
Influence of ASP Language Constructs on the
Performance of State-of-the-art Solvers?

Richard Taupe1,2 and Erich Teppan1

1 Alpen-Adria-Universität Klagenfurt,
Universitätsstr. 65-67, 9020 Klagenfurt, Austria

erich.teppan@aau.at
2 Siemens AG Österreich, Corporate Technology,

Siemensstr. 90, 1210 Vienna, Austria
richard.taupe@siemens.com

Abstract. Answer Set Programming (ASP) under the stable model se-
mantics has evolved to an extremely powerful approach to represent and
solve even industrial-sized combinatorial problems in real-life application
domains. ASP supports various language constructs which can be used
to express the same realities in syntactically different, but semantically
equivalent ways. However, these equivalent programs may not perform
equally well. This is because performance depends on the underlying
solver implementations that may treat different language constructs dif-
ferently. As performance is very important for the successful application
of ASP in real-life domains, knowledge about the mutual interchangeabil-
ity and performance of ASP language constructs is crucial for knowledge
engineers. In this article, we present an investigation on how the usage of
different language constructs affects the performance of state-of-the-art
solvers and grounders on benchmark problems from the ASP competi-
tions 2013 and 2014.

Keywords: Answer Set Programming · Logic Progamming · Stable
Models · ASP Competition · Performance Tuning · Benchmarking

1 Introduction

In recent years, Answer Set Programming (ASP) under the stable model se-
mantics [19] has evolved to an extremely powerful approach to represent and
solve even industrial-sized combinatorial problems in real-life application do-
mains [4, 16, 18]. There are mainly two reasons for these significant advance-
ments: First, the performance of state-of-the-art ASP systems has tremendously
improved, e.g. by the incorporation of conflict-driven search [17], portfolio solv-
ing [14], lazy grounding [21,28], or the inclusion of powerful heuristics like berk-
min or vsids [23]. Second, the language itself has been extended by expressive

? This article summarizes the key findings of Richard Taupe’s master’s thesis [27].
Erich Teppan provided the idea for the topic and supervised the thesis. Both authors
contributed equally to this paper.



2 Richard Taupe, Erich Teppan

constructs like disjunction, choice rules, aggregates, weak constraints or opti-
mization statements [3, 13,20,22,26].

As a consequence, various language features allow to express the same con-
cept in different ways. This leads to problem encodings that are syntactically
different, but semantically identical. Syntactical differences also affect solving
performance. This depends on implementation details of the solvers, which may
treat different language constructs differently.

As performance issues play a big role for the successful application of ASP
in real-life domains, two questions are of special importance for knowledge en-
gineers:

– Which language constructs are mutually interchangeable without changing
program size or readability3 significantly?

– What is the effect of the different language constructs on time and memory
requirements of both grounding and solving?

In this article, we present an experimental evaluation which gives some an-
swers to these questions. The experiments were conducted using the benchmark
problems from the ASP competitions 2013 [1]4 and 2014 [7]5. For each of these
problems, several encodings were produced. It was ensured that the different
encodings for a particular problem were equivalent, i.e. they produced the same
solutions. In order to be able to attribute changes in performance to a certain
language construct, the syntactical differences were kept small and modular.
All encodings have been tested on a number of test instances randomly drawn
from the ASP competitions. They were solved by numerous combinations of
state-of-the-art grounders and solvers. Statistical analysis of the experimental
data revealed interesting dependencies between the usage of certain language
constructs, problems, grounders, and solvers in terms of memory and time con-
sumption.

The remainder of this article is structured as follows. Section 2 refreshes some
concepts of ASP that are important to understand this article. Introductions to
ASP syntax and semantics can be found elsewhere, e.g. in [3, 5, 9, 13]. Section 3
describes the experimental setup. Section 4 discusses the most interesting results
of our evaluations. Finally, Section 5 briefly concludes the article.

