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Abstract. The CDCL algorithm is the leading solution adopted by state-of-the-art
solvers for SAT, SMT, ASP, and others. Experiments show that the performance
of CDCL solvers can be significantly boosted by embedding domain-specific
heuristics, especially on large real-world problems. However, a proper integration
of such criteria in off-the-shelf CDCL implementations is not obvious. In this
paper, we distill the key ingredients that drive the search of CDCL solvers, and
propose a general framework for designing and implementing new heuristics. We
implemented our strategy in an ASP solver, and we experimented on two industrial
domains. On hard problem instances, state-of-the-art implementations fail to find
any solution in acceptable time, whereas our implementation is very successful
and finds all solutions.

1 Introduction

The Conflict Driven Clause Learning (CDCL) algorithm [25] is the leading solution
adopted by state-of-the-art solvers for Boolean Satisfiability (SAT) [7], Satisfiability
Modulo Theories (SMT) [23], and Answer Set Programming (ASP) [9] to mention a few.
Notably, CDCL solvers have been applied with success for solving several real-world
problems ranging from hardware and software model checking, planning, equivalence
checking, bioinformatics, configuration problems, hardware and software test, software
package dependencies, cryptography and more [7].

As a matter of fact the performance of a CDCL solver heavily depends on the
adoption of heuristics that drive the search for solutions. Among these, the heuristic
for the selection of the branching literal (i.e., the criterion determining the literal to be
assumed true at a given stage of the computation) can dramatically affect the overall
performance of an implementation [7]. State-of-the-art CDCL implementations feature
very good general purpose heuristics belonging to the family of VSIDS [6, 12, 22]. Since
their introduction, VSIDS heuristics proved to be a key ingredient for solving many
relevant problems [6]. Nonetheless, no general heuristic is known to be the best possible
choice for all problems [21]. Pioneering work on employing domain-specific heuristics
corroborates the validity of that idea. In particular, Beame et al. demonstrated the utility
of a domain-specific branching heuristic for solving the pebbling formulas with a CDCL
solver [5]; and Rintanen proposed to replace the standard VSIDS by a domain-heuristics
for efficiently solving planning as satisfiability [24]. Moreover, Gerhard Friedrich in his



joint invited talk at CP-ICLP 2015 described a number of experiences in which “domain-
specific heuristics turned out to be the key component in several industrial applications
of problem solvers” [14]. However, as argued in [24]: “the main challenge in defining
a variable selection scheme is its integration in the CDCL algorithm in a productive
way”. Indeed, domain experts can quickly provide promising heuristic-criteria based on
properties of solutions, but they may not have the knowledge and the experience to plug
them in CDCL implementations.

The goal of the paper is to ease the design and the evaluation of new heuristics
for CDCL solvers as well as to reduce the efforts needed to provide effective imple-
mentations. To this end we distill the key ingredients that drive the search of CDCL
solvers, and propose a general framework for designing and implementing new heuristics.
Useless to say that one could invent new heuristics based on other different “ingredients”.
Nevertheless, our framework is quite rich and flexible, and indeed it covers the definition
of the most popular heuristics for CDCL, as well as enables the definition of interesting
problem-specific heuristics. Moreover, further features could be easily incorporated.
A number of examples are provided to demonstrate the applicability of the proposed
framework for defining a variety of known heuristic criteria from the literature [6, 24].
Pragmatic evidence of the benefits of our framework in devising problem-specific heuris-
tics is provided by reporting on a use case where two hard industrial domains defined by
Siemens, the Partner Units Problem (PUP) [26] and Combined Configuration Problem
(CCP) [20], are solved efficiently.

In our use case, the framework has been implemented by extending the ASP solver
WASP [1]. Our implementation offers a wide range of possibilities to end users for devel-
oping new heuristics. In particular, it offers multi-language support including scripting
languages for fast prototyping, an embedded C++ interface for performance-oriented
implementations, as well as heuristic definition by means of declarative predicate-based
paradigms.

Experiments on PUP and CCP confirm the viability of the framework in real-world
scenarios, and the effectiveness of our implementation that is able to solve successfully
hard problem instances which were not solvable by state-of-the-art ASP solvers. Further-
more, we were able to solve hardest CCP instances for which no solution was known
before.

