
Omission-based Abstraction for Answer Set
Programs?

(Extended Abstract)

Zeynep G. Saribatur and Thomas Eiter

Institute of Logic and Computation, TU Wien

Abstraction is a widely used approach in computing solutions for hard prob-
lems by over-approximating them. By a deliberate loss of information, the prob-
lem is approximated to achieve a smaller or simpler state space, at the price
of spurious counterexamples to the behavior. The well-known counterexample
guided abstraction refinement (CEGAR) [4] is based on starting with an initial
abstraction on a given program and checking the desired property over the ab-
stract program. Upon encountering spurious solutions, the abstraction is refined
by removing the spurious transitions observed through the solution, so that the
spurious solution is eliminated from the abstraction. This iteration continues
until a concrete solution is found.

In this paper, we make the first step towards employing the concept of ab-
straction in ASP. We are focused on abstraction by omitting atoms from the
program and constructing an abstract program with the smaller vocabulary that
preserves the original structure of the rules, by ensuring that the original pro-
gram is over-approximated, i.e., every original answer set can be mapped to
some abstract answer set. Due to the decreased search size, finding an answer
set in the abstract program is easier, while one needs to check whether the found
abstract answer set is concrete. As spurious answer sets can be introduced, one
may need to go over all abstract answer sets until a concrete one is found. If the
original program has no answer set, all encountered abstract answer sets will be
spurious. To eliminate spurious answer sets, we use a CEGAR inspired approach,
by finding a cause of the spuriousness with ASP debugging [3] and refining the
abstraction by adding back some atoms that are deemed to be “badly-omitted”.

An interesting application area for such an omission-based abstraction in ASP
is finding an explanation for unsatisfiability of programs. Towards this problem,
debugging inconsistent ASP programs has been investigated [3, 9, 5, 6], which is
based on providing the reason (i.e., occurring violations) on why an expected
solution provided by the user does not exist. However, these methods do not ad-
dress the question of why the program does not give any solutions. We approach
the unsatisfiability of an ASP program differently with an interest in obtaining a
projection of the program which shows the cause of the unsatisfiability, without
an initial idea on expected solutions. The well-known notion of minimal unsat-
isfiable subsets (unsatisfiable cores) [7, 8] has also been used in the ASP context
[1, 2], and we discuss the relation to the spurious answer sets.

Our contributions are briefly summarized as follows.

? Appears in the Proceedings of KR 2018, pages 42–51.



2 Zeynep G. Saribatur and Thomas Eiter

– We introduce a method to automatically abstract ground ASP programs Π
by omitting atoms in order to obtain an over-approximation of the answer
sets of Π. That is, a program Π ′ is constructed such that each answer set
I of Π is abstracted to some answer set I ′ of Π ′. While this abstraction is
many to one, spurious answer sets of Π ′ may exist that do not correspond
to any answer set of Π.

– We present a refinement method inspired by ASP debugging approaches to
catch badly omitted atoms through the encountered spurious answer sets.

– We introduce the notion of blocker set as a set of atoms such that abstraction
to it preserves unsatisfiability of a program. A minimal blocker set then gives
a projection of the program to the minimal cause of unsatisfiability.

– We derive complexity results for the notions, such as for checking for spurious
answer sets, finding minimal sets of atoms to put back in the refinement
to eliminate a spurious solution, and computing a minimal blocker for a
program.

– We report about preliminary experiments1 focusing on unsatisfiable pro-
grams and investigate computing minimal blockers of programs. We com-
pare the results of the abstraction and refinement approach starting with an
initial abstraction (bottom-up) with a naive top-down approach that omits
atoms one-by-one if their omission preserves unsatisfiability, and we observe
that the bottom-up approach can obtain smaller sized blockers.

Overall, abstraction by omission appears to be of interest for ASP, which
besides explaining unsatisfiability can be utilized, among other applications, to
over-approximate reasoning and to represent projected answer sets.

References

1. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core
shrinking. Theory and Practice of Logic Programming 16(5-6), 533–551 (2016)

2. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimiza-
tion in clasp. In: Proc. ICLP. vol. 17, pp. 211–221 (2012)

3. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
asp programs by means of asp. In: Proc. LPNMR. pp. 31–43. Springer (2007)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. JACM 50(5), 752–794 (2003)

5. Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.: Interactive
debugging of non-ground asp programs. In: Proc. LPNMR. pp. 279–293 (2015)

6. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: Proc. AAAI. vol. 8, pp. 448–453 (2008)

7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable sub-
sets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

8. Lynce, I., Silva, J.P.M.: On computing minimum unsatisfiable cores. In: Proc. SAT
(2004)

9. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-
ground answer-set programs. TPLP 10(4-6), 513–529 (2010)

1 The tool is available at www.kr.tuwien.ac.at/research/systems/abstraction.