3 For example, choice rules can be converted into a number of disjunctive rules linear
in the number of choice elements [3], and for counting aggregates there exists a
translation which is quadratic in space [13]. Both methods are not studied in this
article since they decrease readability in the general case.

4 https://www.mat.unical.it/aspcomp2013/
5 https://www.mat.unical.it/aspcomp2014/



Influence of ASP Language Constructs 3

2 Background

We deal with answer-set programs that are sets of rules. There are several types
of rules: we consider normal rules, facts, constraints, disjunctive rules, and choice
rules. Rule bodies may contain aggregates. Typical aggregate functions are min,
max, count and sum. For an introductory textbook, see [13]. Shorter introduc-
tions to ASP are provided by [5, 9]. The standardized input language of ASP
systems is defined in [3].

There are several ways to define the semantics of an answer-set program,
i.e. to define the set of answer sets AS(Π) of an answer-set program Π. An
overview of the different semantics is provided by [24]. Probably the most popular
semantics is based on the Gelfond-Lifschitz reduct [19]. A semantics that covers
aggregates also is the so-called FLP semantics, named after its devisors Faber,
Leone, and Pfeifer [12]. A variant that applies to choice rules also is presented
in [7].

2.1 Grounding and Solving

Most ASP systems split the solving process into grounding and solving. The for-
mer part produces the grounding of a program, i.e. its variable-free equivalent.
Thereby, the variables in each rule of the program are substituted by constants.
The latter part then solves this propositional encoding. While our analysis in-
cludes a wide range of systems, we will highlight some results for the grounder
gringo [15] and the solver clasp [17].

2.2 ASP Coding Practices

It is common practice in ASP to encode the generic problem specification and
the instance data as two separate programs. We call them encoding and instance,
respectively. While the encoding always stays the same, it can be run together
with different instance programs to solve different problem instances [6, 13].

An instance typically contains only facts involving certain predicates. We call
this set of predicates the program’s input signature. On the other hand, solutions
to the problem are also encoded by a specific set of predicates, which we call
the program’s output signature. Given an answer-set program Π, we denote by
in(Π) its input signature and by out(Π) its output signature [6].

2.3 Equivalence

Various notions of program equivalence have been proposed for ASP. Two answer-
set programs Π and Π ′ are (ordinarily) equivalent (written as Π ≡ Π ′), if they
have the same answer sets, i.e. AS(Π) = AS(Π ′). Uniform equivalence is ful-
filled w.r.t. Π and Π ′ if they are ordinarily equivalent when combined with any
set of facts, i.e. for any set of facts F it holds that Π ∪ F ≡ Π ′ ∪ F [8]. The
stronger notion of strong equivalence holds if the two programs are ordinarily



4 Richard Taupe, Erich Teppan

equivalent when combined with any program Q, i.e. for all programs Q it holds
that Π ∪Q ≡ Π ′ ∪Q [25].

As the rule transformations discussed in this paper often change the pro-
gram’s predicates, the definition of equivalence used herein is based on the con-
cept of output-equivalence6 [6]:

For a set X of atoms and a set P of predicate symbols7, let X|P be the
subset of X that only contains the atoms whose predicate symbol is in P . Two
encodings Π and Π ′ are output-equivalent, if and only if

1. their input and output signatures coincide, i.e. in(Π) = in(Π ′) and out(Π) =
out(Π ′), and

2. for each instance I, i.e. a set of facts of predicates in in(Π), it holds that:

– For each answer set X ∈ AS(Π ∪ I) there exists an answer set X ′ ∈
AS(Π ′ ∪ I) such that X|out(Π) = X ′

|out(Π′) and vice versa.

In other words, two programs are output-equivalent if and only if for any input
instance their answer sets, projected onto the programs’ output predicates, are
the same [6].

3 Experimental Setup

In order to test whether and how the inclusion or exclusion of certain language
constructs influences the solving performance, we tested variations of problem
encodings on a set of state-of-the-art grounders and solvers.

