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Abstract. While the solution counting problem for propositional satisfiability
(#SAT) has received renewed attention in recent years, this research trend has
not affected other AI solving paradigms like answer set programming (ASP). Al-
though ASP solvers are designed to enumerate all solutions, and counting can
therefore be easily done, the involved materialization of all solutions is a clear
bottleneck for the counting problem of ASP (#ASP). In this paper we propose
dynamic programming-based #ASP algorithms that exploit the structure of the
underlying (ground) ASP program. Experimental results for a prototype imple-
mentation show promise when compared to existing solvers.

1 Introduction

With the rise of efficient solvers, model counting for the propositional satisfiability
problem (#SAT) [36,4] has received renewed attention in recent years (cf. e.g., [7,3]).
Knowing the number of models of a propositional formula is a useful measurement,
and can be used, inter alia, in the areas of machine learning, probabilistic reasoning,
statistics, and combinatorics [30,34,10,37]. Various systems have been implemented
that solve the #SAT problem; see e.g., [35,33].

Similar strides in efficiency have also been made in answer set programming (ASP)
regarding the model existence problem [17,6], where efficient solvers are now readily
available, e.g., [16,2]. ASP is a rule-based language that has found great success as it
allows users to specify intuitive, fully-declarative problem descriptions, and is used in
both industry and research. When using SAT solvers to evaluate a problem, the problem
usually has to be rewritten into a SAT formula. While such SAT rewritings require a spe-
cialized algorithm for each particular problem, ASP as a rule-based formalism allows
for the declarative specification of problem statements. The actual problem instance can
then simply be given as an input database of ground facts.

For instance, a simple graph 2-colorability problem can be stated, using two rules,
as follows:

color(V, red) ∨ color(V, blue)← vertex (V )

⊥ ← edge(V 1, V 2), color(V 1, C), color(V 2, C)

Together with a graph, given as a set of facts of the form edge(x, y) and vertex (v),
each answer set represents exactly one valid coloring of the graph. Evaluating ASP pro-
grams like the one above is usually a two-step process. First, a grounder instantiates
the program, replacing all variables by domain constants, and then a solver evaluates



the ground program and computes the answer sets. While for SAT the model exis-
tence problem is NP-complete, the problem of evaluating ground (disjunctive) ASP
programs is located on the second level of the polynomial hierarchy. Thus, ASP allows
for efficient encodings of problems of higher complexity that typically arise in AI, like
circumscription or diagnosis. Opposite to standard SAT solvers which simply decide
the problem or deliver one (counter-)model, ASP systems are tailored to enumerate all
answer sets. Due to this fact, the answer set counting problem (#ASP) has received far
less attention than the #SAT problem. However, materializing all answer sets can be
expensive and is not necessarily required for counting.

It is the aim of this paper to propose and evaluate a dynamic programming-based
answer set counting algorithm that exploits the structure of the given (ground) input
ASP program and avoids the costly materialisation of all answer sets. The importance
of evaluating such parameterized algorithms in practice has recently been stressed [18].
Several works have shown that such an approach works well for #SAT, guaranteeing
both favorable theoretical runtime bounds [15,32], as well as good practical perfor-
mance in prototype implementations [24,31]. Jakl et al. [21] and Morak et al. [27]
have introduced dynamic programming algorithms for deciding the answer set exis-
tence problem in linear time in the size of the input, where the enumeration of answer
sets can be done with linear delay. This is accomplished by exploiting the structure of
the given program via tree decompositions of its incidence graph. A tree decomposition
of a graph (roughly) tries to arrange the graph into a tree by combining cyclic parts of
the graph into single tree nodes. If the size of these tree nodes can be bounded by a
(small) constant, then the problem can be evaluated efficiently by traversing the tree de-
composition in a bottom-up manner, evaluating the answer set existence problem only
locally for each node and combining the partial solutions. In this paper, we investigate
how this idea can be used for counting without answer set materialization, and propose
additional variations of the algorithm based on different graph representations of the
program.

