
An integrated Graphical User Interface for Debugging
Answer Set Programs

Philip Gasteiger1, Carmine Dodaro2, Benjamin Musitsch1, Kristian Reale2, Francesco
Ricca2, and Konstantin Schekotihin1

1 Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, AT
{firstname.lastname}@aau.at
2 Università della Calabria, Rende CS, IT
{lastname}@mat.unical.it

Abstract. Answer Set Programming (ASP) is an expressive knowledge repre-
sentation and reasoning framework. Due to its rather simple syntax paired with
high-performance solvers, ASP is interesting for industrial applications. However,
to err is human and thus debugging is an important activity during the develop-
ment process. Therefore, tools for debugging non-ground answer set programs
are needed. In this paper, we present a new graphical debugging interface for
non-ground answer set programs. The tool is based on the recently-introduced
DWASP approach for debugging and it simplifies the interaction with the debugger.
Furthermore, the debugging interface is integrated in ASPIDE, a rich IDE for
answer set programs. With our extension ASPIDE turns into a full-fledged IDE by
offering debugging support.

Keywords: Answer Set Programming, ASP, debugging, graphical debugging

1 Introduction

Answer Set Programming (ASP) [5] is a declarative programming paradigm proposed
in the area of logic programming and non-monotonic reasoning. Computational prob-
lems of comparatively high complexity can be modeled in the expressive language of
ASP [13], which provides a clear separation between the specification of a problem and
the computation of its solutions by an ASP solver. The rather simple syntax of ASP
paired with high-performance solvers makes ASP a valuable tool for developing com-
plex research and industrial applications [2, 7, 11, 18]. Especially real-world applications
outlined the advantages of ASP from a software engineering viewpoint. Namely, ASP
programs are flexible, intuitive, extensible and easy to maintain [18].

Although the basic syntax of ASP is not particularly difficult, one of the most tedious
and time-consuming programming tasks is the identification of (even trivial) faults in a
program. For this reason, several methodologies and tools have been proposed in the last
few years for debugging ASP programs [4, 17, 22, 21, 26], with the goal of making the
development process faster and more comfortable.

We have recently proposed a new debugging technique in [10] that can be applied to
non-ground ASP programs, and that allows to single out the rules causing a bug. This

new approach overcomes the limits [22] of state-of-the-art debuggers based on meta-
programming [17, 22], which suffer from a grounding blow-up problem. Nonetheless
the new technique was implemented a as a command line tool only, called DWASP, that
extends the WASP solver [1].

It is nowadays recognized that the development of programs can be made easier by
development tools and graphic environments. Indeed, the most diffused programming
languages always come with the support of graphical debugging tools that are integrated
in rich IDEs. As an example consider one of the most diffused debugging tools for C++,
called gdb. Despite gdb being shipped with g++ as a command line tool, given the
complex nature of debugging, serious program inspections are often done by means of
user friendly graphical tools (provided by IDEs such as Eclipse or Netbeans) that wrap
the gdb command. Following this trend, the debugging approaches for ASP have been
usually integrated in programming environment such as ASPIDE [15] or SeaLion [6, 23].
However, initially DWASP was not integrated in a graphic environment, and also ASPIDE
featured only a limited support for debugging, which was restricted to ground programs.
In this paper we provide two contributions in this context:

1. A graphical user interface, called DWASP-GUI, for DWASP that improves the user-
experience of the debugger.

2. A plug-in connector for ASPIDE, which integrates DWASP-GUI within the IDE.

The graphical user interface provides a more intuitive user-experience during the
debugging process with DWASP. Furthermore, the integration in ASPIDE brings additional
advantages to the users of DWASP. Indeed ASPIDE provides a unit-testing framework [14]
that was connected with DWASP to automatically generate failing test cases for the
debugger. The integration is thus synergistic, as it simplifies the usage of the debugger
and turns ASPIDE into a full-fledged IDE by offering a more advanced debugging tool.

