Chain Answer Sets for Logic Programs with
Generalized Atoms — How Not To Fix a Semantic
Problem

1[{0000—0002—2052—2063] 2[0000—0002—0330—5868]

Mario Alviano and Wolfgang Faber
1 University of Calabria, Italy alviano@mat .unical.it
2 Alpen-Adria-Universitit Klagenfurt, Austria wE@wfaber . com

Abstract. Answer Set Programming (ASP) has seen several extensions by gen-
eralizing the notion of atom used in these programs, for example dl-atoms, aggre-
gate atoms, HEX atoms, generalized quantifiers, and abstract constraints, referred
to collectively as generalized atoms in this paper. The idea common to all of these
constructs is that their satisfaction depends on the truth values of a set of (non-
generalized) atoms, rather than the truth value of a single (non-generalized) atom.
In a previous work, it was argued that for some of the more intricate generalized
atoms, the previously suggested semantics provide unintuitive results, and an al-
ternative semantics called supportedly stable was suggested. Unfortunately, this
semantics had a few issues on its own and also did not have a particularly natu-
ral definition. In this paper, we present a new attempt called Chain Answer Sets,
which has a simple, but somewhat unusual definition. We show several properties
of the new semantics, but it turns out that they are undesirable as well. Also the
computational complexity of the associated reasoning tasks belong to a higher
complexity class. This paper therefore shows that existing semantics have unde-
sirable properties, and also shows how one attempt to resolve the issues fails in
other ways.

1 Introduction

The basic language of Answer Set Programming (ASP) relies on Datalog with negation
in rule bodies and possibly disjunction in rule heads. When actually using the language
for representing practical knowledge, it became apparent that generalizations of the ba-
sic language are necessary for usability. Among the suggested extensions are aggregate
atoms (similar to aggregations in database queries) [19, 18,7, 14] and atoms that rely
on external truth valuations [6,9-11, 8]. These extensions are characterized by the fact
that deciding the truth values of the new kinds of atoms depends on the truth values
of a set of traditional atoms rather than a single traditional atom. We will refer to such
atoms as generalized atoms, which cover also several other extensions such as abstract
constraints, generalized quantifiers, and HEX atoms.

Concerning semantics for programs containing generalized atoms, there have been
several different proposals. All of these appear to coincide for programs that do not con-
tain generalized atoms in recursive definitions. The two main semantics that emerged
as standards are the PSP semantics [20,21, 23], and the FLP semantics [12, 13] (the

2 M. Alviano and W. Faber

~

Apl b {p2))

__,»\ /__,
0

Fig. 1. Interpretations, supported (solid) and unsupported models (dashed) of the prisoners’
dilemma example, where p1 and p» are the propositions “the first player confesses” and “the
second player confesses”, respectively.

latter coinciding with Ferraris stable models [15] for the language considered in this
paper). In [3] it was shown that the semantics coincide up to convex generalized atoms.
It was already established earlier that each PSP answer set is also an FLP answer set,
but not vice versa. So for programs containing non-convex generalized atoms, some
FLP answer sets are not PSP answer sets. In particular, there are programs that have
FLP answer sets but no PSP answer sets. In [4] it was argued that the FLP semantics
is still too restrictive, and an attempt to improve the situation was made, defining the
supportedly stable or SFLP (supportedly FLP) semantics. However, while SFLP solves
some issues, it also introduces new ones.

Let us first review the reason why FLP is too restrictive. Consider a coordination
game that is remotely inspired by the prisoners’ dilemma. There are two players, each
of which has the option to confess or defect. Let us also assume that both players have
a fixed strategy already, which however still depends on the choice of the other player
as well. In particular, each player will confess exactly if both players choose the same
option, that is, if both players confess or both defect. This situation can be represented
using two propositional atoms for “the first player confesses” and “the second player
confesses”, which must be derived true when “both players choose the same option”,
a composed proposition encoded by a generalized atom. A program encoding this sce-
nario will not permit any answer set under the FLP, PSP, or any other semantics that
we are aware of, except for SFLP. Also the more recent well-justified FLP [22] selects
among the FLP answer sets and hence will have no answer set for this program either.

We point out that this is peculiar, as the scenario in which both players confess
is a reasonable one; indeed, even a simple inflationary operator would result in this
solution: starting from the empty set, the generalized atom associated with “both players
choose the same option” is true; therefore, the atoms associated with “the first player
confesses” and “the second player confesses” are derived true on the first application of
the operator, which is also its fixpoint.