Contributions. The main contributions of this paper are:

1. We use dynamic programming on tree decompositions to solve the answer set
counting problem for ASP. Three versions of the algorithms are proposed, based
in part on different graph representation of the input.

2. We show that the algorithm exhibits favorable theoretical runtime bounds.
3. We provide a prototype implementation of our proposed algorithms, and give an

experimental performance analysis and evaluation, comparing the solver to several
existing solutions.

The remainder of the paper is structured as follows: In Section 2, we give some
preliminaries on ASP and tree decompositions. Section 3 gives an overview of the gen-
eral principles of dynamic programming algorithms on tree decompositions and then
proceeds to give the proposed answer set counting algorithms. Finally, a prototype im-
plementation is evaluated via experiments in Section 4. We close with some concluding
remarks in Section 5.



2 Preliminaries

Answer Set Programs. A ground answer set program (or program, for short) is a pair
Π = (A,R), where A is a set of propositional atoms and R is a set of rules of the
form:

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an, (1)

where n ≥ m ≥ l and ai ∈ A for all 1 ≤ i ≤ n. A rule r ∈ R of form (1) consists
of a head H (r) = {a1, . . . , al} and a body given by B+(r) = {al+1, . . . , am} and
B−(r) = {am+1, . . . , an}. A set M ⊆ A is a called a model of r, if B+(r) ⊆ M
together with B−(r) ∩ M = ∅ implies that H (r) ∩ M ̸= ∅. We denote the set of
models of r by models(r) and the models of a program Π = (A,R) are given by
models(Π) =

∩
r∈R models(r).

The reduct ΠI of a program Π with respect to a set of atoms I ⊆ A is the program
ΠI =

(
A,

{
rI | r ∈ R,B−(r) ∩ I = ∅)

})
, where the reduct rI of a rule r is the same

rule without negative body, i.e., H (rI) = H (r), B+(rI) = B+(r), and B−(rI) = ∅.
Following [17], M ⊆ A is an answer set of a program Π = (A,R) if M ∈ models(Π)
and for no N ⊊ M , we have N ∈ models(ΠM ). The consistency problem of ASP
(decide whether there exists an answer set for a given program Π) is ΣP

2 -complete [13].

Fixed-Parameter Tractability. We briefly recall the basic notions of fixed-parameter
tractability. For more detailed information we refer to other sources, e.g. [11]. A pa-
rameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ. For an
instance (I, k) ∈ Σ∗ × N we call I the main part and k the parameter. A prob-
lem L is fixed-parameter tractable (FPT) if there exists a computable function f and
a constant c, such that there exists an algorithm that decides whether (I, k) ∈ L in
time O(f(k) · ∥I∥c) where ∥I∥ denotes the size of I . Such an algorithm is called an
fpt-algorithm. A well studied parameter is the so-called treewidth.

Tree Decomposition and Treewidth. A tree decomposition of a graph G = (V,E) is a
pair T = (T, χ), where T is a rooted tree and χ is a labelling function with χ(t) ⊆ V —
we call χ(t) the bag of t—such that the following holds: (i) for each v ∈ V , there exists
a t ∈ T , such that v ∈ χ(t); (ii) for each {v, w} ∈ E, there exists a t ∈ T , such
that {v, w} ⊆ χ(t); and (iii) for each r, s, t ∈ T , such that s lies on the path from r
to t, we have χ(r) ∩ χ(t) ⊆ χ(s). The width of a tree decomposition is defined as the
cardinality of its largest bag minus one. The treewidth of a graph G, denoted by tw(G),
is the minimum width over all tree decompositions of G. For arbitrary but fixed w ≥ 1,
it is feasible in linear time to decide if a graph has treewidth ≤ w and, if so, to compute
a tree decomposition of width w.

A tree decomposition (T, χ) is called normalized (or nice) [22], if (i) each t ∈ T
has at most two children; (ii) for each t ∈ T with two children t′ and t′′, it holds
that χ(t) = χ(t′) = χ(t′′); and (iii) for each t ∈ T with exactly one child t′, the
bags χ(t) and χ(t′) differ in exactly one element, that is, |χ(t) ∩ χ(s)| = 1. Every tree
decomposition can be normalized in linear time without increasing its width [22]. We
assume w.l.o.g. that normalized tree decompositions have root and leaf nodes whose
bags are empty.