2 Answer Set Programming

In this section we recall the syntax and semantics of answer set programming. Fur-
thermore, some properties of answer set programs that are required for our debugging
methodology are presented briefly.

2.1 Syntax.

A disjunctive logic program (DLP) Π is a finite set of rules of the form

a1 ∨ . . . ∨ am ← l1, . . . , ln (1)

where a1, . . . , am are atoms and l1, . . . , ln are literals for m,n ≥ 0. A literal is an atom
ai (positive) or its negation ∼ai (negative), where ∼denotes the negation as failure. The
complement of a literal l and a set of literals L is denoted by l and L := {l | l ∈ L},
respectively, where a =∼a and ∼a = a for an atom a. An atom is an expression of the
form p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk are terms, i.e. variables
or constants. An atom, literal, or rule is called ground, if it is variable-free. Given a rule

r of the form (1), the set of atoms H(r) = {a1, . . . , am} is called head and the set of
literals B(r) = {l1, . . . , ln} is called body. Moreover, B(r) can be partitioned into the
sets B+(r) and B−(r) comprising the positive and negative body literals, respectively.
A rule r is called fact if |H(r)| = 1 and B(r) = ∅; constraint if H(r) = ∅; and normal
rule if |H(r)| = 1 and B(r) 6= ∅. For a fact a ← we omit the← symbol and write a
instead. Every rule r ∈ Π must be safe, i.e. each variable of r must occur in at least one
positive literal of B+(r).

2.2 Semantics.

Let Π be an ASP program, UΠ be the Herbrand universe and BΠ be the Herbrand base
of Π . Let ΠG be the ground instantiation of Π that is obtained by substituting variables
with elements of UΠ . An interpretation is a set of ground atoms I ⊆ BΠ . Given an
interpretation I a positive literal l (its complement l) is true in I iff l ∈ I (l 6∈ I). An
interpretation M is a model for ΠG if for each rule r ∈ ΠG having B(r) ⊆M it holds
that H(r) ∩M 6= ∅. Let I1 and I2 be two interpretations, then I1 ⊆+ I2 if and only if
for each atom a ∈ I1 it holds that a ∈ I2.

Given the ground instantiation ΠG of a DLP Π and an interpretation I , a reduct
of ΠG w.r.t. I is a ground program ΠG

I obtained from ΠG by: (i) deleting all rules
r ∈ ΠG whose negative body is false w.r.t to I and (ii) deleting the negative body from
the remaining rules. An answer set of Π is a model M of ΠG that is a ⊆+-minimal
model of ΠG

M . Given the set of answer sets AS(Π) of Π , the program Π is called
incoherent, if AS(Π) = ∅, and coherent otherwise.

3 Debugging Approach

In this section we present the debugging approach proposed in [10] which is implemented
inside the ASP solver WASP [1]. First, the key idea behind the approach is presented on
an abstract level in Section 3.1. Afterwards, a way to integrate the approach inside an
ASP solver is outlined in Section 3.2.

3.1 Idea

When developing a program, the user commonly uses a small instance to test it. In
order to verify the correctness of the results obtained from the ASP solver, the expected
solution of the sample instance is determined by hand. That is, at least one answer set of
an intended program for the given instance is known to the user. A bug in the answer set
program under test is then revealed when:

(a) there are no answer sets (i.e. the program is incoherent), or
(b) the known answer set is not among the computed ones or there are answer sets

corresponding to non-solutions of the sample instance.

Example 1 (ASP conference system [23]). The DLP Π ′ below models a conference
system that assigns papers to program committee members. The assignment is done

according to bids (ranging from 0 to 3) expressing a degree of preference on the papers.
If no explicit bid is placed, a default value of 1 is assumed.

Π ′ = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2),

some−bid(M,P)← bid(M,P,X),

bid(M,P, 1)←∼some−bid(M,P), pc(M), paper(P)}

We expect a solution containing bid(m1, p1, 2) and bid(m2, p1, 1), but Π ′ is incoherent.
Therefore, a bug of type (a) is revealed.