Looking at the reason why this is not an FLP answer set, we observe that it has
two countermodels that prevent it from being an answer set, one in which only the first
player confesses, and another one in which only the second player confesses (see Fig-
ure 1). Both of these countermodels are models in the classical sense, but they are weak
in the sense that they are not supported, meaning that there is no rule justifying their
truth. In [4], the attempt to rectify this was by requiring countermodels to be supported

Title Suppressed Due to Excessive Length 3

as well, but it has clear weaknesses, most prominently that adding “tautological” rules
like p < p can change the semantics of the program.

In this paper, we define an even stronger version of this semantics, called Chain
Answer Set Semantics, which requires that countermodels are themselves answer sets
of the reduct program. While at first sight it resolves the issues of SFLP, it turns out that
it has rather peculiar properties, such as not guaranteeing supportedness, not satisfying
the anti-chain property, and deciding the existence of Chain Answer Sets is PSPACE-
complete, which make it not particularly desirable.

The remainder of this paper is structured as follows. In Section 2, we present the
notation and the FLP and SFLP semantics for programs with generalized atoms. In
Section 3 we define Chain Answer Sets and show how it behaves on programs that mo-
tivated its definition. In Section 4, we analyze properties of the new semantics. Finally,
in Section 6, we discuss our results.

2 Background

In this section we present the notation used in this paper and present the FLP semantics
[12, 13]. To ease the presentation, we will directly describe a propositional language
here. This can be easily extended to the more usual ASP notations of programs involv-
ing variables, which stand for their ground versions (that are equivalent to a proposi-
tional program).

2.1 Notation

Let B be a countable set of propositional atoms. A generalized atom A on B is a pair
(D4, fa), where D4 C B is the domain of A, and f4 is a mapping from 2P4 to
Boolean truth values {T, F}. To ease the presentation, we assume that the domain of
each generalized atom is a finite set.

Example 1. Let p; represent the proposition “the first player confesses”, and p, rep-
resent the proposition “the second player confesses.” A generalized atom A repre-
senting the composed proposition “both players choose the same option” is such that

Da=A{p1,p2}, fa{}) = fa({p1,p2}) = T, and fa({p1}) = fa({p2}) = F.

A general rule r is of the following form:
H(r) «+ B(r) (D

where H (r) is a disjunction a; V - - - V a,, (n > 0) of propositional atoms in B referred
to as the head of r, and B(r) is a generalized atom on B called the body of r. For
convenience, H (r) is sometimes considered a set of propositional atoms. A general
program P is a set of general rules. Let At(P) denote the set of propositional atoms
occurring in P.

It should be noted that this is a very abstract notation, aiming to be general enough
to encompass many concrete languages. Languages adopted in practical systems will
feature concrete syntax in place of generalized atoms, for example aggregate atoms or
dl-atoms. In the sequel, we will at times also use more concrete notation in examples to
ease reading.

4 M. Alviano and W. Faber

2.2 FLP Semantics

An interpretation I is a subset of . I is a model for a generalized atom A, denoted
I A, if fa(INDy) = T. Otherwise, if fa(I N Dy) =F, Iisnotamodel of A,
denoted I [~ A. I is a model of a rule r of the form (1), denoted I |= 7, if H(r)NI #
whenever I |= B(r). I is a model of a program P, denoted I = P, if I = r for every
ruler € P.

Note that the fact that rule bodies are forced to be a single generalized atom is
not really a limitation, and will ease the presentation of the results in the paper. In
fact, a single generalized atom is sufficient for modeling conjunctions, default negation,
aggregates and similar constructs.

Example 2. A conjunction p; A --- A p, of n > 1 propositional atoms is equivalently
represented by a generalized atom A such that D4 = {p1,...,pn}, and f4(B) = T if
and only if B = {p1,...,pn}.

A conjunction py, . . ., Pm, ~Pm+1, - - - » ~Dp, Of literals, wheren > m > 0,p1,...,pn
are propositional atoms and ~ denotes negation as failure, is equivalently represented
by a generalized atom A such that D4 = {p1,...,pn}, and f4(B) = T if and only if
{p1,---,pm} € Band BN {pm+1,---,0n} = 0.

An aggregate COUNT ({p1,...,pn}) # k, wheren > k > 0, and p1,...,pn
are propositional atoms, is equivalently represented by a generalized atom A such that
Dao={p1,...,pn},and fo(B) = Tif and only if |[B N D 4| # k.

In the following, when convenient, we will represent generalized atoms as conjunc-
tions of literals or aggregate atoms. Subsets of B mapped to true by such generalized
atoms will be those satisfying the associated conjunction.