Dynamic Programming on Tree Decompositions. Dynamic programming is an estab-
lished technique in the toolkit of parameterized complexity [28]. Especially, for prob-
lems parameterized by treewidth, dynamic programming algorithms on tree decompo-
sitions have been applied to many graph problems [5], as well as problems in Logic
and Artificial Intelligence [29]. Dynamic algorithms on tree decompositions all share a
common structure. The tree decomposition is traversed from the leaf nodes to the root
node. At each node a subproblem is solved which consists of the part of the problem
instance that is induced by the content of the bag of the current node. This results in a
set of partial solutions (called tuples) which is propagated from the child nodes to the
parent node. From these, the parent node then calculates the partial solutions its induced
subproblem. Finally, at the root node there is a correspondence between the partial so-
lutions of the root node and the solutions of the whole problem instance. An appropriate
data structure to represent the partial solutions must be devised: this data structure must
contain sufficient information to compute the representation of the partial solutions at
each node from the corresponding representation at the child node(s). In addition, to
ensure efficiency, the size of the data structure should only depend on the size of the
bag (and not on the size of the entire problem instance).

Tree Decompositions of Logic Programs. To build tree decompositions for ground an-
swer set programs Π = (A,R), we use two types of graph representations: (a) The
incidence graph Ginc(Π) of Π is an undirected, bipartite graph (A ∪ R, E), where
E contains an edge (a, r), iff atom a occurs in rule r of Π; and (b) the primal graph
Gprim(Π) of Π is an undirected graph (A, E), where E contains an edge (ai, aj), iff
there exists an r ∈ R, such that both ai and aj appear in r. A tree decomposition of
such a graph representation of a program Π is called a tree decomposition of Π . The
treewidth of an incidence graph of a program is at most the treewidth of its primal graph
plus 1.

For normalized tree decompositions of programs, we can distinguish between six
types of nodes: leaf (LEAF), join (JOIN), atom introduction (AI), atom removal (AR),
rule introduction (RI), and rule removal (RR) node. A node is a leaf node if it has
no child node. A node is a join node if it has two child nodes. A node is an atom
introduction node if its bag contains one additional atom compared to the bag of its
child node. Similarly, a node is an atom removal node, if its bag contains one less atom
compared to the bag of its child node. Rule introduction and rule removal nodes are
defined analogously to AI and AR nodes, where the difference between bags is an added
or removed rule instead of an atom. The last four types, AI, AR, RI, and RR, will often
be augmented with the element e (either an atom or a rule) which is removed or added
compared to the bag of the child node. For example AI(a) denotes that atom a is added
and RR(r) denotes that rule r is removed. Notice that primal graph tree decompositions
cannot contain RI and RR nodes.

When we refer to tree decompositions of programs, we will use the following nota-
tion: Let T = (T, χ) be a tree decomposition of program Π = (A,R) and let t ∈ T be
a node. We denote the atoms occurring in χ(t) with At and the rules occurring in χ(t)
with Rt. These notions naturally extend from nodes t to subtrees Tt of T (rooted at t).
We say that a set of atoms M entails a rule r w.r.t. a tree node t, denoted M ⊨t r,
iff M ∈ models(r|t), where r|t is the rule obtained from r by removing all literals



formed by atoms that are not contained in χ(t). For example, a rule where all literals
are removed thus becomes ⊥ ← ⊤, that is, a contradiction.