As illustrated by the example above, bugs of type (a) are revealed when the ASP
solver finds that the program is incoherent. In order to reveal a bug of type (b), additional
information about the expected answer set is required. This information is given in the
form of a test case, which intuitively asserts a set of literals to be true in some answer set
of the faulty program Π . Whenever there exists an answer set of Π such that all asserted
literals are true, the test case passes. If no such answer set exists, the test case fails since
no answer set models all asserted literals and a bug is revealed.

Example 2. Consider a program Π ′′ consisting of the following rules:

wet ∨ dry ←
umbrella ∨ no_umbrella←

← wet, umbrella

← rainy, dry

← wet, ∼rainy
rainy

The user expects an answer set of Π ′′ where dry and umbrella are true. However, Π ′′

has only one answer set {rainy, wet, no_umbrella}, thus, intuitively, we have a test
case that fails.

Definition 1 (Test Case). A test case for a program Π is a set of literals T asserted to
be true in some answer set. A test case fails, if the program

ΠT = Π ∪ {← l | l ∈ T} (2)

is incoherent.

Example 3. Consider the program Π ′′ from Example 2. According to Definition 1, the
test case is represented by the set T = {dry, umbrella}. The program Π ′′T extends Π ′′

by the constraints←∼dry, and←∼umbrella. Since dry cannot be derived in Π ′′T , the
program is incoherent.

We model assertions by constraints that forbid any answer set containing the comple-
ment of the asserted literals. As a result, checking whether a test case T of a program Π
passes or not is reduced to checking whether ΠT is coherent, as illustrated in Example 3.
Hence the second case (b) of when a bug is revealed is reduced to the first case of

incoherent programs. Therefore, it is sufficient to focus on debugging of incoherent
programs only.

Given an incoherent program Π and a test case T , the goal is to highlight a set of
rules of ΠT that cause the incoherence. Intuitively, not all rules of Π contribute to its
incoherence.

Example 4. Consider the program Π ′′ and a test case T = {dry, umbrella} from
Example 3. A debugger should identify the buggy rule:

← rainy, dry .

Indeed, given the rule ←∼ dry and the fact rainy, the above constraint cannot be
satisfied. In that case the buggy constraint should be replaced by:

← rainy, dry, ∼umbrella .

Unfortunately, the set of buggy rules might be large, thus not helping the user to
localize the fault. Therefore, in our approach the user is queried (in a smart and non-
overwhelming way) to retrieve further information about the expected solution. Every
query allows the debugger to exclude irrelevant rules and identify the buggy ones more
precisely. We implement this debugging strategy by using the concepts of solving under
assumption and unsatisfiable cores [32] as described in the next section.

3.2 The DWASP Strategy

In this section, we focus on how to integrate the debugging approach inside an ASP solver.
The task of debugging an incoherent answer set program is computationally hard. Thus,
integrating the approach inside an ASP solver aims to speed-up the debugging process.
For instance, the solving-under-assumptions feature [12] implemented in modern ASP
solvers [1, 16] is used to compute an unsatisfiable core. In a nutshell, assumptions
correspond to a set of literals A considered as true during the solving process. Whenever
some of the assumptions are violated during the solving process, the conflicting set of
literals C ⊆ A, called unsatisfiable core, is computed.

In order to utilize the solving-under-assumptions interface, a fresh debug atom is
introduced to the body of each rule of Π , as defined in Definition 2. Furthermore, users
can specify a set of rules B ⊆ Π called background knowledge that are considered to be
correct. In the following, we assume B to comprise all facts of a logic program Π .

Definition 2 (Debugging Program). LetΠ be an incoherent DLP, B be the background
knowledge, and id : (Π \ B) → N be an assignment of unique identifiers to the non-
background knowledge rules of Π . Then, the debugging program ∆Π of Π with respect
to the background knowledge B is defined as

∆Π = {a1 ∨ · · · ∨ am ← l1, . . . ,ln, _debug(id(r), vars) | r ∈ (Π \ B),
H(r) = {a1, . . . , am}, B(r) = {l1, . . . , ln}} ,

(3)

where _debug(id(r), vars) is a fresh debug atom and vars is a tuple comprising all
variables of B(r).

