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Abstract. Optimization—minimization or maximization—in the lattice of sub-
sets is a frequent operation in Artificial Intelligence tasks. Examples are subset-
minimal model-based diagnosis, nonmonotonic reasoning by means of circum-
scription, or preferred extensions in abstract argumentation. Finding the optimum
among many admissible solutions is often harder than finding admissible solu-
tions with respect to both computational complexity and methodology. This paper
addresses the former issue by means of an effective method for finding subset-
optimal solutions. It is based on the relationship between cardinality-optimal and
subset-optimal solutions, and the fact that many logic-based declarative program-
ming systems provide constructs for finding cardinality-optimal solutions, for
example maximum satisfiability (MaxSAT) or weak constraints in Answer Set
Programming (ASP). Clearly each cardinality-optimal solution is also a subset-
optimal one, and if the language also allows for the addition of particular re-
stricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions
can be found by an iterative computation of cardinality-optimal solutions. As
a showcase, the computation of preferred extensions of abstract argumentation
frameworks using the proposed method is studied.

1 Introduction

In Artificial Intelligence, the task of set optimization, in the sense of finding a set that is
minimal or maximal with respect to set inclusion, frequently occurs. There are famous
examples such as Circumscription [18] or Model-based Diagnosis that involve set min-
imization. Computing preferred extensions of abstract argumentation frameworks [10]
is an example that involves set maximization.

Often, set optimization is an element that creates difficulties in implementation and
representation. For example, McCarthy had to resort to Second-order logic for defining
Circumscription of First-order theories [18]. Also for computing preferred extensions,
relatively sophisticated techniques are required, for instance QBFs rather than proposi-
tional formulas [2].
? An extended version of this paper will appear at ECAI 2016 [13].



There is another notion of set optimization, finding a set that has minimal or maxi-
mal cardinality, which has more readily available system support nowadays. The most
prominent examples of languages and systems that support cardinality optimization are
MaxSAT, Constraint Programming, and Answer Set Programming (ASP).

In this paper, we show how set optima can be computed by a general algorithm that
employs cardinality optimizing subroutines, provided that the underlying languages al-
low for expressing simple constraints. Algorithm MCSes in Figure 2 of [17], which
computes Minimal Correction Sets4 of a propositional formula, bears a few similari-
ties to our algorithms. However, it is also different in several respects, most notably it
is formulated for solving one particular problem only, assumes propositional formulas
as the representation formalism, and does not employ a cardinality optimization ora-
cle explicitly. To the best of our knowledge a general method applicable in a variety
of representation formalisms and for unspecific set optimization problems settings has
not been proposed in the literature before. We develop an instantiation of the general
method for ASP, and show that it is suitable. In [13], we also present an instantiation
using MaxSAT.

There are two more recent software tools that also support computing set optimiza-
tion problems when the underlying language is ASP: asprin [7] and D-FLATˆ2 [6].
The scope of the tool asprin is actually reasoning with preferences, but as a special case
one can express preferences such that only set optimal solutions remain. The required
preferences come with the predefined library of asprin. The underlying algorithms of
asprin are very different from those presented in this paper. D-FLATˆ2 builds on dy-
namic programming and exploits tree decomposition in order to solve set optimization
problems and is therefore also very different from the method that we will present in
this paper. In the realm of ASP, the tool metasp [16] can be seen as a predecessor of
asprin, which does not seem to be maintained any longer. It relies on reification of rules
and exploits a programming pattern known as saturation for set optimization, which is
also very different from the method described in this paper.

We then turn our attention to a showcase application, computing preferred exten-
sions of abstract argumentation frameworks. Dung’s theory of abstract argumentation
[10] is a unifying framework able to encompass a large variety of specific formalisms in
the areas of nonmonotonic reasoning, logic programming and computational argumen-
tation. It is based on the notion of argumentation framework (AF ), consisting of a set
of arguments and a binary attack relation between them. Arguments can thus be rep-
resented by nodes of a directed graph, and attacks by arcs. The nature of arguments is
left unspecified: it can be anything from logical statements to informal natural language
text. For instance, [21] shows how argumentation can be efficiently used for supporting
critical thinking and intelligence analysis in military-sensitive contexts.

