anthem: Transforming gringo Programs into
First-Order Theories (Extended Abstract)

Vladimir Lifschitz', Patrick Liihne?, and Torsten Schaub?:3

1 University of Texas at Austin, USA
2 University of Potsdam, Germany
3 INRIA Rennes, France

Abstract. In a recent paper by Harrison et al., the concept of program
completion is extended to a large class of programs in the input language
of the ASP grounder GRINGO. We would like to automate the process of
generating and simplifying completion formulas for programs in that lan-
guage, because examining the output produced by this kind of software
may help programmers to see more clearly what their program does and
to what degree its set of stable models conforms with their intentions. If
a formal specification for the program is available, then it may be possi-
ble to use this software, in combination with automated reasoning tools,
to verify that the program is correct. This note is a preliminary report
on a project motivated by this idea.

Harrison et al. [5] extended the concept of program completion [1] to a large
class of nondisjunctive programs in the input language of the ASP grounder
GRINGO [4]. They argued that it would be useful to automate the process of
generating and simplifying completion formulas for (tight*) GRINGO programs,
because examining the output produced by this kind of software may help pro-
grammers to see more clearly what their program does and to what degree its
set of stable models conforms with their intentions. Furthermore, if a formal
specification for a GRINGO program is available, then it may be possible to use
this software, in combination with automated reasoning tools, to verify that the
program is correct.

This note is a preliminary report on a software development project that
follows up on this idea. ANTHEM is a translator that converts a GRINGO program
into its completion and simplifies it. By simplifying we mean, in this case, not
so much making formulas shorter as writing them in a form that is “readable”™—
natural from the perspective of a human who is accustomed to expressing math-
ematical ideas using propositional connectives, quantifiers, variables for objects
of various types, the summation symbol, and other standard notation. The lan-
guage of GRINGO and many other input languages of answer set solvers, including
those of SMODELS [7] and DLV [6], classify variables into global and local, instead
of using quantifiers to classify occurrences into free and bound, and that distin-
guishes them from traditional notation. The same can be said about assuming

4 Tightness is a syntactic condition that guarantees the equivalence between the stable
model semantics and the completion semantics of a logic program [3,2].



2 Vladimir Lifschitz, Patrick Lithne, and Torsten Schaub

that all variables range over the same universe, instead of using variables of
different sorts or types (for points, lines, and planes; for integers and real num-
bers; or for sets and classes; etc.). Each of the two notational traditions has its
advantages, and ANTHEM provides a bridge between them.

Besides generating and simplifying the completion of a program, ANTHEM
“hides” auxiliary predicate symbols occurring in the program when possible. In
the language of GRINGO, the fact that a predicate symbol is not considered
an essential part of the output can be expressed by not including it in #show
directives. To eliminate such predicate symbols from its output, ANTHEM replaces
them by their completed definitions.

The input language of ANTHEM is a large part of the input language of
GRINGO. Input programs are supposed to be nondisjunctive. They may use arith-
metic operations, intervals, comparisons, singleton choice rules without lower
and upper bounds, and constraints. Aggregates and conditional literals are not
supported in the current version.

The output of ANTHEM is a list of first-order formulas with variables of two
sorts—for arbitrary precomputed terms (that is, for all elements of the Herbrand
universe) and for the precomputed terms that correspond to integers—as pro-
posed by Harrison et al. [5, Sections 3 and 9]. Differences between atoms in
GRINGO programs and atomic parts of formulas are related mostly to arithmetic
expressions.

References

1. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293-322. Plenum Press
(1978)

2. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Pro-
gramming 3(4-5), 499-518 (2003)

3. Fages, F.: Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science 1, 51-60 (1994)

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

5. Harrison, A., Lifschitz, V., Raju, D.: Program completion in the input language of
GRINGO. Theory and Practice of Logic Programming 17(5-6), 855-871 (2017)

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499-562 (2006)

7. Niemel4, I., Simons, P.: Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. In: Proceedings of the Fourth In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’97). Lecture Notes in Artificial Intelligence, vol. 1265, pp. 420-429. Springer-
Verlag (1997)