Example 5. Consider the program Π ′ from Example 1. The corresponding debugging
program is given as follows:

∆Π′ = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2),

some−bid(M,P)← bid(M,P,X), _debug(1,M, P,X),

bid(M,P, 1)←∼some−bid(M,P), pc(M), paper(P), _debug(2,M, P)}

Debugging incoherent programs. Algorithm 1 depicts the implementation of the debug-
ging strategy inside the solver. We consider an incoherent program Π for debugging
and input its ground debugging program ∆G

Π to the debugger. First, we gather all debug
atoms in the set A (line 2). Solving under the assumption that all debug atoms A are true
causes the solver to return a minimal unsatisfiable core C containing debug atoms only
(line 4). Debug atoms with the same identifier idr correspond to the (non-ground) rule
r ∈ Π , while a ground debug atom corresponds to exactly one ground rule of Π . Thus,
the atoms inside the minimized unsatisfiable core uniquely identify the set of ground and
non-ground rules ofΠ that cause the incoherence. We notify the user interface with these
rules, which in turn highlights the rules to the user (line 5). Finally, we compute a query
and issue it to the user, in order to add additional information to the set of assumptions
A (lines 6-10) and start a new debugging iteration.

Algorithm 1: Debugging an incoherent logic program Π

input: A ground debugging program ∆G
Π

1 begin
2 A := {d | d is a debug atom of ∆G

Π}
3 while user continues debugging session do
4 C := compute minimal unsatisfiable core under assumptions A
5 notify user interface with the rules corresponding to C
6 q := compute query atom using C and A
7 if user answers that q is expected to be true then
8 A := A ∪ {q}
9 else

10 A := A ∪ {∼q}

Example 6. Consider the debugging program ∆Π′ from Example 5. The ground instan-
tiation of the debugging program is:

∆G
Π′ = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2),

some−bid(m1, p1)← bid(m1, p1, 1), _debug(1,m1, p1, 1),

some−bid(m1, p1)← bid(m1, p1, 2), _debug(1,m1, p1, 2),

some−bid(m2, p1)← bid(m2, p1, 1), _debug(1,m2, p1, 1),

bid(m1, p1, 1)←∼some−bid(m1, p1), pc(m1), paper(p1), _debug(2,m1, p1),

bid(m2, p1, 1)←∼some−bid(m2, p1), pc(m2), paper(p1), _debug(2,m2, p1)}

In line 2, we add to the set of assumptions A all debugging atoms:

A = {_debug(1,m1, p1, 1), _debug(1,m1, p1, 2), _debug(1,m1, p1, 1),

_debug(2,m1, p1), _debug(2,m2, p1)}

The solver computes the minimal unsatisfiable core using A in line 4:

C = {_debug(1,m2, p1, 1), _debug(2,m2, p1)}

The debugging atoms in C correspond to the ground rules

some−bid(m2, p1)← bid(m2, p1, 1), _debug(1,m2, p1, 1)

bid(m2, p1, 1)←∼some−bid(m2, p1), pc(m2), paper(p1), _debug(2,m2, p1)

which in turn correspond to the following non-ground rules of Π:

some−bid(M,P)← bid(M,P,X),

bid(M,P, 1)←∼some−bid(M,P), pc(M), paper(P)

In line 6, the debugger determines q = bid(m2, p1, 1) as query atom. As we expect a
solution containing bid(m2, p1, 1), we answer that q is expected to be true, which causes
the solver to extend the set of assumptions A by bid(m2, p1, 1). In the next iteration, a
new unsatisfiable core C is returned (line 4):

C = {_debug(1,m2, p1, 1)}

The core C corresponds to following ground and non-ground rules

some−bid(m2, p1)← bid(m2, p1, 1)

some−bid(M,P)← bid(M,P,X)

of the faulty program Π ′. We now see that the bug is caused by the outlined rule, as it
derives some−bid(m2, p1) given bid(m2, p1, 1), which in turn is derived as default by
the last rules of Π ′.