2 An overview of the CDCL algorithm

In this section we provide some basic knowledge about the Conflict-Driven Clause
Learning (CDCL) algorithm [25] for solving the satisfiability problem (SAT) [6]. The
Conflict-Driven Clause Learning (CDCL) [25] backtracking search algorithm is a de facto
standard for the satisfiability problem (SAT) [4, 6]. During the recent years, CDCL has
been extended in order to fit specific requirements of formalisms in the neighborhood of
SAT, e.g. Satisfiability Modulo Theories and Answer Set Programming. In the following,
we first introduce some basic concepts of the satisfiability problem and then we describe
the CDCL algorithm.

SAT. Let A be a fixed, countable set of propositional atoms including ⊥. A literal `
is either an atom a or its negation ¬a, and atom(`) = a denotes the atom associated



to `. The complement of ` is denoted by `, where a = ¬a and ¬a = a for an atom a.
For a set L of literals, L := {` | ` ∈ L}, L+ := L ∩ A, and L− := L ∩ A. A (partial)
interpretation is a set of literals I containing ¬⊥. I is inconsistent if I+ ∩ I− 6= ∅,
otherwise I is consistent. I is total if I+ ∪ I− = A. Given an interpretation I , a literal
` is true if ` ∈ I; is false if ` ∈ I , and is undefined otherwise. A clause ϕ is a set of
literals, and a formula Γ is a set of clauses. An interpretation I satisfies a clause ϕ if
ϕ ∩ I 6= ∅. A consistent, total interpretation I is a model of a formula Γ if all clauses in
Γ are satisfied. A formula Γ is said to be consistent if it admits some model, inconsistent
otherwise. Given a formula Γ , the SAT problem consists in determining whether Γ is
consistent.

Example 1. Consider the formula Γ = {{a, b,¬c}, {a}, {¬b}, {c, d}, {c,¬d}}. I =
{a,¬b, c, d} is a model of Γ .

CDCL algorithm. The CDCL algorithm takes as input a formula Γ , and determines
whether it is consistent. The first step of the algorithm consists of the simplification of
Γ . Polynomial algorithms for clause rewriting and variable elimination are applied on
Γ , which strengthen and/or remove redundant clauses [11]. After the simplifications
step, the partial interpretation I is set to {¬⊥}, and the backtracking search starts. First,
I is extended with all the literals that can be deterministically inferred by applying
some inference rule (propagation step). The main inference rule of a SAT solver is unit
propagation that extends I by an undefined literal ` whenever there is a clause ϕ ∈ Γ
such that ` ∈ ϕ and ϕ \ ` ⊆ I . Three cases are possible after a propagation step is
completed: (i) I is consistent but not total. In that case, an undefined literal ` (called
branching literal) is chosen according to some heuristic criterion, and is added to I .
Then, a propagation step is performed that infers the consequences of this choice. (ii) I
is inconsistent, thus there is a conflict, and I is analyzed. The reason of the conflict is
modeled by a fresh clause ϕ that is added to Γ (clause learning), e.g. by applying the first
Unique Implication Point (UIP) technique [28]. Moreover, the algorithm backtracks (i.e.
choices and their consequences are undone) until the consistency of I is restored. Then
the algorithm propagates inferences starting from the fresh clause ϕ. Otherwise, if the
consistency of I cannot be restored, the algorithm terminates returning INCONSISTENT.
Finally, in case (iii) I is consistent and total, i.e. I is a model, the algorithm terminates
returning CONSISTENT.

Example 2. Consider the formula Γ of Example 1. The search starts with I := {¬⊥}.
Unit propagation extends I with a and ¬b to satisfy clauses {a} and {¬b}. No other
inferences can be done, thus a choice is performed among c, ¬c, d, and ¬d. Choosing ¬c
would lead to an inconsistency, while all other choices would directly lead to a model.