An overview on the experimental setup is given in Figure 1. The ASP com-
petitions 2013 [1] and 2014 [7] served as source for problems, problem encodings
and problem instances. Basic problem encodings obtained from the competitions’
websites were supplemented by handmade variations to use different language
constructs. Four instances also provided by the competitions were randomly
chosen for each problem. The problems were then solved by a set of ASP sys-
tems. This process was controlled by a benchmarking tool, limiting and mea-
suring the systems’ resource consumption. The results produced were validated
by checker programs. The data collected during this process comprises informa-
tion on a) time and space used by grounders and solvers; b) problem, encoding,
and language constructs involved; c) correctness of the results computed by the
solvers; d) and the instance solved.

Let us emphasize that we are primarily interested in the impact of coding
style rather than in the performance of the solvers themselves. Thus, solvers
were treated as black boxes in our experiments.

6 Output-equivalence is similar to the notion of uniform equivalence under projected
answer sets [10], where projection to an arbitrary set of atoms is allowed.

7 To distinguish predicates with the same symbol but different arities, identifiers like
p/n can be used, where p is the predicate’s name and n ∈ N0 its arity.



Influence of ASP Language Constructs 5

Fig. 1. Experimental setup

3.1 Problems and Encodings

All problems that appeared in the ASP competitions 2013 and 2014 were used for
our experiments, except for Chemical Classification, Reachability and Strategic
Companies. For those three, no alternative encodings could be produced8.

At least one of the official encodings provided for each problem was used
as a basis. From this basis, variations were produced by making small changes
where special language constructs were used. For the 24 problems that were used
in our experiments, 223 different problem encodings were formulated, i.e. 9.3
encodings per problem on average (not every language construct was applicable
to every problem). Many of these 223 encodings had to be additionally adapted
for grounders accepting different dialects of ASP9.

In the following paragraphs, we present examples for the exchange of cer-
tain language constructs by others. When doing so, attention has to be paid to
preserve output equivalence as described in Section 2.3.

Replacing classical negation. In many cases, classical negation can be re-
placed by introducing a new predicate. For example, rule (1) from an encoding
of the Bottle Filling problem contains classical negation.

filled(X,Y );¬filled(X,Y )← bottle(B,X, Y ). (1)

If the negated version of the filled predicate is not used anywhere else in the
program, the disjunction is only used to guess whether filled(X,Y ) is present or
not. In this case, rule (2) without classical negation is equivalent to (1).

filled(X,Y ); unfilled(X,Y )← bottle(B,X, Y ). (2)

Replacing guessing constructs. By guessing constructs, we denote the ASP
language features that are used to encode the non-deterministic guessing part of

8 Official encodings for Chemical Classification and Reachability do not use any spe-
cial language constructs that could be replaced. The one for Strategic Companies
uses disjunction, which however cannot be converted using any of the techniques
presented in this paper because it is not head-cycle free [22] in this case.

9 Encodings can be downloaded at http://isbi.aau.at/hint/misc.



6 Richard Taupe, Erich Teppan

a program. These features are disjunction, shifted disjunction, and (bounded or
unbounded) choice rules.

If the whole program is head-cycle free10 w.r.t. a disjunctive rule, the dis-
junction can be shifted into the body [8] or replaced by a choice rule. For (2),
shifting results in (3).

filled(X,Y )← bottle(B,X, Y ), not unfilled(X,Y ).

unfilled(X,Y )← bottle(B,X, Y ), not filled(X,Y ). (3)

The alternative choice rule is shown in (4).

1{filled(X,Y ); unfilled(X,Y )}1← bottle(B,X, Y ). (4)

Furthermore, a choice rule with explicit bounds can often be expressed as
an unbounded choice rule, which may require the addition of a small number of
constraints. For example, the bounded choice rule (4) can as well be represented
by the set of rules in (5).

{filled(X,Y )} ← bottle(B,X, Y ).

unfilled(X,Y )← bottle(B,X, Y ), not filled(X,Y ). (5)

If unfilled is not used anywhere else, the second rule in (5) can even be
omitted.