Query computation. In order to narrow the source of the incoherence, queries are
used, as pointed out in the previous section. The computation of the queries is done by
relaxing the unsatisfiable core, that is by removing some debugging atom from the set of
assumptions until an answer set is found. A diagnosis is a set of debug atoms such that
when they are removed from the set of assumptions, the relaxed program is coherent.
The goal is to present the correct diagnosis to the user, however many diagnoses might
exist. Ideally, a query is asked in a way that, regardless the answer to the query, the
number of diagnosis is cut in half. Therefore, we choose the query atom as the atom q
occurring in a half of the answer sets of the relaxed programs. If the user considers q to
be true in the expected answer set, q is added to the assumptions and ∼q otherwise.

Missing support. Recall that an atom u is unsupported w.r.t. an interpretation I , if no
rule derives the atom. Thus, if a supported atom u is true in an interpretation I , then I
cannot be an answer set. Consider the case when the user asserts an atom u to be true in
a test case T of Π , i.e. u ∈ T , and u is unsupported in any answer set Π . The debugger
will compute an unsatisfiable core of ΠT consisting of the rule←∼u only. However,
when there is no assertion←∼u available, the computed core will be empty. Therefore,
an additional way of detecting unsupported atoms is required. We extend the debugging
program ∆Π by the set of rules

{a← _support(a) | a is an atom of ΠG} ,

where _support(a) is a fresh atom called supporting atom of a. Assuming that the
supporting atoms are false does not alter the semantics of the program. However, the
solver will now include the supporting atoms inside the unsatisfiable core, allowing
the identification of unfounded atoms inside the core. Therefore, during the debugging
process depicted in Algorithm 1, we extend the set of assumptions A by the set of literals

{∼s | s is a supporting atom of ∆G
Π} .

We now identify an unsupported atom u ∈ Π by having the atom _support(u)
inside an unsatisfiable core C during the debugging process. Intuitively, the fault is
rooted in some rule r failing to derive u, because (i) the body of r is not satisfied, or
(ii) the body of r is satisfied but another atom of the head of r is chosen. Therefore, we
select a query atom out of the set of atoms

Q =
⋃

r∈{r|u∈H(r)}

(H(r) \ {u}) ∪B+(r) ∪
{
a |∼a ∈ B−(r)

}
. (4)

4 The DWASP System

In this section, we first give an overview of the debugging system and how the com-
ponents interact with each other. Afterwards, we describe the graphical user interface
DWASP-GUI in detail. Furthermore, we present the communication protocol between
the GUI and the debugger. Finally, the integration with an integrated development
environment for ASP, called ASPIDE [15], is presented.

User

Input GRINGO-WRAPPER

GRINGO DWASP

DWASP-GUI

Fig. 1. Interaction of the user with the debugging system: The front-end DWASP-GUI uses GRINGO-
WRAPPER and DWASP to debug the program.

Our system consists of three components: GRINGO-WRAPPER – the debugging
grounder, the solver DWASP, and the graphical user interface DWASP-GUI, as depicted in
Fig. 1. The user interacts with DWASP-GUI and provides a program Π and some test case
T . If the test case fails, i.e. ΠT is incoherent, a new debugging session is started. First,
GRINGO-WRAPPER transformsΠT to the debugging program∆ΠT

. Then, the debugging
program is passed to GRINGO3 in order to obtained the ground debugging program ∆G

ΠT
.

Afterwards, the debugger DWASP is started with ∆G
ΠT

as input. Unsatisfiable cores and
queries are computed and displayed to the user, until the fault is localized, as described
in Section 3.