Counting Complexity. Investigating the complexity of counting problems was initiated
in [36]. Formally, a counting problem is presented using a witness function which for
every input x returns a set of witnesses for x. A witness function is a function w : Σ∗ →
Γ ∗,<∞, where Σ and Γ are two alphabets; Γ ∗,<∞ are all finite strings in Γ ∗. A counting
problem is then defined as follows: given x ∈ Σ∗, find the cardinality |w(x)|. For a
standard complexity class C, define #C as the class of all counting problems whose
witness function w satisfies (a) there is a polynomial p(n) such that for every x ∈ Σ∗

and every y ∈ w(x) we have |y| ≤ p(|x|); and (b) the problem “given x and y, is
y ∈ w(x)?” is in C; see also [19].

3 Counting Answer Sets

In this section, we introduce our #ASP dynamic programming algorithms. Before doing
so, we give a brief complexity-theoretic discussion of the #ASP problem.

Complexity of #ASP Before introducing the actual algorithms, we provide the fol-
lowing straight-forward result that shows that (under standard complexity-theoretic as-
sumptions) the counting problem we consider here is strictly harder that #SAT. In fact
the following result is a corollary of existing results that deal with the complexity of
evaluating logic programs and the complexity of counting subset-minimal models of
CNF formulas:

Theorem 1. The counting problem #ASP is #CONP-complete

Proof. Membership follows from the fact that, given a program P and an interpreta-
tion I , checking whether I is an answer of P is CONP-complete, see e.g. [23]. Hard-
ness is a direct consequence of #CONP-hardness for the problem of counting subset
minimal models of a CNF formula [12], since answer sets of negation-free programs
and subset-minimal models of CNF formulas are essentially the same objects.

We note that the counting complexity of ASP programs including optimization
statements (i.e., where only optimal answer sets are counted w.r.t. a cost function) is
slightly higher; exact results can be established employing hardness results from [20].

Counting Algorithms for ASP In order to simplify the presentation, we start by giving
only the decision version of the algorithms, and extend them to counting algorithms
later. We assume that, as input, the algorithm is given an answer set program Π , and
a normalized tree decomposition T of Π . At each node t of the tree decomposition,
the algorithm will compute a set τt of tuples that represent the partial solutions. Given a
node t, we denote by t′ its first child, and by t′′ its second child. Thus, a full specification
of the algorithm is given by describing how the set τt is derived from the sets τt′ and
τt′′ .



We next present three dynamic programming algorithms. The first algorithm, INC,
works on a tree decomposition of the incidence graph Ginc(Π). The other two algo-
rithms, PRIM and INVPRIM, use the primal graph Gprim(Π).

INC Algorithm. The first algorithm, based on the incidence graph, is given in Figure 1.
It contains a specification of how, for each node type of the tree decomposition, the set τt
at tree node t can be derived from the set τt′ and τt′′ of its child nodes. A tuple in such a
set is a triple ⟨M,S,C⟩, where M represents a truth assignment of the atoms in χ(t), S
is a set of rules in χ(t) which are already satisfied, and C is a set of certificates, that is,
pairs (A,R) of sets of atoms and rules, where A ⊂ M represents a potential counter-
model with respect to ΠM . The existence of such a tuple in τt witnesses the existence
of a partial answer set for the program induced by the subtree rooted at t. Note that the
decision version of the INC algorithm below restates the algorithm from [21].

Intuitively, the algorithm works as follows: In an atom introduction node t for
atom a, partial solutions of child nodes are extended in two ways: a is either set to
true and added to the set M in the tuple, or set to false and not added to M . For each
rule in χ(t), we verify whether the rule is satisfied by the choice on a. Also, all pos-
sible subsets of the new set M are considered as certificates. By connectedness of tree
decompositions, once a rule removal node removes a rule r, we can discard all tuples
where r is not yet satisfied, since r will never appear again in an ancestor node. In join
nodes, on agreeing sets M , the satisfied rules of the left child tuples and right child
tuples are merged, since all of them are already satisfied. The certificates are updated in
a similar manner. Continuing all the way up to the (empty) root node, this process guar-
antees that a surviving tuple witnesses that there is an assignment M to all atoms of Π
that satisfies all the rules. Further, if the set of certificates of such a tuple is empty, then
this witnesses that there does not exist a subset of M that is a model of the reduct ΠM .
For each node type of the tree decomposition, the construction of the set of tuples τt of
node t from the tuple sets τt′ and τt′′ of its child nodes t′ and t′′, which embodies the
intuitive idea above, is given above. Note that we specify the set τt directly. Checking
whether there exists an answer set is equivalent to checking whether, after a bottom-up
traversal of the tree decomposition, the root node contains the tuple ⟨∅, ∅, ∅⟩.