Different argumentation semantics declare the criteria to determine which argu-
ments emerge as “justified” among conflicting ones, by identifying a number of exten-
sions, i.e. sets of arguments that can “survive the conflict together”. In [10] four “tra-
ditional” semantics were introduced, namely complete, grounded, stable, and preferred

4 It is worth noticing that algorithms exploiting minimal correction sets have been proposed for
computing argumentation semantics extensions, in particular for semi-stable, ideal, and eager
semantics [22], but not for preferred semantics which is our main test-case in this paper.



semantics. For a complete overview of subsequently proposed alternative semantics, the
interested reader is referred to [3].

The main computational problems in abstract argumentation include decision—e.g.
determine if an argument is in all the extensions prescribed by a semantics—and con-
struction problems, and turn out to be computationally intractable for most argumenta-
tion semantics [11]. In this paper we focus on the extension enumeration problem, i.e.
constructing all extensions for a given AF : its solution provides complete information
about the justification status of arguments and allows for solving the other problems as
well.

Our general method allowed for the definition and implementation of two novel
algorithms for enumerating preferred extensions: prefASP (based on an ASP solver)
and prefMaxSAT (based on a MaxSAT solver). The former is described in this paper
and available on http://www.wfaber.com/software/prefASP/, the latter
in [13]. Both are evaluated using benchmarks from the International Competition on
Computational Models of Argumentation (ICCMA2015). We report on a variety of ex-
periments: the first focuses on prefASP and starts with comparing the use of different
solver configurations for prefASP, followed by a comparison of prefASP to asprin
and D-FLATˆ2, and eventually comparing prefASP to the dedicated argumentation
solver ASPARTIX-V. Eventually we compare prefASP and prefMaxSAT to the IC-
CMA2015 competition winner Cegartix. The experiments show that despite their con-
ceptual simplicity, our software tools are competitive with the best available ones.

2 Abstract Methodology

The proposed methodology applies to a variety of knowledge representation formalisms,
we therefore consider an abstract setting. We define a knowledge base K to be associ-
ated with a set σ(K) of solutions, and we assume that each s ∈ σ(K) is a set. We also
use a set restriction operator ↓O such that s↓O = s∩O, the idea being that s↓O identifies
the solution elements that are relevant for optimization. We also assume a composition
operator K1 ◦K2 to be present that allows to compose two knowledge bases K1 and K2

(intended as merging two knowledge bases; for bases represented as sets, ◦ will usually
be ∪). We next define a few optimization criteria for solutions of knowledge bases.

Definition 1. Let K be a knowledge base and R be a set (of elements occuring in solu-
tions of K). Define:

SmaxR (K) = {s | s ∈ σ(K),@s′ ∈ σ(K) : s′↓R ⊃ s↓R}
SminR (K) = {s | s ∈ σ(K),@s′ ∈ σ(K) : s′↓R ⊂ s↓R}
CmaxR (K) = {s | s ∈ σ(K),@s′ ∈ σ(K) : |s′↓R| > |s↓R|}
CminR (K) = {s | s ∈ σ(K),@s′ ∈ σ(K) : |s′↓R| < |s↓R|}

While SminR (K) and SmaxR (K) occur in diverse applications of knowledge repre-
sentation and reasoning, it often happens that the computational complexity of these
tasks increases (under standard assumptions) compared to CminR (K) and CmaxR (K).
For example, deciding whether σ(K) = ∅ is co-NP-complete (in the size of K) if K



is represented using a propositional formula and σ(K) is the set of satisfying assign-
ments, where each assignment is represented as the set of true variables. In this setting,
computing SmaxR (K) is then ΣP

2 -hard, as showing the optimality of a solution may re-
quire exponentially many co-NP checks, while CmaxR (K) is in ∆P

2 , requiring at most a
polynomial number of co-NP checks. Note that this does not necessarily have practical
consequences, because at the moment all known algorithms to solve these problems
require at least exponential time.