4.1 User Interface DWASP-GUI

A screenshot of DWASP-GUI is depicted in Fig. 2. The workspace-view and test cases-
view list all files that contain the program encodings and test cases, respectively. Further-
more, the queries-view contains at most nine atoms (due to space restrictions of the GUI),
whose truth-values are requested to be asserted by the user. The user answers a query by
selecting either the button with the check-mark or with the cross and clicking on send.
Afterwards, DWASP re-computes the unsatisfiable core and presents the results to the user.
While debugging a program, all rules that are contained in the current unsatisfiable core
are highlighted in red. When hovering over such a rule with the cursor, all substitutions
as well as ground versions of the rules are displayed in a pop-up.

Fig. 2. A screen-shot of DWASP-GUI used to debug the program presented in Example 1.

3 Note that simplifications of GRINGO are disabled [10]

4.2 Integration with ASPIDE

We integrated the graphical user interface DWASP-GUI inside the integrated development
environment ASPIDE [15]. The work-flow for testing and debugging is illustrated using
the program presented in Example 1.

In Fig. 3, we present a screen-shot of ASPIDE with a workspace that has the program
Π ′ loaded. The test case some_model.test uses an assertion of ASPIDE [14] that
checks whether some answer set exists. On executing the test case some_model.test,
the IDE tells us that the test case failed, as depicted in figure 4. In order to start the
DWASP-system, we click on the Debug button. We are now presented with the interface
DWASP-GUI as shown in figure 5, where we debug the faulty program as described in
the previous section. Finally, we click on the Back to ASPIDE button, which returns us
to ASPIDE, having the faulty rule highlighted as well.

Fig. 3. A screen-shot of ASPIDE displaying the program presented in Example 1.

5 Related Work

Modern ASP debugging approaches can be mainly separated into integrated and declar-
ative approaches. The first approaches are based on a tight integration with the solver,
whereas the second ones are solver independent and are based on meta-programming.

The DLV debugger developed in [24] is an example of an integrated approach. It
uses the reason calculus to detect and store the choices made by the solver during
the backtracking phases in a reasons table. The table can be queried to justify the
presence/absence of a literal in an answer set or to explain the incoherency of the
program. This debugging system is however very limited, since it uses specific features

Fig. 4. A screen-shot of ASPIDE displaying the failed test case.

Fig. 5. A screen-shot of DWASP-GUI, were the faulty program is being debugged.

of the DLV system and can only provide a partial interpretation justifying the lack of
a model. IDEAS [4] is another procedural approach aiming at two types of problems:
(a) why a set of atoms S is in an answer set M and (b) why S is not in any answer set.
Both IDEAS algorithms are similar to the ones implemented in ASP solvers and try to
decide which rules are responsible for derivation or non-derivation of atoms in S. The
interactivity of IDEAS, as well as of all other modern debuggers allows a programmer:
(1) to query a system for an explanation of an observed fault, (2) analyze the obtained
results and (3) reformulate the query to make it more precise. In our approach we
reuse the algorithms implemented in a solver and are able to find required refinements
automatically, thus, making the steps (2) and (3) obsolete.

The declarative debuggers use a program over a meta language – a kind of ASP solver
simulation – to manipulate a program over an object language – the faulty program.
Each answer set of a meta-program comprises a diagnosis, which is a set of meta-atoms
describing the cause why some interpretation of the faulty program is not its answer set.
An approach used in SMDEBUG [31] addresses debugging of incoherent non-disjunctive
ASP programs by adaption of model-based diagnosis [27]. Similarly to our approach the
debugger focuses on detection of odd loops, but cannot detect problems arising due to
unfounded sets. The SPOCK [17] and OUROBOROS [22, 25] debuggers extend SMDEBUG
by enabling identification of problems connected with unfounded sets. Both approaches
represent the input program in a reified form allowing application of a debugging meta-
program. In case of SPOCK the debugging can be applied only to grounded programs,
whereas OUROBOROS can tackle non-grounded programs as well. The main problem
of meta-programming approaches is that often the grounding of the debugging meta-
program explodes. This is due to the fact that the ground debugging program has to
comprise all atoms explaining all possible faults in an input faulty program, which is not
the case in our approach. Moreover, our approach generalizes the interactive query-based
method built on top of SPOCK [30] by enabling its application to non-ground programs.