PRIM and INVPRIM Algorithms. A simplification of the above INC algorithm can
be achieved if one considers the primal graph Gprim(Π). Recall that by definition, a
tree decomposition must contain each edge of the original graph in some node bag.
Since the primal graph contains a clique between all atoms that participate in a rule r,
it follows from the connectedness condition of a tree decomposition that there will be
at least one node whose bag contains all the atoms of rule r. We denote by R̂t all rules
induced in that way by the bag χ(t) of node t. Thus, rule satisfaction can be checked
immediately, and separate sets to keep track of satisfied rules are no longer needed in
the tuple structure. For a given tree node t, the set τt thus contains simplified tuples
of the form ⟨M,C⟩, where M is the same as for INC, and C is a set of sets A ⊂ M ,
that are again the same as for INC. Otherwise, the intuition of the algorithm below
is similar to the one of INC. If primal and incidence graph have similar treewidth, the
PRIM algorithm should benefit from this simplified logic. The PRIM algorithm is given



AI(a) : {⟨ M,S ∪ {r | r ∈ Rt,M ⊨t r},
{(A,R ∪ {r | r ∈ Rt, A ⊨t r

M}) | (A,R) ∈ C}⟩
| ⟨M,S,C⟩ ∈ τt′} ∪
{⟨ M,S ∪ {r | r ∈ Rt,M ⊨t r},

{(A,R ∪ {r | r ∈ Rt, A ⊨t r
M}) | (A,R) ∈ C} ∪

{(A,R ∪ {r | r ∈ Rt, A ⊨t r
M})

| (A′, R) ∈ C,A = A′ ∪ {a}} ∪
{(M ′, {r | r ∈ Rt,M

′ ⊨t r
M})}⟩

| ⟨M ′, S, C⟩ ∈ τt′ ,M = M ′ ∪ {a}}

AR(a) : {⟨ M \ {a}, S,
{(A \ {a}, R) | (A,R) ∈ C}⟩

| ⟨M,S,C⟩ ∈ τt′}

RI(r) : {⟨ M,S ∪ {s | s = r,M ⊨t s}
{(A,R ∪ {s | s = r,A ⊨t s

M}) | (A,R) ∈ C}⟩
| ⟨M,S,C⟩ ∈ τt′}

RR(r) : {⟨ M,S \ {r}
{(A,R \ {r}) | (A,R) ∈ C, r ∈ R}⟩

| ⟨M,S,C⟩ ∈ τt′ , r ∈ S}

JOIN : {⟨ M,S′ ∪ S′′

{(A,R′ ∪R′′) | (A,R′) ∈ C′, (A,R′′) ∈ C′′} ∪
{(A,R ∪ S′′) | (A,R) ∈ C′, A = M} ∪
{(A,R ∪ S′) | (A,R) ∈ C′′, A = M}⟩

| ⟨M,S′, C′⟩ ∈ τt′ , ⟨M,S′′, C′′⟩ ∈ τt′′}

LEAF : {⟨∅, ∅, ∅⟩}

Fig. 1: INC Algorithm.



in Figure 2. Again, checking whether an answer set exists is equivalent to checking
whether the tuple ⟨∅, ∅⟩ exists at the root node of the tree decomposition.