Example 3. Consider the following rules:
r1: a4+ COUNT({a,b}) #1 ro: b+ COUNT({a,b}) #1

The following are general programs that will be used for illustrating the differences
between the semantics considered in this paper:

P = {12} Py :={ry;re;a Vb «}
Py = {ri;ro;a < bjb<a} Ps:={ri;r;a« ~b}
Py = {ri;re; ¢ ~aj ~b} Poi={ri;rea < a}

Note that if a and b are replaced by p; and po, the aggregate COUNT ({a,b}) # 1
is equivalent to the generalized atom A from Example 1, and therefore program P;
encodes the coordination game depicted in the introduction.

Generalized atoms can be partitioned into two classes, referred to as convex and
non-convex, according to the following definition: A generalized atom A is convex if
for all triples I, J, K of interpretations suchthat I C J C K, I F Aand K = A
implies J = A. A convex program is a general program whose rules have convex
bodies. Note that convex generalized atoms are closed under conjunction, but not under
disjunction or complementation. In more detail, the conjunction of two generalized

Title Suppressed Due to Excessive Length 5

atoms A, A’, denoted AN A’, is such that Dgpnar = DaUD 4/, and forall I C D g4,
fanra(I) = fa(INDy) A far(INDys). The disjunction D 4y 4/ is defined similarly,
and the complementation A of A is such that D4 =Dy, andforall I C Dy, f5(I) =
—fa(I). To show that convex generalized atoms are not closed under disjunction and
complementation, an example is sufficient. Let A, A’ be such that D4 = D4 = {a, b},
fa(I)=Tifandonlyif I = (), and f4(I) = Tifand only if I = {a,b}. Hence, A, A’
are convex, but A VV A’ is not. However, its complement A V A’ is convex because true
only for {a} and {b}. Closure with respect to conjunction is proved by the following
claim.

Lemma 1. The conjunction A N A’ of two convex generalized atoms is a convex gen-
eralized atom.

Proof. Let1 C J C Kbesuchthat] = AANA"and K = AN A’ Hence, I = A,
KEATE A, and K = A’ by definition of A A A’. Since A and A’ are convex, we
have J = A and J = A’, which in turn imply J = A A A'. O

We now describe the FLP semantics, introduced and analyzed in [12, 13].

Definition 1 (FLP Reduct). The FLP reduct P’ of a program P with respect to I is
defined as the set {r € P | I = B(r)}.

Definition 2 (FLP Answer Sets). I is an FLP answer set of P if I |= P and for each
J C I it holds that J [= P!. Let FLP(P) denote the set of FLP answer sets of P.

Example 4. Consider the programs from Example 3:

— The models of P, are {a}, {b} and {a,b}, none of which is an FLP answer set.
Indeed, Pl{a} = Pl{b} = (), which have the trivial model (), which is of course a
subset of {a} and {b}. On the other hand Pl{a’b} = P, and so {a} E Pl{“’b},
where {a} C {a,b}. We will discuss in the next section why this is a questionable
situation.

— Concerning P, it has one model, namely {a, b}, which is also its unique FLP an-

swer set. Indeed, P{*") = P, and hence the only model of Py is {a, b}.
— Interpretation {a, b} is also the unique model of program Pj, which however has

no FLP answer sets. Here, P?;{a’b} = Py, hence similar to P, {a} E Pz,;{“’b} and

{a} C {a,b}.

— P, instead has two FLP answer sets, namely {a} and {b}, and a further model
{a,b}. In this case, P4{a} = {a V b +}, and no proper subset of {a} satisfies it.
Also ij} = {a Vb <}, and no proper subset of {b} satisfies it. Instead, for {a, b},
we have P4{a’b} = Py, and hence {a} E Pja’b} and {a} C {a,b}.

— Ps has three models, {a}, {b} and {a, b}, but only one FLP answer set, namely
{a}. In fact, P5{a} = {a + ~b} and 0 is not a model of the reduct. On the other
hand, 0 is a model of P5{b} = (), and {a} is a model of P5{a’b} = P.

— P has the same models as P; and also no FLP answer set.

Models and FLP answer sets of these programs are summarized in Table 1.

6 M. Alviano and W. Faber

Table 1. (Supported) models and (S)FLP answer sets of programs in Example 3, where A is the
generalized atom COUNT ({a,b}) # 1.