There are also representational repercussions. Still assumingK to be a propositional
formula, one cannot find a propositional formula of polynomial size that encodes any
of SminR (K), SmaxR (K), CmaxR (K), and CminR (K) (if NP 6= ΣP

2 , which is currently
unknown, but often conjectured). IfK has been modelled using ASP, it is easy to encode
CmaxR (K) andCminR (K) because of the availability of weak constraints (or optimization
constructs). In fact, one can use ASP also for encoding SminR (K) and SmaxR (K), because
ASP can express all problems in ΣP

2 . We will discuss this further in Section 3.
In this paper, we relate SmaxR (K) to CmaxR (K) (and SminR (K) to CminR (K)). We first

observe that each cardinality optimal solution is also subset optimal.

Observation 1 For any knowledge base K and set R, CmaxR (K) ⊆ SmaxR (K) and
CminR (K) ⊆ SminR (K).

This observation holds because if any s ∈ CmaxR (K) were not in SmaxR (K), then there
would be some s′ ∈ σ(K) such that s′↓R ⊃ s↓R and clearly |s′↓R| > |s↓R| then holds
(and symmetrically for minimization).

This implies that when the task is to compute one subset optimal solution, one can
instead safely compute one cardinality optimal solution. When, however, the computa-
tional task involves an enumeration of all subset optimal solutions, one is faced with
incompleteness, as not all subset optima are cardinality optimal.

Example 1. Let K1 be such that σ(K1) = {{a, b}, {b}, {c}} and let R1 = {a, b, c}.
Then SmaxR1

(K1) = {{a, b}, {c}} while CmaxR1
(K1) = {{a, b}}.

This can be overcome by an iterative approach, in which first cardinality optimal
solutions are computed. In the next stage, the knowledge base is extended in a way that
it no longer admits the solutions already found or any subsets (for maximization) or
supersets (for minimization) thereof.

Definition 2. Given a knowledge baseK, a setR, and a set S ⊆ σ(K), letN⊆(K, R, S)
denote a knowledge base such that

σ(K ◦ N⊆(K, R, S)) = σ(K) \ {s′ | s′↓R ⊆ s↓R ∧ s ∈ S}.

Symmetrically, let N⊇(K, R, S) denote a knowledge base such that

σ(K ◦ N⊇(K, R, S)) = σ(K) \ {s′ | s′↓R ⊇ s↓R ∧ s ∈ S}.

It depends on the formalism used for the knowledge base, whether N⊆(K, R, S)
and N⊇(K, R, S) can be created, and in particular whether they can be represented in



Algorithm 1 Enumerating SmaxR (K) by means of CmaxR (K)
1: Input: K, R
2: Output: Smax

R (K)
3: Ki := K
4: S := ∅
5: Si := Cmax

R (Ki)
6: while Si ! = ∅ do
7: S := S ∪ Si

8: Ki := Ki ◦ N⊆(Ki, R, Si)
9: Si := Cmax

R (Ki)
10: end while
11: return S

a concise way. It also depends on the formalism whether there is a uniform way of en-
coding N⊆(K, R, S) and N⊇(K, R, S), or whether one has to rely on a representation
that depends on the structure of K.

The iterative approach is formalized for subset maximality in Algorithm 1, it is
easily adapted to subset minimality. Note that practical algorithms will usually not col-
lect all solutions in the output because of space considerations, but rather output them
immediately as they are computed.

Theorem 1. For a knowledge base K and set R, Algorithm 1 computes SmaxR (K).

Proof (Sketch). We first observe that each assignment of variable Si contains only el-
ements of SmaxR (K). When variable Si is first initialized in line 5 of Algorithm 1,
Observation 1 guarantees the claim. For each later assignment, by construction only
s ∈ σ(K) are assigned, and any such s is such that @s′ ∈ σ(K) : s′↓R ⊃ s↓R (other-
wise |s′↓R| > |s↓R| would hold). It is also clear that the algorithm terminates (if σ(K)
is finite).

Now observe that each s ∈ SmaxR (K) is assigned once to Si in Algorithm 1. Indeed,
the first assignment contains all elements in SmaxR (K) that are of maximum cardinality,
the next iteration contains all elements in SmaxR (K) of the next-highest cardinality, and
so forth down to the elements of SmaxR (K) of least cardinality in the last assignment. In
this way, all elements of SmaxR (K) will be contained in S when Algorithm 1 terminates.