AI(a) : {⟨ M,

{A | A ∈ C, ∀r ∈ R̂t : A ⊨t r
M}⟩,

| ⟨M,C⟩ ∈ τt′ , ∀r ∈ R̂t : M ⊨t r} ∪
{⟨ M,

{A | A ∈ C, ∀r ∈ R̂t : A ⊨t r
M} ∪

{A ∪ {a} | A ∈ C,∀r ∈ R̂t : A ∪ {a} ⊨t r
M} ∪

{M ′′ | M ′′ = M ′, ∀r ∈ R̂t : M
′′ ⊨t r

M}⟩
| ⟨M ′, C⟩ ∈ τt′ ,M = M ′ ∪ {a}}

AR(a) : {⟨ M \ {a}, {A \ {a} | A ∈ C}⟩
| ⟨M,C⟩ ∈ τt′}

JOIN : {⟨ M,C′ ∩ C′′⟩
| ⟨M,C′⟩ ∈ τt′ , ⟨M,C′′⟩ ∈ τt′′}

LEAF : {⟨∅, ∅⟩}

Fig. 2: PRIM Algorithm.

The idea underlying the INVPRIM algorithm is to save in each tuple, instead of
the set C the set C of inverse certificates, i.e. sets A ⊂ M that are surely not counter-
models w.r.t. the reduct ΠM . We leave the straightforward adaptation of the above
PRIM algorithm to the interested reader.

Counting. The three algorithms presented above, as-is, do not allow for model counting.
However, a simple modification allows this. To this end, associate with each tuple t a
number n(t). For tuples in leaf nodes, set this number to 1. For tuples in join nodes, let
n(t) = n(t′) · n(t′′), where t′ (t′′) is the left (right) child’s tuple that gave rise to t. For
introduction and removal nodes, let f be the surjective function that maps a child tuple t′
to tuple t, according to the algorithms given above. Then, let n(t) = sumt′∈f−1(t)n(t

′)
(i.e. if two tuples map to the same tuple, their counts are summed up).

Correctness and Runtime. The correctness proof of these algorithms is rather tedious,
as each node type needs to be investigated separately. However, it is not difficult to see
that a tuple at a node t guarantees that there exists a model for the ASP sub-program
induced by the subtree rooted at t, proving soundness. Conversely, it can be shown that
each candidate answer set is indeed evaluated while traversing the tree decomposition,
which proves completeness. Regarding the theoretical runtime bounds, the algorithms
all work in time O(22

w ·n), where w is the width of the underlying tree decomposition,
and n is the size of Π .



An interesting observation is that, by dropping all the logic concerning the certifi-
cates from the above algorithms, one obtains a pure satisfiability checking algorithm,
similar to those proposed in [32].

4 Experimental Evaluation

We performed experiments to evaluate the efficiency of our approach and its various
algorithm configurations (PRIM, INVPRIM, INC) on programs where we can heuris-
tically find a decomposition of small width reasonably fast. In fact, programs of small
width exist in practice as real-world graphs often admit tree decompositions of small
width. Further, we compared our approach with a modern ASP solver, recent #SAT
solvers, and a QBF solver. The solvers tested include our own prototype implemen-
tation, which we refer to as DynASP, and the existing solvers Cachet 1.21 [33] (a
SAT model counter), DepQBF01 (a QBF solver), Clasp 3.1.4 [16] (an ASP solver),
and SharpSAT 12.08 [35] (a SAT model counter).