Rules Models FLP Supported Models | SFLP
P ja+ A b+« A|{a}, {b}, {a,b} | — {a,b} {a,b}
P, la+ A b+« A|{a,b} {a,b} {a,b} {a,b}
a+b bia
P; la+ A b+ A|{a,b} — {a, b} {a, b}

—~a < ~b

Py faeA b Al{a} {b},{a,b} | {a},{b} | {a}, {b}.{a,b} | {a}, {b}

aVb

Ps | a+ Ab b+« A|{a},{b},{a,b}|{a} {a}, {a, b} {a}, {a, b}
a4 ~

Ps la+ A b+ A|{a}, {b},{a,b}|— {a}, {a, b} —
a<a

2.3 SFLP Semantics

Let us now review the SFLP semantics of [4]. As noted in the introduction, the fact
that P; has no FLP answer sets is striking. If we first assume that both a and b are
false (interpretation)), and then apply a generalization of the well-known one-step
derivability operator, we obtain truth of both a and b (interpretation {a, b}). Applying
this operator once more again yields the same interpretation, a fix-point. Interpretation
{a, b} is also a supported model, that is, for all true atoms there exists a rule in which
this atom is the only true head atom, and in which the body is true.

It is instructive to examine why this seemingly robust model is not an FLP answer
set. Its reduct is equal to the original program, Pl{a’b} = P;. There are therefore two
models of Py, {a} and {b}, that are subsets of {a, b} and therefore inhibit {a, b} from
being an FLP answer set. The problem is that, contrary to {a, b}, these two models are
rather weak, in the sense that they are not supported. Indeed, when considering {a},
there is no rule in P; such that a is the only true atom in the rule head and the body is
true in {a}: The only available rule with a in the head has a false body. The situation
for {b} is symmetric.

SFLP stipulates that one should only consider supported models for finding in-
hibitors of answer sets. In other words, one does not need to worry about unsupported
models of the reduct, even if they are subsets of the candidate. First, define supported
models.

Definition 3 (Supportedness). A model I of a program P is supported if for each
a € I there is a rule v € P such that I N H(r) = {a} and I |= B(r). In this case we
will write I = P.

Example 5. Continuing Example 4, programs P, P», and Ps have one supported model,
namely {a,b}. The model {a} of P is not supported because the body of the the rule
with @ in the head has a false body with respect to {a}. For a symmetric argument,

Title Suppressed Due to Excessive Length 7

model {b} of P is not supported either. The supported models of Py, instead, are {a},
{b}, and {a, b}, so all models of the program are supported. Note that both models {a}
and {b} have the disjunctive rule as the only supporting rule for the respective single
true atom, while for {a, b}, the two rules with generalized atoms serve as supporting
rules for @ and b. Finally, the supported models of Ps and FPg are {a} and {a, b}. Sup-
ported models of these programs are summarized in Table 1.

Now let us recall SFLP answer sets from [4].

Definition 4 (SFLP Answer Sets). I is an SFLP answer set of P if I =5 P and for
each J C I it holds that J W=, P. Let SFLP(P) denote the set of SFLP answer sets
of P.

Example 6. Consider again the programs from Example 3.

— Recall that P, has only one supported model, namely {a, b}, and Pl{a’b} = P, but

0 o PIY, {a} o PP and {b} K, P, therefore no proper subset of
{a, b} is a supported model. Hence, it is an SFLP answer set.
— Concerning P, it has one model, namely {a, b}, which is supported and also its

unique SFLP answer set. Indeed, recall that PQ{“’b} = P5, and hence no proper

subset of {a, b} can be a model (let alone a supported model) of P2{a’b}.
— Interpretation {a, b} is the unique model of program P5, which is supported and

also its SFLP answer set. In fact, Pg{a’b} = P.

- P, has two SFLP answer sets, namely {a} and {b}. In this case, recall Pja} =
{a Vb <}, and no proper subset of {a} satisfies it. Also ij} ={aVb<+} and
no proper subset of {b} satisfies it. Instead, for {a, b}, we have Pfa’b} = Py, hence
since {a} =, P\, and {b} =, P/""", we obtain that {a,b} is not an SFLP
answer set.

- {a} _ ~
P has two SFLP answer sets, namely {a} and {a, b}. In fact, P;"" = {a < ~b}

and P1*" = p,.

— Finally, Ps has no SFLP answer set. {a} and {a, b} are supported models. Péa’b} =
Ps, so {a} prevents {a, b} from being an SFLP answer set. Pﬁ{a} = {a + a}, so
0 = P and so trivially also § =, P{™, preventing also {a} from being an
SFLP answer set.

The programs, models, FLP answer sets, supported models, and SFLP answer sets are
summarized in Table 1.