It should be pointed out that Algorithms 1 also work when instead of CmaxR (Ki) (or
CminR (Ki)) any non-empty subset thereof is assigned to Si in lines 5 and 9.

Let us note that the number of subcalls to CmaxR (Ki) (resp., CminR (Ki)) is at most
|SmaxR (K)| (resp., |SminR (K)|). The cardinality of these sets can be exponential in K
in the worst case. That also means that in the worst case an exponential number of
knowledge bases N⊇(Ki, R, Si) (or N⊆(Ki, R, Si)) are composed to K, which could
lead to a use of exponential space. Note however, that this only occurs if there is an
exponential number of solutions to be generated by the algorithm. This only occurs if
s1↓R * s2↓R and s2↓R * s1↓R holds for almost all solutions s1 and s2 of σ(K).

Note that there is also a contrast to more traditional algorithms that invoke a co-NP
oracle call for each s ∈ σ(K), especially if they run a test on each subset of a found



solution. In that setting, the number of subcalls that take exponential time will usually be
much greater than |SminR (K)| (resp., |SminR (K)|). We view this feature of our algorithm
as one of the main advantages over more traditional methods.

Algorithm 1 bears some similarities to Algorithm MCSes in Figure 2 of [17]. Al-
gorithm MCSes computes Minimal Correction Sets of a propositional formula, and it
solves a much more specific problem and assumes a specific knowledge representation
formalism. In fact, it iteratively increases the cardinality of the (relevant portion of the)
solution to be computed and enforces the cardinality by means of formulas thus imi-
tating the behaviour of a MaxSAT algorithm. The clauses that Algorithm MCSes adds
follow the same idea of N⊆(Ki, R, Si).

3 Concretizations Using ASP

We now show how to instantiate the abstract method described in Section 2 using ASP.
In Answer Set Programming (ASP) one asks for the answer sets (often also called stable
models) of a logic program. The full language specification can be found at https:
//www.mat.unical.it/aspcomp2013/ASPStandardization, below we
provide a brief overview of the concepts relevant to this work.

The basic constructs in ASP logic programs are of the form

h1 | . . . | hk : − b1, . . . , bm, not bm+1, . . . , not bn.

where 0 ≤ k, 0 ≤ m ≤ n and the hi and bj are function-free first-order atoms. When
k > 0, it is called a rule, otherwise a constraint. If k = 1 and m = n = 0, the rule is
called a fact. The part left of the construct : − is called head, the part right of it is called
body. Sets of rules and constraints are called programs.

Programs with variables are thought of as shorthand for their ground (variable-free)
versions with respect to the Herbrand universe of the program. Answer sets are defined
on ground programs: they are Herbrand models of the program, which satisfy an addi-
tional stability condition. In the following we will assume L to be the set of all ground
atoms.

The language of ASP consists of quite a lot more constructs. One relevant for this
paper is the weak constraint, which takes the form

:∼ b1, . . . , bm, not bm+1, . . . , not bn.

An interpretation that satisfies all literals to the right of :∼will incur a (uniform) penalty.
Answer sets of programs with weak constraints are then those answer sets of the weak-
constraint-free portion that minimize the penalties incurred by weak constraints.

For ASP, the terminology of Section 2 is instantiated as follows: K in this setting is
a weak-constraint-free program, and σ(K) is the set of its answer sets. The operation
K1 ◦ K2 simply is the set union of the two programs K1 and K2.

It is possible to encode CmaxR (K) and CminR (K) by means of weak constraints.

Definition 3. Given a set of clauses K and R ⊂ L, we define

CmaxR,asp(K) = K ∪ {:∼ not r. | r ∈ R}



and in a similar way

CminR,asp(K) = K ∪ {:∼ r. | r ∈ R} .

It is easy to verify that CmaxR (K) corresponds to the answer sets of CmaxR,asp(K) and
CminR (K) corresponds to the answer sets of CminR,asp(K).

ASP also allows for encoding SmaxR (K) and SminR (K), but this requires rather in-
volved, and often ad-hoc programs. A general approach has been presented in [16], but
it relies on reification techniques, which is often detrimental for performance.