There are other approaches enabling faults localization in ASP, but not directly
comparable with DWASP, include Consistency-Restoring Prolog [3], translation of ASP
programs to natural language [20], visualization of justifications for an answer set [26]
as well as stepping thought an ASP program [21]. Combining these approaches with
ideas implemented in DWASP is a part of our future work.

In [9] a web-based programming environment for the IDP system is presented. The
IDE also provides a graphical interface for a debugging approach based on assumptions
and core-detection. However, [9] applies it to a different language and it does feature a
question-answering schema that is fundamental for reducing the set of buggy rules.

In [19], the authors present a debugging technique for normal ASP programs that
is based on inductive logic programming (ILP) and test cases. The idea is to allow the
programmer to specify test cases modeling features that are expected to appear in some
solution and those that should not. These are used to to revise the original program
semi-automatically so that it satisfies the stated properties. The implementation of the
theory revision is done in ASP using an abductive logic programming technique. This
approach can complement our debugging approach since it has the possibility to learn
rules (and modifications of rules), whereas we focus on finding errors assuming the
program is a complete specification.

In [28] a different approach to debugging ASP programs is presented, and the reason
of an incoherence is studied in terms of a set of culprits (atoms) using semantics which
are weaker than the answer set semantics. They also provide a technique for explaining
the set of culprits in terms of derivations. This idea is further extended in [29], where
argumentation theory is used to explain why a literal is or is not contained in a given
answer set, and providing a means for studying relationships among literals. These
approaches see the reason of a bug in the truth of a set of atoms, thus are, in a sense,
complementary to our approach (we identify the rules involved in a conflict).

6 Conclusion

In this paper a new graphical interface for the DWASP debugger has been presented. The
new interface improves the user-experience of debugging ASP programs with DWASP, a
process that was possible before only trough a command line interface. Indeed, besides
the usual advantages provided by visual tools, the new interface simplifies two tasks
that are not easy to carry out in the command line interface, namely: the definition of
test cases and the interactive query answering. The query answering feature is much
more user friendly, since the user can simply select answers by clicking on dedicated
buttons, and several possible answers are presented to the user in a convenient list.
Several test cases can be easily loaded in the interface, and several debugging session
can be seamlessly run on the same cases if needed. Also problematic rules are outlined
immediately in the text editor so the user is pointed immediately from the interface to
sources of bugs. DWASP-GUI has also been integrated in ASPIDE, which was missing
a complete debugger interface supporting non ground ASP programs. The integration
includes specific support for creating failing test cases to debug directly from the unit
test framework provided by ASPIDE. With our extension ASPIDE turns into a full-fledged
IDE by offering complete debugging support.

Acknowledgments. The authors are grateful to Marc Deneker and Ingmar Dasseville for
the fruitful discussions about debugging ASP programs, and in particular for the useful
comments regarding the case of missing support.

This work was partially supported by the Austrian Science Fund (FWF) contract num-
ber I 2144 N-15, the Carinthian Science Fund (KWF) contract KWF-3520/26767/38701,
the Italian Ministry of University, Research under PON project “Ba2Know (Business
Analytics to Know) Service Innovation – LAB”, No. PON03PE_00001_1, and by
the Italian Ministry of Economic Development under project “PIUCultura (Paradigmi
Innovativi per l’Utilizzo della Cultura)” n. F/020016/01–02/X27.

References

1. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri et al. [8], pp.
40–54

2. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A.,
Thorstensen, E.: Optimization Methods for the Partner Units Problem. In: CPAIOR. pp.
4–19 (2011)

3. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: AAAI
Spring Symposium. pp. 9–18 (2003)

4. Brain, M., Vos, M.D.: Debugging Logic Programs under the Answer Set Semantics. In:
Workshop on ASP. pp. 141–152 (2005)

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

6. Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P., Tompits, H.: Sealion: An eclipse-based
IDE for answer-set programming with advanced debugging support. TPLP 13(4-5), 657–673
(2013), http://dx.doi.org/10.1017/S1471068413000410

7. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set
programming competition. Artif. Intell. 231, 151–181 (2016)

8. Calimeri, F., Ianni, G., Truszczynski, M. (eds.): Logic Programming and Nonmonotonic
Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA, September
27-30, 2015. Proceedings, Lecture Notes in Computer Science, vol. 9345. Springer (2015)

9. Dasseville, I., Janssens, G.: A web-based ide for idp. In: International Workshop
on User-Oriented Logic Programming (IULP 2015), Proceedings. http://iulp2015.uni-
leipzig.de/#papers (2015)

10. Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.M.: Interactive debugging
of non-ground ASP programs. In: Calimeri et al. [8], pp. 279–293

11. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry: A solution
based on ASP. In: ten Cate, B., Mileo, A. (eds.) Web Reasoning and Rule Systems - 9th
International Conference, RR 2015, Berlin, Germany, August 4-5, 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9209, pp. 77–92. Springer (2015)

12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4), 543–560 (2003)

13. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TODS 22(3), 364–418 (1997)
14. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in ASPIDE. In: Tompits, H., Abreu,

S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) Applications of Declarative
Programming and Knowledge Management - 19th International Conference, INAP 2011,
and 25th Workshop on Logic Programming, WLP 2011, Vienna, Austria, September 28-30,
2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7773, pp. 345–364.
Springer (2011)

15. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment for answer
set programming. In: Delgrande, J.P., Faber, W. (eds.) Logic Programming and Nonmonotonic
Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19,
2011. Proceedings. Lecture Notes in Computer Science, vol. 6645, pp. 317–330. Springer
(2011)

16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers
(2012)

17. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging
answer-set programs. In: AAAI. pp. 448–453 (2008)

18. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at work: Spin-off and applications of the
DLV system. In: LNCS. vol. 6565, pp. 432–451 (2011)

19. Li, T., Vos, M.D., Padget, J., Satoh, K., Balke, T.: Debugging ASP using ILP. In: Proceedings
of the Technical Communications of the 31st International Conference on Logic Programming
(ICLP 2015), Cork, Ireland, August 31 - September 4, 2015. CEUR Workshop Proceedings,
vol. 1433. CEUR-WS.org (2015)

20. Mikitiuk, A., Moseley, E., Truszczynski, M.: Towards Debugging of Answer-Set Programs in
the Language PSpb. In: IC-AI. pp. 635–640 (2007)

21. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an Answer-Set Program. In: LPNMR. pp.
134–147 (2011)

22. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: On Debugging Non-ground
Answer-Set Programs. TPLP 10(4-6), 2010 (2010)

23. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground answer-
set programs. TPLP 10(4-6), 513–529 (2010)

24. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool for develop-
ing and testing dlv programs. In: SEA Workshop. pp. 86–100 (2007)

25. Polleres, A., Frühstück, M., Schenner, G., Friedrich, G.: Debugging Non-ground ASP Pro-
grams with Choice Rules, Cardinality and Weight Constraints. In: LPNMR, pp. 452–464
(2013)

26. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. TPLP 9(1), 1–56 (2009)

27. Reiter, R.: A Theory of Diagnosis from First Principles. Artif. Intell. 32(1), 57–95 (1987)
28. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in logic programs.

In: Logic Programming and Nonmonotonic Reasoning - 13th International Conference,
LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings. Lecture Notes in
Computer Science, vol. 9345, pp. 467–479. Springer (2015)

29. Schulz, C., Toni, F.: Justifying answer sets using argumentation. TPLP 16(1), 59–110 (2016),
http://dx.doi.org/10.1017/S1471068414000702

30. Shchekotykhin, K.: Interactive query-based debugging of ASP programs. In: AAAI. pp.
1597–1603 (2015)

31. Syrjänen, T.: Debugging Inconsistent Answer Set Programs. In: NMR. pp. 77–84 (2006)
32. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:

Practical implementations and other applications. In: 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany. pp.
10880–10885. IEEE Computer Society (2003)