Replacing aggregates. Rules with counting aggregates can sometimes be re-
placed by a small set of normal rules without aggregates. For example, (6) is a
(simplified) integrity constraint from an encoding of Knight Tour with Holes.

←cell(X,Y ), not #count{X1, Y 1 : move(X1, Y 1, X, Y )} = 1. (6)

This constraint enforces that for each cell(X,Y ) there must be exactly one
other cell from which it is visited. This can also be expressed by the introduction
of two new predicates e1 and e2 reflecting whether there is exactly one or at
least two moves entering from different cells and a constraint stating that the
first one must hold, as shown in (7).

← cell(X,Y ), not e1 (X,Y ).

e1 (X,Y )← move(X1, Y 1, X, Y ), not e2 (X,Y ).

e2 (X,Y )← move(X1, Y 1, X, Y ), move(X2, Y 2, X, Y ), X1 <> X2.

e2 (X,Y )← move(X1, Y 1, X, Y ), move(X2, Y 2, X, Y ), Y 1 <> Y 2. (7)

Min aggregates can be replaced by rules which check whether there is a
smaller element.

next(X,Y )← pair(X,Y ), Y = #min{Z : pair(X,Z)}. (8)

10 Please find more information about head-cycles in [22].



Influence of ASP Language Constructs 7

Thereby, rule (8) from an encoding of Graceful Graphs can also be expressed
by (9).

existsSmaller(X,Y )← pair(X,Y ), pair(X,S), S < Y.

next(X,Y )← pair(X,Y ), not existsSmaller(X,Y ). (9)

Similar techniques can be used to eliminate max aggregates.

3.2 Benchmarking

We tested our encodings on different grounders and solvers in various configu-
rations which already proved a certain stability in the ASP competitions or in
our own evaulations. Tables 1 and 2 give an overview on the used grounders and
solvers, which were used in all combinations (henceforth called systems) where
the solver was compatible to the grounder’s output format11.

Table 1. Used grounders

Grounder Version

gringo 3.0.5
gringo 4.4.0
dlvg12 BEN/Sep 29 2014

Table 2. Used solvers

Solver Version Configurations

clasp 3.1.0 auto, frumpy, jumpy, tweety, handy, crafty, trendy
claspfolio 2.0.0 ASP Competition 2013 Package
cmodels 3.85 minisat1, minisat2, simo, zchaff
dlv13 BEN/Dec 17 2012
GnT 2.1
lp2bv14 LP2BV-1, LP2BV-2, LP2BV2+BOOLECTOR
lp2sat14 lp2graph, lp2sat, lp2sat3+glucose, lp2sat3+lingeling,

lp2maxsat+clasp
lp2normal2 1.7 lp2normal2+clasp
MinisatID 3.9.3
smodels 2.34
wasp 1.0 berkmin, berkmintwo, berkmintwolight, firstundefined,

mixed, mixedprelookahead, berkminlimitedactivity
wasp 2.0

11 The output format of both gringo versions is understood by every solver except for
dlv, and the output format of dlvg is compatible only to wasp 1.0 [2].

12 The authors would like to thank Francesco Calimeri for providing this unreleased
version of the grounder to us.



8 Richard Taupe, Erich Teppan

Some of the mentioned solvers were additionally used in several configura-
tions, e.g. clasp was used with varying heuristics. Details are given in the third
column of Table 2.

For each problem, we randomly selected four test instances, a number which is
a compromise between good sample size and total computation time constraints.
As there were 223 encodings, 73 systems in different configurations and 4 test
instances for each problem, there were 65,116 different test cases. As it was
known beforehand that the monolithic system dlv was not able to digest the
encodings containing choice rules [11], the actual number of test cases was 63,884.
Experiments were run on four virtual machines running Ubuntu 14.04.1 LTS
trusty. Each machine had exclusive access to one processor with 2.53 GHz and
7.8 GB of RAM to preclude any side-effects between experiments running in
parallel. The RAM available to ASP grounders and solvers was limited to 6
GB. Furthermore, there were time limits of 60 minutes for grounding and of
10 minutes for solving. When the timeout was reached, running systems were
carefully terminated to start the next instance in a clean environment.