Heuristics. It is well-known that the selection the branching literal plays a crucial role for
efficiency. Nowadays, state-of-the-art solvers, such as LINGELING [6] and GLUCOSE [4],
implement branching criteria belonging to the VSIDS [22] family that are a variant
of the MINISAT [12] heuristic. Thus, in the following, the MINISAT [12] heuristic is
referred to as the default branching heuristic of a CDCL solver. The MINISAT heuristic
is based on the activity value for each atom in the input formula Γ , which is initially
set to 0. The activity of atom(`) is incremented by a value inc when a literal ` occurs



CDCL −→ Driver: Events

ONSEARCH(Γ ′,A′)
Triggered when the backtracking search starts. Γ ′ andA′ are the formula and the atoms
after the simplifications, resp.

ONINCOCHOICE(`)
Triggered when the choice ` led to an inconsistency.

ONCONFLICT(`)
Triggered when a conflict is detected after the choice of `.

ONLEARNCLAUSE(ϕ)
Triggered when the clause ϕ is learned.

ONLITINCONFLICT(`)
Triggered when the literal ` is involved in the creation of a clause to learn, e.g., while
applying the first UIP schema.

ONDELETION(ϕ)
Triggered when the clause ϕ has been removed.

ONRESTART()
Triggered when a restart of the search occurs.

ONUNROLLLIT(`)
Triggered during backtracking if the literal ` is set to undefined.

Table 1: Events notified by the CDCL solver.

in a learned clause. Then, after learning the clause, the value of inc is multiplied by a
constant slightly greater than 1, to give more and more importance to variables that occur
in recently-learned clauses. Once a choice is needed, the literal ¬at is chosen, where at
is the undefined atom having the highest activity value (ties are broken randomly).

For the sake of completeness, we mention that the CDCL is usually complemented
with heuristics that control the number of learned clauses, and restart the computation to
explore different branches of the search tree [7].

3 Driving CDCL Search

In this section we present the results of our studies pinpointing the key ingredients needed
to drive the search of CDCL solvers. These were distilled by considering the needs of
well-known heuristics, as well as by applying the lessons learned while developing
domain-specific heuristics in the case study reported in the next section.

In our framework we identify two main actors: the solver and the driver. The first
is, basically, an implementation of the CDCL algorithm, and the second implements an
external branching heuristic.

Selection of a branching literal may depend (or not depend) on properties of the
input, on the (current) solver state, on employed optimization techniques (e.g., input



rewritings), as well as on the status of variables that directly model some properties of
the problem, etc. This information is possibly communicated by the solver to the driver
by means of events. Events can be seen as asynchronous messages sent to the driver
when specific points of the computation are reached, as detailed in Table 1. The driver
could exploit this information to implement the heuristic criteria, e.g., updating counters
or modifying its status. None of the events are mandatory for the driver (we expect that
an efficient implementation smartly sends only those required by the driver).

We have also identified two main moments in the computation when the solver gets
directions from the driver. These are modeled in our framework by means of requests,
that are detailed in Table 2 together with the responses the solver expects to receive.
Requests are synchronous, i.e., the solver waits for a response of (i.e., a command from)
the driver.

The request GETATOMSTOBEFROZEN(A) is sent before starting the simplifications
of the input formula. In fact, preprocessing can remove atoms that the heuristic strategy
may want to keep (they may play a role in a domain-specific heuristic). The response
#FREEZE(A ⊆ A) informs the solver to avoid eliminating the variables in A.

The GETCHOICE(I) request is the main one, and is made by the solver when a
non-deterministic choice is required. A number of responses are possible besides the
obvious one where the driver provides the solver with an ordered list of branching literals
to be chosen. The list can hold just one element as in many well-known heuristics, or can
provide in one call several choices so to reduce communication overheads in domain-
heuristics that may provide at once an entire plan of choices. Alternative responses were
inspired by domain-specific criteria. For example, the driver is likely to recognize specific
paths in the search space that cannot lead to a solution, so it can issue a UNROLL(`) to
cause a backtrack up to the last choice made before `. Moreover, the driver could add
some additional domain knowledge modeled by a clause ϕ in the solver by answering
#ADDCLAUSE(ϕ). Finally, there are cases (see next section) in which it makes sense to
blend custom heuristics with the default heuristic, to exploit the strengths of both. To
this end the driver can respond #FALLBACK(n, I,F ,S) so to force the solver to use
its default heuristic for the next n choices. The parameters of #FALLBACK(.) allow to
customize this interaction by (possibly) tuning the activity values and the multiplying
factors used by the default heuristic.