3 Chain Answer Set Semantics

Looking at P; and Fg in Table 1, it is clear that SFLP answer sets have a problem.
Adding a tautological rule, which should intuitively not have any effect, causes an SFLP
answer set to be invalidated. In [4] we had suggested to consider “stronger notions of
supportedness” for countermodels to possibly overcome this. We next try this with a
radical step: requiring countermodels to be answer sets of the reduct.

8 M. Alviano and W. Faber

Definition 5 (Chain Answer Sets). I is a Chain Answer Set of P if I = P and no
J C I is a Chain Answer Set of PL. Let CHAS(P) denote the set of Chain Answer Sets
of P.

Example 7. Reconsider the programs from Example 3.

- We get CHAS(P,) = {{a,b}}. Indeed, for {a,b} we have {a,b} = P; and
P™" = P,. None of the subsets of {a,b} ({a}.{b}.0) is in CHAS(P{*").
() = Py, as the body of both rules is true, but their heads are false. Further, while
{a} & P; and {b} = P;, we observe that the bodies of both rules are false for
these interpretations, so Pl{a} = Pl{b} = (), of which) (a subset of both {a} and
{b}) is a trivial answer set. So {a} & CHAS(P{*") and {b} ¢ CHAS(P}""").

- Also CHAS(P,) = {{a,b}}. Indeed, {a,b} is the only model of P, and since
PQ{a’b} = P, and we know that no subset of {a, b} is a model for P, also no subset
can be in CHAS(PQ{a’b}).

— Once more, CHAS(Ps) = {{a,b}}. Also in this case, {a, b} is the only model
of Py, and P{*"" = P, for which we have already established CHAS(P;) =
{{a,0}}.

— For P, there are three models {a},{b}, {a, b}. We have P4{a} = ij} = {aVb +},
and clearly 0 = {a Vb <}, s0 {{a},{b}} C CHAS(Py). Now, since P4{a’b} =P
and {{a}, {b}} C CHAS(P,),{a,b} ¢ CHAS(P;).So CHAS(P,) = {{a},{b}}.

— Also P has three models {a}.{b}, {a,b}. P = {a « ~b}and 0 }£ P!} s00) ¢
CHAS(P™) and {a} € CHAS(P5). P\ = 0, so trivially § € CHAS(P")
and {b} ¢ CHAS(Ps) P5{a’b} = P, Finally, P5{a’b} = P, and we already know
CHAS(P1) = {{a,b}},s0 {a,b} € CHAS(Ps).

— Ps has the same three models {a},{b}, {a,b}. Pﬁ{a} = {a < a}, so of course
0 = P, so {a} ¢ CHAS(Ps). P = 0, so of course again § = P, so
{b} ¢ CHAS(Fs). Péa’b} = P, so we have already established that no subset of
{a,b}isin CHAS(PG{a’b}), and hence CHAS(Ps) = {{a,b}}.

4 Properties of Chain Answer Sets

4.1 Supportedness, Anti-chain Property, Relationship to FLP
Chain Answer Sets are not necessarily supported, as the following example shows.
Example 8. Consider P, = {ry;rs}, where

rq: a4 COUNT({a,b}) #1 rg: b« COUNT({a,b}) < 2.

We have {a,b} = P,, and AR {ra} consists only of the first rule. Again,

0 b P so 0 ¢ CHAS(PI™"). While {a} = Pi™" and {b} = PI*",
{a} v}

P{L{a’b} and P{L{‘Lb} are both empty, hence () is a Chain Answer Set of both, and

Title Suppressed Due to Excessive Length 9

Table 2. Chain Answer Sets and (S)FLP answer sets of programs in Example 3, where A is the
generalized atom COUNT ({a,b}) # 1.

Rules Models FLP SFLP CHAS
P ja+ A b+« A|{a}, {b}, {a,b} | — {a,b} {a,b}
P, la+ A b+« A|{a,b} {a,b} {a,b} {a,b}
a+b bia
P; la+ A b+ A|{a,b} — {a, b} {a, b}

—~a < ~b

Py ja A b Al{a}, {b},{a,b} | {a}. {b} | {a}. {0} |{a}.{b}

aVb

Ps | a+ Ab b+« A|{a},{b},{a,b}|{a} {a},{a,b} | {a}, {a, b}
a4 ~

Ps la+ A b+ A|{a}, {b},{a,b}|— — {a,b}
a<a

thus {a} ¢ CHAS(PL*") and {b} ¢ CHAS(P{*"), which in turn implies {a, b} €
CHAS(P,).

However, {a,b} s P,, as for b, while {a,b} N H(rg) = {b}, clearly {a,b} -
B(rg).