Let us now consider how to obtain N⊆(K, R, S) and N⊇(K, R, S) in ASP. For
N⊆(K, R, S), one requires for each solution in S that not all elements ofR outside that
solution should be false. This inhibits the solution itself and any subset (restricted to R)
of it. For N⊇(K, R, S), we require for each solution in S that not all of its elements in
R should be true. In this way the solution itself and any superset is inhibited.

Definition 4. Given a set of clauses K, R ⊂ L, and S ⊆ σ(K), let

N⊆asp(K, R, S) = {: − not a1, . . . , not an. | s ∈ S,R \ s = {a1, . . . , an}}

and in a similar way

N⊇asp(K, R, S) = {: − a1, . . . , an. | s ∈ S,R ∩ s = {a1, . . . , an}} .

Again, it is easy to verify thatN⊆asp(K, R, S) andN⊇asp(K, R, S) restrict the answer
sets in the way required by N⊆(K, R, S) and N⊇(K, R, S).

4 Methodology Showcase: Abstract Argumentation

In this section we show how to use the proposed methodology for enumerating all pre-
ferred extensions of abstract argumentation frameworks. After a short background on
abstract argumentation, we introduce an ASP-based solver (prefASP) that employs the
methods described in Section 3.

4.1 Background on Abstract Argumentation

An argumentation framework [10] consists of a set of arguments5 and a binary attack
relation between them.

Definition 5. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where A is a
set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b, a〉 ∈ R, also denoted
as b→ a. The set of attackers of an argument a will be denoted as a− , {b : b→ a},
the set of arguments attacked by a will be denoted as a+ , {b : a→ b}.

5 In this paper we consider only finite sets of arguments: see [4] for a discussion on infinite sets
of arguments.
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Fig. 1. The AF ΓM for the hypertension problem

EachAF has an associated directed graph where the vertices are the arguments, and
the edges are the attacks.

As an intuitive example from [5], let a be the argument “Patient has hypertension
so prescribe diuretics;” b: “Patient has hypertension so prescribe betablockers;” and
c: “Patient has emphysema which is a contraindication for betablockers.” Intuitively,
assuming that only one treatment is possible at the very same time, a attacks b and
vice versa, while c suggests that b should not be the case (c attacks b). Therefore, let
ΓM = 〈AM ,RM 〉 such that,AM = {a,b, c} andRM = {〈c,b〉, 〈b, a〉, 〈a,b〉}. ΓM is
depicted in Fig. 1.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 6. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A s.t.

b→ a, ∃ c ∈ S s.t. c→ b;
– the function FΓ : 2A → 2A such that FΓ (S) = {a | a is acceptable w.r.t. S} is

called the characteristic function of Γ ;
– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and every

element of S is acceptable with respect to S of Γ .

In the AF ΓM of Fig. 1, {a} is an admissible set because it is conflict–free (there is
no such attack 〈a, a〉) and each element of the set (i.e. a) is defended against the attack
it receives (i.e. a is attacked by b, but, in turn, b is attacked by a).

An argumentation semantics S prescribes for anyAF Γ a set of extensions, denoted
as ES(Γ ), namely a set of sets of arguments satisfying the conditions dictated by S. Here
we recall the definition of the grounded semantics, denoted as GR, and of the preferred
semantics, denoted as PR.

Definition 7. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is the grounded extension of Γ , if S is the least (w.r.t. set inclusion)
fixed point of the characteristic function FΓ ;

– a set S ⊆ A is a preferred extension of Γ , i.e. S ∈ EPR(Γ ), if S is a maximal (w.r.t.
⊆) admissible set of Γ .

While {a} is an admissible set for ΓM , it is not a preferred extension. In fact, {c, a}
is also an admissible set which contains {a}. Since there are no admissible supersets of
{c, a}, it is therefore maximal and thus a preferred extension, the only one for ΓM .



4.2 Admissible Extensions in ASP

For ASP, an encoding for admissible extensions is rather straightforward, see [12, 9].

Definition 8. Given an AF Γ = 〈A,R〉, for each a ∈ A a fact arg(a). is created and
for each (a, b) ∈ R a fact att(a, b). is created (this corresponds to the apx file format
in the ICCMA competition). Together with the program

in(X) : −not out(X), arg(X).
out(X) : −not in(X), arg(X).
: −in(X), in(Y), att(X, Y).
defeated(X) : −in(Y), att(Y, X).
not defended(X) : −att(Y, X), not defeated(Y).
: −in(X), not defended(X).

we form admaspΓ and there is a one-to-one correspondence between answer sets of
admaspΓ and admissible extensions.