In the following we provide a number of examples that show how to encode several
well-known conflict-based and domain-specific heuristics. This way the reader can
appreciate the generality of our proposal that cover the needs of a wide range of conflict-
based heuristics as well as domain-heuristics proposed in the literature. Nevertheless,
we remark that our framework can be easily extended by adding new events/requests to
fit the needs of future applications.

Example 3 (MINISAT heuristic). We first consider the MINISAT heuristic as described
in [12]. This criterion can be implemented in our framework by exploiting the events
ONSTARTSEARCH(Γ ′,A′) and ONLEARNCLAUSE(ϕ), as well as the GETCHOICE(I)
request. The first is used to initialize the activity values of atoms in the input; the second
causes an increment the activity of atoms in the learned clause ϕ. Finally, the request
GETCHOICE(I) is answered with #CHOICE({(a, n)}) by the driver, where a is the
undefined atom in I with the highest value of activity.



CDCL←→ Driver: Requests & Responses

GETATOMSTOBEFROZEN(A)
Asks the heuristic strategy to provide a list of atoms A ⊆ A that must not be removed by
simplifications.

Allowed Response:

#FREEZE(A)
Asks to not remove atoms in A during preprocessing.

GETCHOICE(I)
Asks the heuristic strategy to provide the next branching literal(s) given the current
interpretation I .

Allowed Response:

#CHOICE(L)
Asks the solver to perform the choices in list L. L contains tuples of the form (at, sign),
where at ∈ A′ and sign ∈ {p, n, f}. Given tuple (at, sign), the solver chooses at if
sign = p, ¬at if sign = n, and if sign = f the CDCL is left free to choose the sign.

#UNROLL(`)
Asks the solver to backtrack until ` becomes undefined. To trigger a restart set ` = ⊥.

#FALLBACK(n, I,F ,S)
Asks the solver to use the default heuristics for the next n choices. The default heuristic
is enable permanently if n ≤ 0. Parameters I,F ,S initialize the default heuristics
as follows: I : A → N provides the initial activity of atoms; F : A → N associates
to atoms an amplifying factor; S : A → {p, n} to provide a priority on the sign of
literals.

#ADDCLAUSE(ϕ)
Asks the solver to add the clause ϕ to the formula.

Table 2: Requests and responses.

Example 4 (Pigeonhole problem heuristic). Consider the famous pigeonhole problem:
given n pigeons and m holes, assign each pigeon to exactly one hole in such a way
that two different pigeons do not share the same hole. It can be verified that state-of-
the-art SAT solvers are not able to solve this problem efficiently when n > m, despite
it is known that no solution exists in that case. A domain-specific heuristic based on
this observation only uses the requests and no event. To GETATOMSTOBEFROZEN(A)
the driver answers to not remove any atom (providing #FREEZE(A)), and computes
n and m by interpreting the atoms in A. Once the first choice is requested, if n > m
the heuristic replies with #ADDCLAUSE({⊥}) causing the termination of the CDCL
returning INCONSISTENT; otherwise, #FALLBACK(0, ∅, ∅, ∅) is sent to go on with the
default heuristic.

Example 5 (Rintanen’s heuristic). In [24], a heuristic for solving the planning problem
modeled as SAT problem is proposed that intuitively forces the solver to prefer short and
simple plans. This criterion can be implemented in our framework by using the event
ONSEARCH(Γ ′,A), and the request GETCHOICE(I). In fact, ONSEARCH(.) allows



the driver to identify actions and goals literals; while the answer to GETCHOICE(.) is
computed by running the algorithm in Figure 3 of [24].

We mention that, one can easily obtain all the VSIDS-like heuristics described in [6]
by applying small modifications to the solution presented in Example 3.