We used both random and structured instances for benchmark sets, of which we give
a description below. The random instances (SAT-TGRID, 2QBF-TGRID, ASP-TGRID,
2ASP-TGRID) were designed to have a high number of variables and solutions, but
with certain probability a treewidth larger than some fixed k. Therefore, let k and ℓ be
some positive integers and p a rational number such that 0 < p ≤ 1. An instance F
of SAT-TGRID(k, l, p) consists of the set V = { (1, 1), . . . , (1, ℓ), (2, ℓ), . . . , (k, ℓ) }
of variables and with probability p for each variable (i, j) such that 1 < i ≤ k and
1 < j ≤ ℓ a clause s1(i, j), s2(i − 1, j), s3(i, j − 1), a clause s4(i, j), s5(i − 1, j),
s6(i− 1, j − 1), and a clause s7(i, j), s8(i− 1, j − 1), s9(i, j − 1) where si ∈ {−,+}
is selected with probability one half. In that way, such an instance has an underlying
dependency graph that consists of various triangles forming for probability p = 1 a
graph that has a grid as subgraph. Let q be a rational number such that 0 < q ≤ 1. An
instance of the set 2QBF-TGRID(k, l, p, q) is of the form ∃V1.∀V2.F where a variable
belongs to V1 with probability q and to V2 otherwise. Instances of the sets ASP-TGRID
or 2ASP-TGRID have been constructed in a similar way, however, as an ASP pro-
gram instead of a formula. Note that the number of answer sets and the number of
satisfiable assignments correspond. We fixed the parameters to p = 0.85, k = 3, and
l ∈ {40, 80, . . . , 400} to obtain instances that have with high probability a small fixed
width, a high number of variables and solutions. Further, we took fixed random seeds
and generated 10 instances to ensure a certain randomness. The structured instances
model various graph problems (2COL, 3COL, DS, ST CVC, SVC) on real world mass
transit graphs of 82 cities, metropolitan areas, or countries (e.g., Beijing, Berlin, Shang-
hai, and Singapore). The graphs have been extracted from publicly available mass tran-
sit data feeds [8] using gtfs2graphs [14] and split by transportation type, e.g., train,
metro, tram, combinations. We heuristically computed tree decompositions [9] and ob-
tained relatively fast decompositions of small width unless detailed bus networks were
present. The encoding for 2COL counts all minimal sets S of vertices such that there are
two sets F and S where no two neighboring vertices v and w belong to F for a given

1 Since DepQBF [26] does not support counting by default, we implemented a naive counting
approach into DepQBF using methods described in [25], which we call DepQBF0.
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Fig. 3: Visualization of benchmark results of randomly generated instance sets and a
selected real-world instance set.



input graph. The encoding for 3COL models to count all 3-colorings. The encoding for
DS models to count all minimal dominating sets. The encoding for ST models to count
all Steiner trees. The encoding for CVC asks to count all minimal vertex covers. The
encoding for SVC models to count all subset-minimal vertex covers.

We ran the experiments on an Ubuntu 12.04 Linux cluster of 3 nodes with two AMD
Opteron 6176 SE CPUs of 12 physical cores each at 2.3Ghz clock speed and 128GB
RAM. Input instances were given to the solvers via a shared memory file system. Dur-
ing a run we limited the available memory to 4GB RAM and the CPU time to 300 sec-
onds. We used default options for cachet and SharpSAT, option “–qdc” for DepQBF0,
option “–stats=2 –opt-mode=optN -n 0 –opt-strategy=bb/usc -q” for clasp, and will
refer to the different variants of our prototype implementation as DynASP(PRIM),
DynASP(INVPRIM) and DynASP(INC). Since we cannot expect to solve instances of
high treewidth efficiently, we restricted the instances such that we were able to heuris-
tically find a decomposition of width smaller than 20 within 60 seconds.

In order to draw conclusions about the efficiency of our approach, we mainly in-
spected the (total cpu) running time2 and number of timeouts on the random and struc-
tured benchmark sets. Figure 3 illustrates the running times of the solvers on the various
random instance sets and a selected structured instance set as a cactus plot. Table 1 re-
ports on the average running times, number of solved instances, and number of timeouts
of the solvers on the considered structured instance sets.

SAT-TGRID and ASP-TGRID: Cachet solved 125 instances. Clasp always timed
out for both configurations (branch and bound; and unsatisfiable core). A reason could
be the high number of solutions as Clasp counts the models by enumerating them.
DynASP(·) solved each instance within at most 270 seconds (on average 67 seconds).
The best configuration with respect to runtime was PRIM. However, the running times
of the different configurations were close. We observed as expected a sub-polynomial
growth in the runtime with an increasing number of solutions. SharpSAT timed out on
3 instances and ran into a memory out on 7 instances, but solved most of the instances
quite fast. Half of the instances were solved within 1 seconds and more than 80% of
the instances within 10 seconds, and about 9% of the instances took more than 100
seconds. The number of solutions does not have an impact on the runtime of SharpSAT.
SharpSAT was the fastest solver in total, however, DynASP(·) solved all instances. The
results are illustrated in the two left graphs of Figure 3.