4.3 Preferred Extensions via Algorithm 1

We can now use our methodology in order to step from admissible to preferred exten-
sions. Indeed, if K encodes admissible extensions of an AF and R is the language
part encoding the extensions, then SmaxR (K) encodes preferred extensions. We can
then use Algorithm 1 to compute them. This gives rise to two solvers, prefASP and
prefMaxSAT (the latter being described in [13]).

For prefASP, given an AF Γ = 〈A,R〉, we use Algorithm 1 with input K being
admaspΓ and input R being {in(a) | a ∈ A}, in the following referred to as I(A).
In lines 5 and 9 of Algorithm 1, we use an ASP solver for obtaining all answer sets of
CmaxI(A),asp(Ki). In line 8, N⊆asp(Ki, I(A), Si) is used.

Apart from the encodings and underlying solvers, there is also a difference in the
fact that prefASP computes all cardinality-optimal solutions in one go, while prefMaxSAT
computes one at a time.

5 Experimental Analysis

In order to evaluate the efficiency of the introduced algorithms, we have carried out
an experimental analysis where performance is analyzed from different perspectives.
After describing the general setup, we first report on an experiment for choosing a pa-
rameter setting in the backend solver of prefASP. Next we report on a comparison of
prefASP with asprin and D-FLATˆ2. As discussed in the Introduction, these systems
also support set optimization in an ASP setting, but use very different underlying algo-
rithms. This is followed by a comparison to dedicated argumentation systems, in which
we compare prefASP with ASPARTIX-V, since ASPARTIX-V is also based on ASP.
Finally, we compare prefASP and prefMaxSAT with Cegartix, which is the state-of-
the-art solver, in the sense that it won the ICCMA2015 competition. These comparisons



are deliberately split up into small pairings, in order to have a crisper picture of the rel-
ative performance measure. Indeed, the IPC score depends on the solvers considered in
the comparison, while PAR10 and coverage are specific to a single solver. Experiments
do not need to be re-run for presenting results together: however, comparisons would
be less informative given the changes in the IPC score.

5.1 Experimental Settings

The ASP-based algorithm prefASP has been implemented as a bash script using basic
tools like sed and grep and exploits clingo 4.5.2 [15] as ASP solver. prefMaxSAT has
been implemented in C++, and exploits the ASPino MaxSAT solver [1].

The experiments were conducted on a cluster with computing nodes equipped with
2.5 GHz IntelTM Core 2 Quad Processors, 4 GB of RAM and Linux operating system. A
cutoff of 900 seconds—wallclock time—was imposed to compute the preferred exten-
sions for each AF . For each involved solver we recorded the overall result: success (if
it finds each preferred extension), crashed, timed-out or ran out of memory. In fact, in
our experimental evaluation all the unsuccessful runs are due to time-out. Experiments
have been conducted on the ICCMA2015 benchmarks [20], which is a set of randomly
generated 192 AF s. They have been generated considering three different graph mod-
els, in order to provide different levels of complexity. More details can be found on the
ICCMA website.6

The performance measures reported in this paper are the Penalised Average Run-
time and the International Planning Competition (IPC) score.

The Penalised Average Runtime (PAR score) is a real number which counts (i) runs
that fail to find all the preferred extensions as ten times the cutoff time (PAR10) and (ii)
runs that succeed as the actual runtime. PAR scores are commonly used in automated
algorithm configuration, algorithm selection, and portfolio construction, because using
them allows runtime to be considered while still placing a strong emphasis on high
instance set coverage.

The IPC score, borrowed from the Planning community, is defined as follows:

– For each test case (in our case, each test AF ) let T ∗ be the best execution time
among the compared systems (if no system produces the solution within the time
limit, the test case is not considered valid and ignored).

– For each valid case, each system gets a score of 1/(1 + log10(T/T
∗)), where T is

its execution time, or a score of 0 if it fails in that case. Runtimes below 1 second
get by default the maximal score of 1.