4 Case study: Answer Set Programming

In this section we report on a case study that provides pragmatical evidence of the
applicability of our framework. The case study is developed in the context of Answer
Set Programming (ASP) [9]. ASP is a declarative problem solving paradigm proposed
in the area of logic programming and non-monotonic reasoning. ASP is an ideal test
bed for our framework for two main reasons: (i) ASP solvers are nowadays efficient
CDCL implementations; (ii) ASP has been applied to a variety of complex problems
including hard industrial ones. In the following we first describe the implementation
of our framework in a well-known ASP solver and, then, we report on the solution of
two real-world configuration problems occurring in practice of Siemens: the Partner
Units Problem (PUP) and the Combined Configuration Problem (CCP). These appeared
to be among the hardest industrial benchmarks from the ASP Competition 2015 [17,
18]; indeed, on hard problem instances state-of-the-art ASP solvers were not effective.
Given the practical importance of these two problems, many researchers studied them in
detail [13, 2, 3, 26, 10, 20]. Their investigations resulted in a number of domain-specific
heuristic approaches that, in some cases, significantly outperformed existing ASP solvers.
We experimented with these heuristics, thus applying our framework in practice, to see
whether these can be integrated successfully in a CDCL solver.

4.1 Implementation of the framework

The framework has been implemented as an extension of the ASP solver WASP. WASP
implements a variant of CDCL devised for evaluating ASP programs, thus featuring ad-
ditional inference rules required for the evaluation of ASP programs, such as unfounded-
based and aggregate-based inferences [16]. The framework for specifying heuristics
has been implemented in C++ and it offers an infrastructure for easy specification and
testing of heuristic strategies. The user can adopt several languages for implementing
external heuristics that range from imperative to declarative ones. In particular, the
heuristic strategies can be implemented in perl and python for obtaining fast prototypes
and in C++ for obtaining better performances. (In our tests, we observed that C++
implementations are often faster than equivalent perl and python counterparts, which
are usually easier to develop instead). In case the user would like to use a declarative
language to implement a heuristic, our implementation provides a predicates-based
interface extending the one proposed in [15]. We next sketch the idea by assuming
that (on the lines of in [15]) one encodes the heuristic strategy in ASP by providing
a logic program Π . Each request of the CDCL algorithm causes an evaluation of Π
together with facts modeling the request (intuitively, a fact is an atom that is always true).
The evaluation of Π with the aforementioned facts produces a set of atoms (i.e., the



answer set produced by a solver) interpreted as responses for the request. For instance,
consider Example 4, the request GETFROZENATOMS(A) is represented by the facts
get frozen atoms() and atom(p(i, j)) for each pi,j ∈ A. A call to an external solver
produces an answer set containing freeze(p(i, j)), for each pi,j ∈ A, that is interpreted
as #FREEZE(A). Other request and corresponding responses are handled in a similar
manner. Our implementation currently supports any external solver compliant with ASP
solver output. The predicate-based interface can easily support variants of ASP (e.g.,
with preferences [8], CASP [19], etc.) an could be adapted, in principle, also to support
other languages based on predicate logic.

4.2 Partner Units Problem

The PUP comes from the railway safety domain [13], but has a variety of other ap-
plications including security monitoring systems, peer-to-peer networks, etc. [26]. In
order to ensure the safety of train movements, railway tracks (see Figure 1) are equipped
with hardware sensors s1, . . . , s6 which register when a wagon passes by. All registered
events are forwarded from sensors to control units u1, . . . , u3 belonging to a safety
system. The latter has to prevent wagons of different trains from entering the same safety
zone of the tracks z1, . . . , z24, hence avoiding unwanted collisions. To solve the problem
one needs to (1) assign every zone and sensor to a control unit such that every unit is
connected to at most UCAP sensors and at most UCAP zones. Moreover, (2) if a sensor
contributes to a zone, it must be placed on the same or on a connected unit (partner unit).
However, every unit can be a partner of at most IUCAP other units.

Heuristics. For our evaluation we selected the QUICKPUP heuristic and its derivatives,
since search algorithms using these heuristics were able to outperform best ASP solvers.