RunLim15 was used to measure use of time and space during the execution of
grounders and solvers. The correctness of the produced answer sets was validated
by checkers obtained from the ASP competition 2014. For each test case, we
recorded information on the systems involved, grounding and solving time and
space, information about the problem and its encoding (including which language
constructs were present), the problem instance, and the validation results of the
checker.

Of the 63,884 test cases, as many as 25,913 produced a valid solution or
proved to be unsatisfiable. In 16,774 cases the solver ran out of time and in 4695
cases it ran out of memory. In 1449 cases the grounder ran out of memory and in
552 cases it ran out of time. The remaining 14,501 cases had to be excluded from
analysis, because they comprise the following cases: a) the solver had problems
with some language constructs which could be identified later on, b) the solver
produced an incorrect answer, or c) it aborted out of unknown reasons.

4 Results and Discussion

In this paper, only key aspects of the data collected in our benchmarking process
can be presented. The full dataset is available on our website16.

For reasons of readability we use short names in the tables within this section
in order to refer to the different types of language constructs. The meaning should
be clear from the context and the textual explanations.

Tables 3 and 4 list the median values for grounding and solving time and
space for all systems and gringo4/clasp respectively w.r.t. classical negation as

13 DLV is a monolithic system, comprising both grounder and solver.
14 Packages that participated in the ASP Competitions 2013 and 2014 and incorporated

lp2bv or lp2sat have been included in our analysis.
15 http://fmv.jku.at/runlim/
16 http://isbi.aau.at/hint/misc



Influence of ASP Language Constructs 9

well as count, min and max aggregates. Please note that the median of the total
time (i.e. grounding + solving) is not the same as the median of grounding +
the median of solving. For all constructs, only those problems were included in
the analysis where the respective language construct could be varied, i.e. where
there were encodings with and without the language construct. The number of
these problems is given as #probs. The given number of cases indicates how
often an encoding with (yes) or without (no) the respective language construct
was used by a system.

Table 3. Medians for non-guessing constructs: space in MB, time in secs

all systems cases grd-space slv-space grd-time slv-time total

negation no 29,513 8.00 150.80 0.29 87.33 182.13
(#probs=22) yes 17,856 8.10 161.25 0.39 72.83 145.21

aggrcount no 12,914 7.20 160.80 0.86 99.39 241.26
(#probs=9) yes 12,358 6.70 103.85 0.18 128.32 285.22

aggrmin no 1605 8.80 144.60 0.09 timeout timeout
(#probs=1) yes 1603 8.80 148.80 0.09 timeout timeout

aggrmax no 3796 0.00 25.35 0.00 16.63 16.83
(#probs=2) yes 3796 0.00 25.50 0.00 16.56 16.95

Table 4. Medians for non-guessing constructs: space in MB, time in secs

gringo4/clasp cases grd-space slv-space grd-time slv-time total

negation no 3629 7.20 45.30 0.09 43.03 49.78
(#probs=22) yes 2306 7.20 48.90 0.09 25.42 27.51

aggrcount no 1645 6.50 43.90 0.09 92.07 92.15
(#probs=9) yes 1686 6.50 31.30 0.08 125.11 155.31

aggrmin no 168 1.30 55.45 0.04 527.01 527.01
(#probs=1) yes 168 0.00 54.05 0.00 339.56 339.56

aggrmax no 476 0.00 5.70 0.00 1.46 1.46
(#probs=2) yes 476 0.00 5.70 0.00 1.46 1.46

It appears that the inclusion of classical negation effected a slight increase
in required space and grounding time, but also a decrease in solving time. This
resulted in a lower total time. The differing case numbers are due to the fact that,
in contrary to other guessing constructs, for unbounded choice rules no encodings
including classical negation could be produced (in a natural and intuitive way).
Taking into account that the slight positive influence of unbounded negation
discovered by our experiments could not contribute to the positive influence of
classical negation (since the two could not be used together), the latter can be
seen as even stronger.