The IPC score for a system is the sum of its scores over all the valid test cases.
It should be noted that the IPC score depends on the ensemble of tested systems,

that is, it is a relative measure, which depends on the experimental context. Indeed, in
the following, the IPC scores of prefASP vary depending on the different experimental
settings. In contrast to this, the PAR10 score of prefASP remains equal, as this is an
absolute score.

6 http://argumentationcompetition.org



5.2 Comparison of prefASP Using Different Solver Configurations

Clingo offers several different solver configurations (inherited from the clasp solver
used in clingo) which correspond to different heuristic and search setups, see [14] for
detailed explanations. As a first analysis, we investigated how robust prefASP is with
respect to these configurations, and, as a by-product, we determined the best-performing
configuration to be used for comparison with to other systems.

Table 1. Comparison of different Clingo solver configurations, that can be exploited by prefASP,
on the ICCMA2015 benchmarks. Results are shown in terms of IPC score (maximum achievable
is 192.0), percentages of success (% Success) and PAR10.

IPC score % Success PAR10

Crafty 183.7 100.0 23.1

Frumpy 178.6 99.5 75.0

Jumpy 172.0 99.5 82.3

Many 177.4 99.5 84.8

Table 1 shows a comparison of the different solver configurations, in terms of
IPC score, percentage of successfully analysed AFS and PAR10, on the ICCMA2015
benchmarks. It can be observed that all configurations perform relatively similar to
each other, implying that the particular chosen configuration is not critical for the per-
formance of prefASP.

However, there is one winning configuration: the Crafty configuration allows prefASP
to enumerate preferred extensions of all the considered AF s, and to provide solutions
faster. This configuration is geared towards “crafted” problems, which also makes sense
in the context of the considered benchmarks. Therefore, in the rest of the experimental
analysis the Crafty configuration will be considered for prefASP.

5.3 Comparison with Existing General Algorithms

We now turn to general tools that allow for easy representation and effective solution
of subset optimization problems. To the best of our knowledge, the only tools of this
kind are asprin [7] (with its predecessor metasp) and D-FLATˆ2 [6], which we have
discussed in the Introduction.

Actually, D-FLATˆ2 uses the computation of preferred extensions as an example.
When we followed the instruction provided by the authors7, we were able to compute
the preferred extensions of small AF s, but the system was already struggling with re-
source consumption on medium sized instances. On the ICCMA2015 benchmarks, the
system ran out of memory very quickly, and we did not obtain any solutions for any of
the ICCMA2015 benchmarks. This is probably due to the fact that ICCMA instances

7 D-FLATˆ2 software and instructions have been retrieved from https://github.com/
hmarkus/dflat-2 in March 2016.



have large tree-width and D-FLATˆ2 relies heavily on tree decomposition. For this rea-
son, in the remainder of this section we focus our comparison on asprin.

As asprin is based on ASP, the most natural comparison is against the ASP im-
plementation of the proposed approach, namely prefASP. For asprin, we used clingo
4.5.2, the same version that is used as a backend for prefASP.

As input to asprin we use the program admaspΓ in Definition 8 together with the
following preference definition, which makes asprin compute those answer sets that
are subset maximal for atoms with the predicate in.

#preference(p1, superset){in(X) : arg(X)}.
#optimize(p1).

Table 2. Comparison of prefASP and asprin, on the ICCMA2015 benchmarks. Results are
shown in terms of IPC score (maximum achievable is 192.0), percentages of success (% Suc-
cess) and PAR10.

IPC score % Success PAR10

prefASP 191.2 100.0 23.1

asprin 157.8 100.0 44.9

The results of comparison between asprin and prefASP performed on the IC-
CMA2015 benchmarks for enumerating preferred extensions are shown in Table 2.
Results indicate that the proposed prefASP system is significantly faster: prefASP
achieves an IPC score of 191.2 versus 157.8 of asprin. According to the results, prefASP
is the fastest system on 187 of the consideredAF s. This is also confirmed by the PAR10
scores; on average asprin is about 20 seconds slower than prefASP, while in terms of
coverage, both the considered systems are able to successfully analyse all the 192 AF s
of the benchmark set.