– QUICKPUP [26] generates an order of zones and sensors in the first step by selecting
some zone as a root and traversing the input zone-sensor relations breadth-first. Then,
a depth-first search selects the next unassigned zone or sensor in the order and assigns
it to a new unit. If the assignment cannot be done due to a violation of requirement
(2), then the already used units are tested starting from the last created one. In case
QUICKPUP is not able to assign a zone or sensor to any unit it unrolls the last made
assignment and tries another possibility. Finally, if no more assignments are possible,
QUICKPUP falls back to the default heuristic.
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s5 s6z1
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Fig. 1: A sample railway station layout and a solution of a corresponding PUP instance
with UCAP = IUCAP = 2



– QUICKPUP∗ is a modification of QUICKPUP that tests already used units first and
a new one afterwards.

– PRED [10] tries first to connect an unassigned zone or sensor to one of the units that
already have connections to neighbour zones or sensors, i.e. reachable over at most
two input zone-sensor relations. If this fails, PRED tries a new unit first and used
ones subsequently.

Implementation details. We implemented the four heuristics in WASP using the C++
interface given in Section 3. A heuristic is initialized as ONSEARCH(Γ ′,A′) event is
invoked by the solver. Next, the ordering of vertices is generated and used to determine
sets of chosen literals L in response to GETCHOICE(I) requests. In addition, a heuristic
registers ONUNROLLLIT(`) events in order to synchronize its inner state with decisions
made by WASP between two subsequent GETCHOICE(I) requests. If a heuristic finds
that the current partial interpretation is inconsistent, i.e. no further assignments can
be made, it backtracks and sends #UNROLL(`) to WASP. In this case, ` is one of
the literals that were selected by a heuristic at the previous choice event. Finally, the
fallback from QUICKPUP-based heuristics to the default one was implemented using
#FALLBACK(0, ∅, ∅, ∅) response.

Setup. The evaluation was done by using the set of instances provided by Siemens3. This
package comprises instances of four types: (1) double, (2) double-variant, (3) triple and
(4) grid. The first three types are instances representing topologies occurring frequently
in practice, whereas grids are parts of real railway systems (see [2] for details). The
instances were tested with two encodings: PUP-E1 – the original straightforward encod-
ing published in [2] (Section 3.1, p. 6) and PUP-E2 – a complex encoding comprising
symmetry breaking and ordering rules used in the ASP Competition 2015. Moreover, in
all experiments with WASP using heuristics, we removed rule 9 (line 14) from PUP-E2.
This rule is a symmetry breaker that does not allow our heuristics to select the starting
zone. For each encoding we grounded all instances with GRINGO (version 4.5.3). Then
each solver was run for 900 sec. on a system equipped with i7-3030K CPU, 64GB RAM
and Ubuntu 11.10.

Results. A summary of our evaluation results is presented in Figures 2 and 3. The results
of CLASP [15], which was used as a reference system, show that it was able to solve
at most 23 instances using the tested encodings. Moreover, in both experiments CLASP
failed to find a model for most of the double as well as for some double-variant and triple
instances. Also WASP with QUICKPUP solved only 12 and 15 instances using PUP-E1
and PUP-E2 respectively. The main reason for this discrepancy between our results and
the ones obtained by [26] is due to inability of the underlying ASP solver to generate
new units on-the-fly. Therefore, the number of ground literals denoting available units
is determined in the grounding step and cannot be changed later. [26], instead, try to
quickly build a solution by using new units whenever possible. This strategy appears to
be successful for greedy algorithms, but works poorly as a heuristic for WASP.

The two remaining heuristics assign zones and sensors to already existing units first.
This allowed WASP to outperform CLASP and QUICKPUP in all experiments. The best

3 http://demo2-iwas.uni-klu.ac.at/pupsolver/benchmark.rar
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Fig. 2: Experimental results for 36 PUP instances [27] with PUP-E1 encoding

result was observed for WASP with PRED, which solved all instances independently of
the encoding. Moreover, PUP-E2 allowed WASP to reduce its average solving time to
only 27 sec. Finally, we would like to emphasize the fact that PRED allowed WASP to
find solutions for all instances with the PUP-E1 encoding. This is an important feature
of our approach. It allows a programmer to easily model a problem using a declarative
language, like ASP-Core, and then to scale performance of the solver using heuristics
defined in a procedural way.