Apparently, aggregates with count function triggered a significant decrease
in grounding size and time. However, solving was much harder compared to the



10 Richard Taupe, Erich Teppan

cases where this construct was not present. As the effort for grounding can be
neglected in these cases, aggregates with count function had a negative overall
effect. Since there were only very few problems which allowed encodings with
and without min and max aggregates, the results are only representative for
the problems where these constructs were varied. These were Labyrinth and
Weighted Sequence for max aggregates and Graceful Graphs for min aggregates.
Instances of Graceful Graphs were not hard to ground but very hard to solve
such that the all-systems median of the solving time (and consequently of the
total time) was a timeout. The combination of gringo 4 and clasp performed
considerably above average. Clasp showed significantly lower solving times in
cases with min aggregates. The presence/absence of max aggregates effected only
negligible differences over all systems and no differences at all for the combination
of gringo 4 and clasp.

Table 5. Medians for guessing constructs (#probs=19): space in MB, time in secs

all systems cases grd-space slv-space grd-time slv-time total

unbounded choice 6198 7.40 135.00 0.27 84.65 178.40
bounded choice 7589 7.20 98.90 0.09 147.72 260.95
disjunction 13,735 8.90 166.90 0.57 77.51 171.90
shifted disjunction 12,503 7.80 168.50 0.48 95.07 186.96

Table 6. Medians for guessing constructs (#probs=19): space in MB, time in secs

gringo4/clasp cases grd-space slv-space grd-time slv-time total

unbounded choice 861 7.00 35.30 0.09 76.70 91.45
bounded choice 1134 4.00 38.55 0.06 76.98 77.07
disjunction 1918 7.60 48.00 0.09 40.54 42.67
shifted disjunction 1742 7.00 40.10 0.09 58.63 73.11

Tables 5 and 6 show the measured median values w.r.t. the different guessing
constructs for all systems and gringo4/clasp, respectively. Here, only those 19
problems were included for which there were encodings for all guessing constructs
and each encoding included exactly one of them. Furthermore, only those systems
were taken into account which could deal with all four guessing constructs. It can
be seen that over all systems, bounded choice rules led to smaller space usage.
The combination of gringo 4 and clasp showed a similarly efficient space usage
for all four constructs. Disjunction showed best solving and total times for all
systems as well as for gringo 4 and clasp.

Generally speaking, some tendencies can be witnessed throughout the set
of experiments. However, it is also evident from the results that problem-level
effects may contradict those tendencies. Table 7 shows some examples for that.
Although disjunction showed the best performance over all problems, for the



Influence of ASP Language Constructs 11

Bottle Filling problem, unbounded choice rules (encoding 2) outperformed dis-
junction. On the other hand, for Labyrinth the median values for encodings
without disjunction over all systems were timeouts. For Labyrinth, also gringo4
+ clasp performed best on encodings with disjunction. For the Partner Units
problem, gringo4 + clasp performed above average with encoding 6 that includes
bounded choice rules, but below average with all other encodings.

Table 7. Problem-dependent medians: total time in secs

problem enc. constructs all systems gringo4/clasp

Bottle Filling

1 shifted disjunction 66.44 0.83
2 unbounded choice 17.57 0.47
3 disjunction 26.08 0.57
4 disjunction, negation 26.83 1.06
5 shifted disjunction, negation 54.70 0.89
6 bounded choice 45.25 1.19
7 bounded choice, neg. 43.14 1.26

Labyrinth

1 shifted disjunction timeout 85.13
2 bounded choice timeout 98.47
3 disjunction 261.68 42.43
4 shifted disjunction, aggrmax timeout 85.51
5 bounded choice, aggrmax timeout 99.48
6 disjunction, aggrmax 261.61 42.46

