIA’10. pp. 369-372 (2010)

Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF
formulas. TCS 481, 85-99 (2013)

Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory
Ser. B 96(4), 514-528 (2006)

Ricca, F,, Grasso, G., Alviano, M., Manna, M., Lio, V., liritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. TPLP 12, 361-381 (4 2012)
Safari, M.A.: D-width: A more natural measure for directed tree width. In: Proc. MFCS.
LNCS, vol. 3618, pp. 745-756. Springer (2005)

Slivovsky, F., Szeider, S.: Model counting for formulas of bounded clique-width. In: Proc.
ISAAC. LNCS, vol. 8283, pp. 677-687. Springer (2013)

Soininen, T., Niemeld, I.: Developing a declarative rule language for applications in product
configuration. In: Proc. PADL. LNCS, vol. 1551, pp. 305-319. Springer Verlag (1998)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. Theory
of Computing. pp. 1-9. ACM (1973)

Truszczynski, M.: Trichotomy and dichotomy results on the complexity of reasoning with
disjunctive logic programs. TPLP 11(6), 881-904 (2011)