The same example (and also P5 of Example 3) shows that Chain Answer Sets do
not guarantee the anti-chain property (that for any program, no Chain Answer Set is a
subset of another Chain Answer Set).

Example 9. Reconsider P, from Example 8 and let us determine CHAS(P,). In Exam-
ple 8 we have already shown that {a,b} € CHAS(P,). Clearly, 0 = P, and {a} [~ P,
therefore) ¢ CHAS(P,) and {a} & CHAS(P,).
For the remaining interpretation {b}, we observe {b} = P, and P consists only
of the second rule. But then 0 [~ P{*, so 0 ¢ CHAS(PS"), and {b} € CHAS(P,).
We therefore obtain CHAS(P,) = {{b}, {a,b}}, showing that Chain Answer Sets
do not guarantee the anti-chain property.

The fact that the definition of Chain Answer Sets does not guarantee supportedness
is quite disappointing. The absence of the anti-chain property is also not nice, but seems
better motivated (also SFLP does not guarantee the anti-chain property), as we shall
discuss in Section 6.

As suggested by the programs of Example 3, FLP answer sets are Chain Answer
Sets, but the inverse does not necessarily hold.

Proposition 1. For any program P, FLP(P) C CHAS(P).

Proof. By Definition 2, if I € FLP(P) then I |= P and for each J C I it holds that
J [~ P!.Butthen no such .J can be in CHAS(PT), and hence according to Definition 5,
I € CHAS(P). O

10 M. Alviano and W. Faber

There are programs for which the inclusion is proper, as witnessed by Py, Ps, Ps,
and P; of Example 3.

Concerning the relationship to SFLP, Table 2 suggests that SFLP answer sets are
Chain Answer Sets as well, but we did not prove this. As witnessed by P of Example 3,
there are programs that have Chain Answer Sets that are not SFLP answer sets.

5 Computational Complexity

As for the membership, we can show that checking the existence of chain answer set for
a program P belong to the complexity class X, where n is |heads(P)|. The following
lemma is functional to the membership result.

Lemma 2. Let I be a set of atoms, and P be a program. Checking the existence of
J C I such that J € CHAS(P) belongs to Eﬁ‘_l.

Proof. By induction on n > 1. For n = 1, the only candidate is (), and can be checked
in polynomial time; hence, the problem is in VP (actually in P). The general case holds
as well because, for a guessed J C [such that I = P, we have to check that there is
no K C J such that K € CHAS(P/); since |J| < |I|, the induction hypothesis tells
us that the latter check can be done in I7, IISI' a

Theorem 1. Let P be a program, and n be |At(P)|. Checking CHAS(P) # () belongs
to X,

Proof. From Lemma 2 by noting that any I € CHAS(P) is such that I C At(P). O
As for the hardness, we show a reduction from QBF validity. Let ¢ be
izr - B (0, Tm) 2

(m > 2), where ¢ is quantifier-free, and Z; (¢ € [0..m]) are distinct sets of variables;
specifically, Tq are the free variables of 1. For a given assignment vz for the variables
in Tg, checking vz(1)) = 1 is PSPACE-complete.

We define the following program pr(v):

atv ! « Vi € [0..m],z; € T;

zt « sat; Vi € [0..m], z; € T;

:rf +— sat; Vi € [0.m],z; € T;
[L..m]

sat; < [sat;—1 V ~sat;] Vi €
satm < (D¢7 f¢)

where (D, f4) is a generalized atom with domain Dy := {af,z! | i € [0.m],z; €

177

T;}, and such that f,(I) = T if and only if the following conditions are satisfied: (i)
[{at, /Y N 1| = 1foralli € [0..m] and z; € T;; (i) let v be such that vy (x;) is 1 if

17 ?

z! € I, and 0 otherwise; then, vy (¢) = 1.

Title Suppressed Due to Excessive Length 11

Moreover, we define the following mapping int (1), vz;) from assignments for Zg to
interpretations:

{zb | xo € To,v(z9) =1} U
{al | 20 € Tg, v(x0) = 0} U
(et 2] |ie[1.m],z; € 77}

{sat; | i € [1.m]}.
We can establish the following link between reducts.
Lemma 3. Program pr(v)"™(¥¥=5) is equal to pr(3zz - - - I &)

Proof. Note that satg ¢ int(,vzy) and sat1 € int(1, vz;) by construction. There-
fore, the following rules are not in the reduct: any 336 < satg, any xg < satg, and
saty < [satg V ~satq]. O

We can now establish the link between the two problems.
Lemma 4. Forany v and vz, vz5(¢) = Lifand only if int (¢, vgz) € CHAS (pr(¥)).