4.3 Combined Configuration Problem

Similarly to the PUP, this problem was derived from a number of real-world problems
including railway interlocking systems, safety automation, resource distribution, etc. The
CCP is an abstract problem that demonstrates an important case occurring in practice of
Siemens when a complex problem can be represented as a set of subproblems [20].

A CCP instance is defined by a directed acyclic graph G = (V,E) representing a
track layout (see Figure 4). Each vertex has a type, e.g. b and p, with an associated size,
e.g. 1 and 3. Furthermore, an instance includes two disjoint paths P1 and P2, shown
in red and green, as well as several sets of border elements, e.g. BE 1 = {b1, b2, b3}
and BE 2 = {b2, b4, b5}. Finally, it defines parameters specifying a maximal number
of border elements per safety area M , a number of colors C, a number of available
bins B per color and capacity of a bin K. The goal is to find a solution that satisfies all
requirements of the following subproblems:

(P1) Coloring Every vertex must have exactly one color.
(P2) Bin-Packing For every set Vi ⊆ V comprising all vertices of one color, assign

each vertex vj ∈ Vi to exactly one bin such that for each bin the sum of the vertex
sizes is less or equal to K and at most B bins are used.
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Fig. 4: Sample CCP instance (left) and its solution (right).

(P3) Disjoint Paths Colors of any two vertices vi ∈ P1 and vj ∈ P2 must be different.
(P4) Matching For every input set of border elements BE i find a safety areaAi ⊆ BE i

such that all border elements of one area are colored in one color, |Ai| ≤ M and
every border element is exactly in one area.

(P5) Connectedness Two vertices of the same color must be connected via a path that
comprises only vertices of this color.

Example 6. Let the sample CCP instance comprise the following parameters: B = 2,
K = 3, C = 3 and M = 3. The solution presented in Figure 4 assigns 3 colors to
vertices, places them into 2 bins, shown in subscript of each vertex, and defines two
safety areas A1 = {b1, b2, b3} and A2 = {b4, b5}.

Heuristics. The CCP has a number of heuristics suggested in [20] which can be used to
obtain a partial solution of a problem instance. It turned out that it is quite simple to find
a heuristic that solves one or some of the subproblems. However, no complete heuristics,
like QUICKPUP or PRED for PUP, are known for CCP.

The heuristics suggested in [20] were designed to be used with the heuristic interface
of CLASP. This interface allows a programmer to define a heuristic function in the
program using heuristic/4 predicate. If a ground “heuristic” atom over this predicate



becomes true in a partial interpretation, then terms of the atom are used by CLASP to
modify behavior of the VSIDS heuristic. Therefore, given a CCP instance, the proposed
approach first runs a heuristic search method to find a partial solution of the instance.
Next, CLASP is forced to start the search from the found partial solution by expending
the CCP instance with facts comprising “heuristic” atoms representing it. Gebser et al.
[20] use three heuristics:

– A1 solves the matching problem (P4). In every iteration it assigns an unassigned
border element to a safety area which comprises the minimum number of already
assigned elements.

– A2. This heuristic is designed to solve three subproblems (P1), (P2) and (P5). First,
it sets the color to 1 and adds some vertex v ∈ V to a queue Q. Next, it retrieves
an element vi ∈ Q, assigns it the current color, places it to a bin according to the
best-fit heuristic and adds all uncolored neighbors of vi to Q. The process continues,
until no further vertices can be placed to bins. In this case the algorithm increases
the value of current color and adds some uncolored node vj to Q.

– A1A2. This is a combination of the previous two which first applies A1 and then
uses A2 to extend the output of A1.

All original heuristics were designed to run only once prior to solving whereas in
our solver a heuristic is queried multiple times. Therefore, we suggest the following
modifications:

– A2F is based on A2 which is extended with a fallback to a default solver heuristic
if (i) a partial solution is found or (ii) the 10 seconds timeout is reached or (iii)
A2 cannot make a choice. The latter situation might occur if all atoms used in
subproblems (P1), (P2) and (P5) already have assigned truth values.