Partner Units

1 disjunction, negation 149.09 580.67
2 disjunction 148.08 540.89
3 shifted disjunction, negation 156.76 572.88
4 shifted disjunction 155.97 561.26
5 unbounded choice 154.51 575.20
6 bounded choice 595.23 405.73

5 Conclusions

Answer Set Programming (ASP) under the stable model semantics constitutes
an extremely powerful approach to solve hard combinatorial problems. One rea-
son for the success of ASP is the high performance of state-of-the-art solvers
harnessing sophisticated conflict-driven search methods. Also, ASP provides su-
perior problem encoding capabilities as it is declarative in nature and even pro-
vides language features beyond first order.

As a consequence of the broad problem representation capabilities, there are
many elegant ways to express the same issue differently. In particular, for most
problems various encodings of similar readability including different language
constructs can be created quite naturally. However, even if logically equivalent,
the performance of different encodings may vary significantly, depending on the
language constructs involved. The reason for that is clearly that different con-
structs are processed differently by the solver implementations.



12 Richard Taupe, Erich Teppan

The main goal of this work is to answer the question whether there is a
relevant non-negligible impact of the used language constructs on runtime and
space consumption and, if so, whether general tendencies can be identified. Our
results suggest that the runtime and space consumption can depend heavily on
the used constructs and is never to be neglected. Furthermore, some general
tendencies were identified in our experiments. For example, normal disjunction
had a positive overall effect on the solving speed compared to the other guessing
constructs. A more fine-grained analysis revealed that, although there are general
tendencies, the presence of positive or negative effects is highly dependent on
the problem at hand and the ASP system used.

An important conclusion with respect to the implementation of an ASP so-
lution for a real-life problem is that a small investment in producing various
slightly differing problem encodings may pay off with remarkable performance
gains.

Some minor issues are left for future work: Due to the problem landscape
in the ASP competitions, min and max aggregates were used with very small
sample sizes in our study, and sum aggregates were not studied at all. It would be
interesting to compare those language constructs to other representations on a
larger sample. Also, new solvers have emerged during and after our experiments,
which could be included in future reiterations.

An obvious and important direction for future work is automatic code rewrit-
ing, similarly to query optimization for relational databases. Especially the usage
within a portfolio solver seems to be promising in this context. Language con-
struct replacements could be represented as additional parameters to be learned
within the portfolio solver. However, for any application scenario a much more
in-depth analysis of when certain rewritings are sound is needed.

6 Acknowledgements

The research for this paper was conducted in the scope of the project Heuristic
Intelligence (HINT) funded by the Austrian research fund FFG under grant
840242.

References

1. Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G.,
Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C.,
Ricca, F., Schneider, P., Schwengerer, M., Spendier, L.K., Wallner, J.P., Xiao,
G.: The Fourth Answer Set Programming Competition: Preliminary Report. In:
Cabalar, P., Son, T.C. (eds.) Logic Programming and Nonmonotonic Reasoning.
Lecture Notes in Computer Science, vol. 8148, pp. 42–53. Springer, Berlin, Heidel-
berg (2013)

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A Native ASP
Solver Based on Constraint Learning. In: Cabalar, P., Son, T.C. (eds.) Logic Pro-
gramming and Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol.
8148, pp. 54–66. Springer, Berlin, Heidelberg (2013)



Influence of ASP Language Constructs 13

3. ASP Standardization Working Group: ASP-Core-2 Input Language Format (2012-
12-13), https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

4. Balduccini, M.: Industrial-Size Scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) Logic Programming and Nonmonotonic Reasoning. Lecture Notes
in Computer Science, vol. 6645, pp. 284–296. Springer, Berlin, Heidelberg (2011)

5. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

6. Buddenhagen, M., Lierler, Y.: Performance Tuning in Answer Set Programming.
In: Calimeri, F., Ianni, G., Truszczyński, M. (eds.) Logic Programming and Non-
monotonic Reasoning. Lecture Notes in Artificial Intelligence, vol. 9345, pp. 186–
198. Springer International Publishing, Cham (2015)

7. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the Fifth
Answer Set Programming Competition. Artificial Intelligence 231, 151–181 (2016)

8. Eiter, T., Fink, M., Pührer, J., Tompits, H., Woltran, S.: Model-based recasting in
answer-set programming. Journal of Applied Non-Classical Logics 23(1-2), 75–104
(2013)

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.C.,
Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for Information Sys-
tems, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009)

10. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer-Set
Programming. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence. pp. 97–102 (2005)

11. Faber, W., Leone, N., Perri, S.: The Intelligent Grounder of DLV. In: Erdem, E.,
Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning, Lecture Notes in Computer
Science, vol. 7265, pp. 247–264. Springer, Berlin, Heidelberg (2012)

12. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A
Portfolio Solver for Answer Set Programming: Preliminary Report. In: Delgrande,
J.P., Faber, W. (eds.) Logic Programming and Nonmonotonic Reasoning. Lecture
Notes in Computer Science, vol. 6645, pp. 352–357. Springer, Berlin, Heidelberg
(2011)

15. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo Series 3. In:
Delgrande, J.P., Faber, W. (eds.) Logic Programming and Nonmonotonic Reason-
ing. Lecture Notes in Computer Science, vol. 6645, pp. 345–351. Springer, Berlin,
Heidelberg (2011)

16. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming 11(Special Issue 4-5), 821–
839 (2011)

17. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven Answer Set Solving: From
Theory to Practice. Artificial Intelligence 187-188, 52–89 (2012)

18. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting Inconsistencies
in Large Biological Networks with Answer Set Programming. In: Garcia de la
Banda, Maria, Pontelli, E. (eds.) Logic Programming, Lecture Notes in Computer
Science, vol. 5366, pp. 130–144. Springer (2008)



14 Richard Taupe, Erich Teppan

19. Gelfond, M., Lifschitz, V.: The Stable Model Semantics For Logic Programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming. pp. 1070–1080. MIT Press (1988)

20. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 365–385 (1991)

21. Lefèvre, C., Béatrix, C., Stéphan, I., Garcia, L.: ASPeRiX, a First Order Forward
Chaining Approach for Answer Set Computing. CoRR abs/1503.07717 (2015)

22. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV System for Knowledge Representation and Reasoning. ACM Transaction
on Computational Logic 7(3), 499–562 (2006)

23. Lewis, M.D.T., Schubert, T., Becker, B.W.: Speedup Techniques Utilized in Mod-
ern SAT Solvers. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of
Satisfiability Testing. Lecture Notes in Computer Science, vol. 3569, pp. 437–443.
Springer, Berlin, Heidelberg (2005)

24. Lifschitz, V.: Thirteen Definitions of a Stable Model. In: Blass, A., Dershowitz, N.,
Reisig, W. (eds.) Fields of Logic and Computation, Lecture Notes in Computer
Science, vol. 6300, pp. 488–503. Springer, Berlin, Heidelberg (2010)

25. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs.
ACM Transaction on Computational Logic 2(4), 526–541 (2001)

26. Syrjänen, T.: Logic programming and cardinality constraints: theory and practice.
Ph.D. thesis, Helsinki University of Technology (2009), https://aaltodoc.aalto.
fi/handle/123456789/4595

27. Taupe, R.: Einfluss von Sprachkonstrukten auf die Lösbarkeit von Answer-Set-
Programmen: Eine empirische Untersuchung aktueller ASP-Systeme. Masterar-
beit, Alpen-Adria-Universität, Klagenfurt (2015), http://ubdocs.aau.at/open/

hssvoll/AC12297983.pdf

28. Weinzierl, A.: Learning Non-Ground Rules for Answer-Set Solving. In: Pearce, D.,
Tasharrofi, S., Ternovska, E., Vidal, C. (eds.) 2nd Workshop on Grounding and
Transformations for Theories With Variables (2013)