Proof. By induction on m. The base case for m = 0 is trivial. Let us assume the claim

for m > 0 and consider the case m + 1. Let I be int (¢, vzy) € CHAS (pr(v))).

(=) Let vz5(1)) be 1. By contradiction, if I ¢ CHAS(pr(z))), then there is J C I such

that J € CHAS(pr(y)'). By Lemma 3, J € CHAS (pr(32z - - - 1Zm ¢)). Hence, we

can apply the induction hypothesis: Let vz(z1) be 1 if 2} € J, and 0 otherwise, for all

Ty € T7; Vg © V(P2 - - - %0) = 1, a contradiction.

(<=) Let vz5(1) be 0. Hence, there is vz such that vgsove— (73 - - - FT,) = 0. Let J

be int(¢, vgz o vz7). Thus, J C I by construction, and by combining the induction hy-

pothesis and Lemma 3 we have that J € CHAS (pr(v)!). Thatis, I ¢ CHAS (pr()).
O

We can also observe that any answer set of pr(v) must be the image of some as-
signment.

Lemma 5. I € CHAS (pr(v)) implies the existence of vz; such that int(y, vz5) = 1.
Theorem 2. Let P be a program. Checking CHAS(P) # 0 is PSPACE-complete.

Proof. Membership is given as Theorem 1. Hardness follows from Lemma 4 and Lemma 5.
O

6 Conclusion and Discussion

In this paper, we have first motivated why existing semantics for logic programs with
generalized atoms do not seem satisfactory for all programs. An existing proposal to
amend the issues, SFLP answer sets, introduces unintuitive results while fixing the
highlighted issues. In this paper, we present another attempt at defining a semantics that
repairs the issues, named Chain Answer Sets (CHAS). The definition of CHAS looks a

12 M. Alviano and W. Faber

bit striking at first, as it refers to the defined concept itself. It is however well-defined,
as the definition descends along the subset relation (even if for infinite Herbrand bases
this may cause practical problems for computation).

However, it turns out that also CHAS has some peculiar properties. First of all,
Chain Answer Sets are not necessarily supported. This is disappointing, as we hoped
that the definition would guarantee supportedness. It could be fixed by explicitly re-
quiring CHAS to be supported models (also SFLP explicitly required this, but there is
was stipulated for symmetry reasons in the definition), but it does not seem particularly
elegant.

Also, Chain Answer Sets do not guarantee the anti-chain property (and behaves
like SFLP in this respect). This seems to be less disappointing, and might actually be
a feature. Indeed, looking at program P; of Example 3, which has CHAS {a} and
{a, b}, the two answer sets stabilize in different ways, as the reducts for these two
interpretations are disjoint.

A rather serious issue with Chain Answer Sets is that the CHAS existence problem
is PSPACE-complete. This result suggests that the problem is most likely computation-
ally more complex than the other semantics, and that implementations are likewise most
likely to be more resource-intensive as well.

Still, as future work, implementing a reasoner supporting the new semantics would
be of interest, for example by compiling the new semantics in FLP, so to use current
ASP solvers such as DLV [5], CMODELS [17], CLASP [16], and WASP [1,2]. An appli-
cation area would be systems that loosely couple OWL ontologies with rule bases, for
instance by means of HEX programs. As we have shown earlier, HEX atoms interfac-
ing to ontologies will in general not be convex, and therefore using them in recursive
definitions falls into our framework, where the FLP and SFLP semantics differ.

We also believe that it would be important to collect example programs that contain
non-convex generalized atoms in recursive definitions. We have experimented with a
few simple domains stemming from game theory (as outlined in the introduction), but
we are not aware of many other attempts. Our intuition is that such programs would
be written in several domains that describe features with feedback loops, which applies
to many so-called complex systems. Also computing or checking properties of neural
networks might be a possible application in this area.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.. WASP: A native ASP solver
based on constraint learning. In: Cabalar, P, Son, T.C. (eds.) Logic Programming and
Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain,
September 15-19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8148, pp.
54-66. Springer (2013). https://doi.org/10.1007/978-3-642-40564-8_6,http://
dx.doi.org/10.1007/978-3-642-40564-8_6

2. Alviano, M., Dodaro, C., Ricca, F.: Anytime computation of cautious consequences
in answer set programming. TPLP 14(4-5), 755-770 (2014). https://doi.org/10.1017/
S1471068414000325, http://dx.doi.org/10.1017/5S1471068414000325

3. Alviano, M., Faber, W.: The complexity boundary of answer set programming with gener-
alized atoms under the flp semantics. In: Cabalar, P., Tran, S.C. (eds.) Logic Programming

10.