– A2FO. Originally A2F processes the vertices of G in no specific order. To increase
its performance we extended A2F with an ordering that assigns a score of 2 to all
vertices with only incoming or outgoing edges, a score of 1, it is in a path, and
3, if both applies. Then, A2FO runs A2F such that in every iteration it sorts the
unprocessed vertices in the decreasing order of their scores.

– A2AFO. This version of A2FO uses a fallback strategy which alternates between
A2FO and a default solver heuristic. Thus, A2AFO runs A2FO with the first ordering
until it cannot make any further choices. Then, it switches to the default heuristic
for the next 10 seconds. If solver was unable to get a complete solution within this
time, A2AFO creates a new ordering and executes A2FO once more. In the case
all possible orderings starting with vertices with a score higher than zero has been
used, A2AFO falls back to the default heuristic permanently. The idea is to allow the
default heuristic of the solver to acquire enough representative conflicts and hence
to improve its performance.

Implementation details. The heuristics were implemented similarly to the ones used for
the PUP using the C++ version of the WASP interface. When A2AFO decides to use
the default solver heuristic, it starts a timer and responses all GETCHOICE(I) requests
with #FALLBACK(1, ∅, ∅, ∅). When the timeout is reached, A2AFO generates another
ordering, restarts the search using #UNROLL(⊥) and answers all subsequent requests
itself.
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Fig. 5: Evaluation results for 36 CCP instances with [20] encoding

Setup. We evaluated A2F, A2FO and A2AFO on the set of hard instances4 and the
encoding submitted to the ASP Competition 2015. The package contains a set of real-
world instances used in the evaluation of [20] as well as a number of new instances. The
latter have a grid-like graph structure in which all vertices are of the same type. The
evaluation was done in the same settings as the PUP and similar to [20]. The average
grounding time was about 2 seconds and is excluded from results.

Results. The evaluation results, presented in Figure 5, show that the reference system
could solve 3 out of 36 instance with an average solution time of 246 sec. Our approach
using A2F, A2FO and A2AFO heuristics was able to solve 22, 27 and 36 instances with
an average solution time 6, 7, and 14 sec. resp. A2AFO heuristic has a greater solving
time only because it was able to solve the hardest instances. Our approach shows also
better results in comparison with [20], which solved 6 out of 16 real-world instances.

Moreover, since A2AFO is based on an alternating usage of two heuristics we
performed an additional evaluation. The goal was to test whether conflict learning is
essential or the heuristic has to find a “correct” ordering as it was often the case for PUP
heuristics. Therefore, we saved the last ordering A2AFO used before the last fallback
and then started a new experiment in which this ordering was used first. The results show
that in none of the experiments this strategy allowed WASP to find a solution with only
one fallback. In all test cases A2AFO run A2 at least twice, i.e. generates at least two
orderings, to find a solution. This indicates that learned clauses are essential.

4 http://isbi.aau.at/hint/images/ccp/ccp.tgz



5 Conclusion

The branching heuristic is a key ingredient of the CDCL algorithm. Despite several
effective heuristics have been proposed in the literature, their integration in existing
solvers is usually nontrivial. The paper proposed a novel framework that simplifies the
design of new heuristics for CDCL solvers by distilling the key ingredients useful to
drive the search. The proposal has been validated in a case study where our framework
was employed for solving effectively two hard industrial problems. Results are positive:
hard instances that were not solvable by previous approaches are efficiently solved by
our implementation. Ongoing work concerns the implementation of our framework in
other well-known solvers. Moreover, we plan to apply it in further practical use cases.
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6. Biere, A., Fröhlich, A.: Evaluating CDCL Variable Scoring Schemes. In: SAT 2015. pp.
405–422. (2015)

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

8. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing Answer Set Prefer-
ences without a Headache. In: AAAI 2015. pp. 1467–1474. (2015)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

10. Drescher, C.: The Partner Units Problem a Constraint Programming Case Study. In: ICTAI
2012. pp. 170–177. (2012)

11. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause Elimination.
In: SAT 2005. pp. 61–75. (2005)
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