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A distinguishing feature of Answer Set Programming (ASP; [2]) is that all
atoms belonging to a stable model must be founded. That is, atoms must be
justifiable in a non-circular way. This can be made precise by the logic of Here-
and-There (HT; [6]), whose equilibrium models correspond to stable models [8].
One way looking at foundedness is regarding Boolean truth values as ordered;
true greater than false. Then, each Boolean variable takes the smallest truth
value that can be proven for it. This idea was generalized by Aziz in [1] to ordered
domains. As before, the idea is that a variable gets assigned to the smallest
value that can be justified. We refer to this idea by foundedness. Note that ASP
follows the rationality principle, which says that one shall only believe in things
one is forced to. In the propositional case this principle amounts to foundedness,
whereas for rules like x > 42 there are at least two ways of understanding. First,
one may believe in any value greater or equal than 42 for x. Second, one may
believe in value 42 for x if one is not forced to believe more than this, which
corresponds to our definition of foundedness.

The literature of ASP contains several approaches dealing with atoms con-
taining variables over non-Boolean domains, among them [3], [7] and [4], but
these approaches do not address foundedness in our sense. For instance, Con-
straint ASP (CASP) approaches like [3] allow atoms with variables over non-
Boolean domains in the body of a rule only. Thus, these atoms and the values
of non-Boolean variables cannot be founded in terms of ASP.

Approaches like [7] and [4] allow any kind of atoms in heads and bodies. Thus
atoms with variables over non-Boolean domains are founded but their variables
are not necessarily assigned to the smallest value that can be justified. Now one
could think about using minimization, for instance on top of the approach of
[4], to achieve foundedness. The following examples illustrate that minimizing
assigned values does not restore foundedness. Consider the rules

x>0 y>0 T >42+y <42 (1)

The approach of [4] leads to solutions that assign values greater or equal than
42 to = and values greater or equal than 0 to y or vice versa, respectively. Thus,
the two solutions with minimal values assign 42 to z and 0 to y and the other
way around. Note that only the first one respects foundedness, since there is no
reason assigning a value greater than 0 to y. Now, consider the rules

x>1 x>42 + ~(x < 1) (2)

We expect two solutions in terms of foundedness. One assigns the value 1 to x and
the other assigns value 42 to z, since a value greater than 1 forces the derivation



of value 42. The rules of (2) give us no reason deriving a value greater than 42. In
contrast, the approach presented in [4] yield an intuitive understanding assigning
value 1 or a value greater or equal than 42 to x. That is, the corresponding
solution with the minimal value assigned to x assigns 1 to x. The second equally
founded solution is not obtained.

The existing approach of Aziz [1] behaves counter intuitive. For instance,
for rule p < —p Aziz’ approach yields a solution where p holds instead of no
solution as expected in terms of ASP. To this end, I developed a logical recon-
struction of Aziz’ idea of foundedness in the setting of the logic of HT. More
precisely, I defined the logic of HT with lower bound founded variables, short
HTp, along with its equilibrium models. The idea is to additionally compare
the equilibrium model candidates by their values assigned to variables regarding
the given order relation. To preserve some desired properties, atoms need to be
satisfied ‘Here’ and ‘There’, instead of ‘Here’ only. I elaborated upon the for-
mal properties of HT g regarding persistence, negation and strong equivalence.
Furthermore, I elaborated on the relation of HT;5 to existing formalisms, and
showed that HTp corresponds to a straightforward extension of Ferraris’ sta-
ble model semantics [5]. I also defined a logic program fragment dealing with
linear constraints over integers and analysed it in terms of concepts from logic
programming.
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