11.

13.

14.

15.

16.

17.

Title Suppressed Due to Excessive Length 13

and Nonmonotonic Reasoning — 12th International Conference (LPNMR 2013). pp. 67-72.
No. 8148 in Lecture Notes in Al (LNAI), Springer Verlag (Sep 2013). https://doi.org/10 .
1007/978-3-642-40564-8_7

. Alviano, M., Faber, W.: Supportedly stable answer sets for logic programs with generalized

atoms. In: ten Cate, B., Mileo, A. (eds.) 9th International Conference on Web Reasoning
and Rule Systems (RR 2015). Lecture Notes in Computer Science, vol. 9209, pp. 30—44.
Springer Verlag (Aug 2015). https://doi.org/10.1007/978-3-319-22002-4_4

. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive dat-

alog system DLV. In: Gottlob, G. (ed.) Datalog 2.0, Lecture Notes in Computer Science,
vol. 6702, pp. 282-301. Springer Berlin/Heidelberg (2011)

. Calimeri, F.,, Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic

programming. Annals of Mathematics and Artificial Intelligence 50(3—4), 333-361 (2007)

. Dell’Armi, T., Faber, W., lelpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunc-

tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI) 2003. pp.
847-852. Morgan Kaufmann Publishers, Acapulco, Mexico (Aug 2003)

. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schiiller, P.: A model building

framework for answer set programming with external computations. TPLP 16(4), 418—
464 (2016). https://doi.org/10.1017/S1471068415000113, https://doi.org/
10.1017/S1471068415000113

. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set

programming with description logics for the semantic web. Artificial Intelligence 172(12-
13), 1495-1539 (2008). https://doi.org/10.1016/j.artint.2008.04.002, http:
//dx.doi.org/10.1016/3j.artint.2008.04.002

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: International Joint
Conference on Artificial Intelligence (IJCAI) 2005. pp. 90-96. Edinburgh, UK (Aug 2005)

Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In: Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada. pp. 141-151 (2004), extended Report RR-1843-03-13, Institut fiir Infor-
mationssysteme, TU Wien, 2003.

. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-

mantics and complexity. In: Alferes, J.J., Leite, J. (eds.) Proceedings of the 9th European
Conference on Artificial Intelligence (JELIA 2004). Lecture Notes in Al (LNAI), vol. 3229,
pp. 200-212. Springer Verlag (Sep 2004)

Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278-298 (2011). https://doi.org/10 .
1016/j.artint.2010.04.002, special Issue: John McCarthy’s Legacy

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the dlv system. Theory and Practice of Logic Programming 8(5-6),
545-580 (2008). https://doi.org/10.1017/51471068408003323

Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM Trans.
Comput. Log. 12(4), 25 (2011). https://doi.org/10.1145/1970398.1970401, http:
//doi.acm.org/10.1145/1970398.1970401

Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187, 52-89 (2012)

Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. In: Lifschitz, V., Niemeld, 1. (eds.) Logic Programming and Nonmonotonic
Reasoning, 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA, Jan-
uary 6-8, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2923, pp. 346-350.

14

18.

19.

20.

21.

22.

23.

M. Alviano and W. Faber

Springer (2004). https://doi.org/10.1007/978-3-540-24609-1_32, http://dx.
doi.org/10.1007/978-3-540-24609-1_32

Niemeld, I., Simons, P: Extending the Smodels System with Cardinality and
Weight Constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491-
521. Kluwer Academic Publishers, Dordrecht (2000), citeseer.ist.psu.edu/
niemelOOextending.html

Niemeld, I., Simons, P., Soininen, T.: Stable Model Semantics of Weight Constraint Rules. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.) Proceedings of the 5th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’99). Lecture Notes in Al
(LNAI), vol. 1730, pp. 107-116. Springer Verlag, El Paso, Texas, USA (Dec 1999)

Pelov, N.: Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke Univer-
siteit Leuven, Leuven, Belgium (Apr 2004)

Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic Pro-
grams with Aggregates. Theory and Practice of Logic Programming 7(3), 301-353 (2007)
Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T., Deng, J.: FLP answer set
semantics without circular justifications for general logic programs. Artificial Intelligence
213, 1-41 (2014). https://doi.org/10.1016/j.artint.2014.05.001, http://dx.
doi.org/10.1016/j.artint.2014.05.001

Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP.
Theory and Practice of Logic Programming 7, 355-375 (May 2007)