5.4 Comparison with Abstract Argumentation Algorithms Based on the Same
Approaches

According to the results of ICCMA2015 [20], ASPARTIX-V [19] is the ASP-based
abstract argumentation solver that showed the best performance in the preferred enu-
meration track. Table 3 presents the results of a comparison between prefASP and
ASPARTIX-V performed on the ICCMA2015 benchmarks. Presented results indicate
that prefASP is faster, both in terms of IPC and PAR10 scores. Remarkably, prefASP
is able to successfully analyse a larger number of AF s (100.0% against 94.0%).

At a closer look, it is noticeable that—among ICCMA2015 frameworks—the AF s
with a very large grounded extension and many nodes in general8 are very challenging

8 http://argumentationcompetition.org/2015/results.html



Table 3. Comparison of prefASP and ASPARTIX-V, the ASP-based abstract argumentation
solver that showed the best performance in the preferred enumeration track, on the ICCMA2015
benchmarks. Results are shown in terms of IPC score (maximum achievable is 192.0), percent-
ages of success (% Success) and PAR10.

IPC score % Success PAR10

prefASP 171.3 100.0 23.1

ASPARTIX-V 148.5 94.0 630.9

for ASPARTIX-V, while the proposed prefASP solver is able to quickly and effectively
analyse also such large frameworks.

5.5 Comparison with the State of the Art Solver

In this analysis we compare prefASP and prefMaxSAT with the winner of the the IC-
CMA2015 track on enumerating preferred extensions, Cegartix [8]. Table 4 shows the
performance of considered solvers in terms of IPC score, percentage of successfully
analysed AF s and PAR10. prefASP performs significantly better than prefMaxSAT.
This is possibly due to the fact that each preferred extension results from an execution
of the MaxSAT solver; and a final run is needed in order to demonstrate that no other
extensions exist. Therefore, the number of MaxSAT calls is exactly the number of pre-
ferred extensions plus one. The generated MaxSAT formulas tend to be large on the
considered benchmarks; therefore, the added overhead can be remarkable.

Table 4. Comparison of prefMaxSAT and prefASP with the winner of the track of ICCMA2015
on enumerating preferred extensions, Cegartix. Results are shown in terms of IPC score (maxi-
mum 192.0), percentages of success and PAR10.

IPC score % Success PAR10

prefASP 161.7 100.0 23.1

prefMaxSAT 115.3 85.0 1423.8

Cegartix 188.9 100.0 15.2

Interestingly, the performance of prefASP is comparable to the performance of
Cegartix; according to PAR10, prefASP needs on average 8 seconds more to enumer-
ate the preferred extensions. Moreover, by re-running the top solvers that took part in
this track of ICCMA2015, we observed that prefASP would have been ranked second.
This is an impressive achievement, considering that the described algorithm: (i) is very
general, in the sense that it does not exploit any argumentation-specific knowledge;
(ii) is very easy to implement, particularly in the ASP configuration; and (iii) has been
implemented as a prototype, without attention on software engineering techniques for
improving performance.



6 Conclusions and Future Work

We have proposed a general methodology for solving subset optimality problems by
means of iteratively solving cardinality optimality problems. This approach is motivated
by the availability of efficient systems that support finding cardinality optimal solutions,
namely MaxSAT solvers and ASP solvers supporting weak constraints.

As a methodology showcase we have produced the prototype system prefASP, for
enumerating preferred extensions of abstract argumentation frameworks. While the al-
gorithms are general and easy to implement, an experimental analysis showed that they
are competitive with the state-of-the-art system, which is specialized for this particular
problem. On this showcase, our methods also prove higher performance than the ex-
isting general methods for computing subset optimal solutions of answer set programs,
viz. asprin and D-FLATˆ2.

Apart from tuning the prototype implementation prefASP to improve its perfor-
mance, we intend to apply the methodology also to other application domains. Diag-
nosis or minimal model computation are immediate candidates. Another possibility is
integrating our algorithm into a system like asprin, or one that supports the same input
language.

The methodology would also allow for computing ΣP
3 -hard problems when using

ASP, which would be interesting to explore, as it would give rise to alternatives to
implementations relying on QBFs. It would also be worthwhile to explore whether the
general methodology can be used also with formalisms different from MaxSAT and
ASP, which would open entirely new avenues.
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