
Telingo = ASP + Time

— An abridged report —

Pedro Cabalar1, Roland Kaminski2, and Torsten Schaub2

1 University of Corunna, Spain
2 University of Potsdam, Germany

For representing and reasoning about dynamic systems in Answer Set Program-
ming (ASP; [8]), two major research avenues have been explored in ASP: temporal
extensions of Equilibrium Logic [1], the host logic of ASP, and (several) action
languages [7]. Although both constitute the main directions of non-monotonic
temporal systems, their prevalence lags way behind the usage of plain ASP for
modeling dynamic domains.

To address this, we recently proposed in [4] an alternative combination of
the logics of HT and LTL whose semantics rests upon finite traces. On the one
hand, this amounts to a restriction of THT and TEL to finite traces. On the
other hand, this is similar to the restriction of LTL to LTLf advocated by [5]; see
also [2]. Our new approach, dubbed TELf , has the following advantages. First,
it is readily implementable via ASP technology. Second, it can be reduced to a
normal form which is close to logic programs and much simpler than the one
obtained for TEL. Finally, its temporal models are finite and offer a one-to-one
correspondence to plans. Interestingly, TELf also sheds light on concepts and
methodology used in incremental ASP solving when understanding incremental
parameters as time points.

We have implemented our approach in the system telingo3 that deals with
so-called present-centered TELf programs (cf. [4]) that are expressible in the
full (non-ground) input language of clingo extended with temporal operators.
In addition, telingo offers several syntactic extensions to facilitate temporal
modeling: First, next operators can be used in singular heads and, second,
arbitrary temporal formulas can be used in integrity constraints. All syntactic
extensions beyond the normal form of TELf formulas are compiled away by means
of the translation (used in the normal form proof). The resulting present-centered
TELf programs are then processed according the point-wise translation, proposed
in [4], that relies on the composition of logic program modules [9]..

To facilitate the use of temporal operators “previous” • and “next” ◦, telingo
allows us to express them by adding leading or trailing quotes to the predicate
names of atoms, respectively. For instance, the temporal literals •p(a) and ◦q(b)
can be expressed by ’p(a) and q’(b), respectively. For example, consider the
representation of the sentence “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”:

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C); -V,O : ’holding(R,O,V) } < W.

3 https://github.com/potassco/telingo



2 Pedro Cabalar, Roland Kaminski, and Torsten Schaub

Atom ’holding(R,O,V) expresses what the robot was holding at the previous
time point.

The distinction between different types of temporal rules is done in telingo

via clingo’s #program directives [6], which allow us to partition programs
into subprograms. More precisely, each rule in telingo’s input language is
associated with a temporal rule r of form (b1 ∧ · · · ∧ bn → a1 ∨ · · · ∨ am) over
{a,¬a,•a,¬•a | a ∈ A}, as detailed in [4], and interpreted as r, ◦̂�r, or
�(F→ r) depending on whether it occurs in the scope of a program declaration
headed by initial, dynamic, or final, respectively. Additionally, telingo offers
always for gathering rules preceded by � (thus dropping ◦̂ from dynamic rules).
A rule outside any such declaration is regarded to be in the scope of initial.
This allows us to represent the TELf program

{ → a, ◦̂�(•a→ b), �(F→ (¬b→ ⊥)) } (1)

in the two alternative ways shown in Table 1.

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Table 1. Two alternative telingo encodings for the TELf program in (1)

As mentioned, telingo allows us to use nested temporal formulas in integrity
constraints as well as in negated form in place of temporal literals within rules.
This is accomplished by encapsulating temporal formulas like ϕ in expressions of
the form ‘&tel { ϕ }’. To this end, the full spectrum of temporal operators is at
our disposal. They are expressed by operators built from < and > depending on
whether they refer to the past or the future, respectively. So, </1, <?/2, and <*/2
stand for past operators •, S (“since”), and T (“trigger”), and >/1, >?/2, >*/2
for future operators ◦, U (“until”), R (“release”). Accordingly, <*/1, <?/1, <:/1
represent � (“always”), � (“eventually”), •̂ (“weak previous”), and analogously
their future counterparts. I and F are are represented by &initial and &final.
This is complemented by Boolean connectives &, |, ~, etc. For example, the
integrity constraint ‘shoot ∧�unloaded ∧ •�shoot → ⊥’ is expressed as follows.

:- shoot , &tel { <* unloaded & < <? shoot }.

Once telingo has translated an (extended) TELf program into a regular one,
it is incrementally solved by clingo’s multi-shot solving engine [6].



Telingo = ASP + Time: An abridged report 3

References

1. F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Temporal equilibrium
logic: a survey. Journal of Applied Non-Classical Logics, 23(1-2):2–24, 2013.

2. J. Baier and S. McIlraith. Planning with first-order temporally extended goals using
heuristic search. In Y. Gil and R. Mooney, editors, Proceedings of the Twenty-first
National Conference on Artificial Intelligence (AAAI’06), pages 788–795. AAAI
Press, 2006.

3. A. Bosser, P. Cabalar, M. Diéguez, and T. Schaub. Introducing temporal stable
models for linear dynamic logic. In M. Thielscher, F. Toni, and F. Wolter, editors,
Proceedings of the Sixteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’18), pages 12–21. AAAI Press, 2018.

4. P. Cabalar, R. Kaminski, T. Schaub, and A. Schuhmann. Temporal answer set
programming on finite traces. Theory and Practice of Logic Programming, 18(3-
4):406–420, 2018.

5. G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In F. Rossi, editor, Proceedings of the Twenty-third International Joint
Conference on Artificial Intelligence (IJCAI’13), pages 854–860. IJCAI/AAAI Press,
2013.

6. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming, 2018. To appear.

7. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Artificial
Intelligence, 3(6):193–210, 1998.

8. V. Lifschitz. Answer set planning. In D. de Schreye, editor, Proceedings of the
International Conference on Logic Programming (ICLP’99), pages 23–37. MIT Press,
1999.

9. E. Oikarinen and T. Janhunen. Modular equivalence for normal logic programs.
In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of
the Seventeenth European Conference on Artificial Intelligence (ECAI’06), pages
412–416. IOS Press, 2006.