2QBF-TGRID and 2ASP-TGRID: Clasp solved more than half of the instances in
less than 1 second, however, timed out on 59 instances. DepQBF0 shows a similar be-
havior as Clasp, which is not surprising as both solvers count the number of solutions by
enumerating them and hence the number of solutions has a significant impact on the run-
time of the solver. However, Clasp is throughout faster than DepQBF0. DynASP(INC)
solved half of the instances within less than 1 second, about 92% of the instances within
less than 10 seconds, and provided solutions also if the instance had a large number of

2 The runtime for DynASP(·) includes decomposition times. Note that we randomly generated
three fixed seeds for the decomposition computation to allow a certain variance in decompo-
sition features [1]. When evaluating the results, we constructed the average on the seeds per
instance.



2COL 3COL DS ST CVC SVC

Clasp 31.72 (21) 0.10(0) 8.99 (3) 0.21 (0) 29.88 (21) 98.34 (71)
INC 1.43 (0) 0.58(0) 0.54 (0) 115.02 (498) 0.68 (0) 0.78 (0)
INVP 1.50 (0) 0.47(0) 0.79 (0) 91.92 (248) 0.99 (0) 1.15 (0)
PRIM 1.54 (0) 0.53(0) 0.68 (0) 79.36 (221) 0.99 (0) 1.30 (0)

Table 1: Runtime results on real-world graph instance sets and number of timeouts in
brackets. Runtimes given in sec.

answer sets. DynASP(INVPRIM) and DynASP(PRIM) quickly produced timeouts due
to a significantly larger width of the computed decompositions.

Structured instances: Clasp solved most of the structured instances reasonably fast.
However, the number of solutions has again, similar to the random setting, a significant
impact on its performance. If the instance has a small number of solutions, then Clasp
yields the number almost instantly. If the number of solutions was very high, then Clasp
timed out. DynASP(·) solved for each set but the set ST more than 80% of the instances
in less than 1 second and the remaining instances in less than 100 seconds. For ST the
situation was different. Half of the instances were solved in less than 10 seconds and
a little less than the other half timed out. Similar to the random setting, DynASP(·)
ran still fast on instances with a large number of solutions. Whenever the instance had
relatively few solutions Clasp was faster, otherwise DynASP(·) (e.g., SVC) was faster.

The empirical results of the benchmarks confirm that our DynASP prototype works
reasonably fast under the assumption that the input instance has small treewidth. The
comparison to state-of-the-art ASP and QBF solvers shows that our solver has an advan-
tage if we have to count many solutions, whereas Clasp and DepQBF0 perform well if
the number of instances is relatively small. However, DynASP(·) is still reasonably fast
on structured instances with few solutions as it yields the number of solutions mostly
within less than 10 seconds. We observed that DynASP(INC) seems to be the overall
best solving algorithm in our setting, which indicates that the smaller treewidth ob-
tained by decomposing the incidence graph generally outweighs the benefits of simpler
solving algorithms for the primal graph. A comparison to recent #SAT solvers suggests
that dedicated #SAT algorithms are somewhat faster on random SAT formulas of small
treewidth than our decomposition based approach, which is, however, not particularly
surprising since our implementation is equipped to handle the full ASP semantics. The
results indicate that our approach seem to be suitable for practical use, at least for cer-
tain classes of instances with low treewidth, and hence could fit into a portfolio-based
solver.

5 Conclusions

In this paper, we have presented several dynamic programming algorithms for counting
answer sets of logic programs, and compared a prototype implementation to existing
solvers. For large instances of low treewidth, our implementation proved to be com-



petitive both against classical ASP solvers that need to materialize all answer sets in
order to count them, as well as specific counting algorithms developed for SAT. These
promising results confirm the importance of evaluating parameterized algorithms in
practice [18]. Future work includes extending our algorithms to weighted model count-
ing, to solve e.g., the Bayesian inference problem.
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