
Towards Exploiting Partial Knowledge in
Declarative Domain-Specific Heuristics for ASP

Richard Taupe1,2 , Konstantin Schekotihin2 , Peter Schüller3 ,

Antonius Weinzierl3,4 , and Gerhard Friedrich2

1 Siemens AG Österreich
richard.taupe@siemens.com

https://www.siemens.com/innovation
2 Alpen-Adria-Universität Klagenfurt

{konstantin.schekotihin,gerhard.friedrich}@aau.at
3 Technische Universität Wien, Institut für Logic and Computation, KBS Group

{ps,weinzierl}@kr.tuwien.ac.at
4 Aalto University, Department of Computer Science

Abstract. Domain-specific heuristics are an important technique for solving com-
binatorial problems efficiently. We propose a novel semantics for declarative
specifications of domain-specific heuristics in Answer Set Programming (ASP).
Our approach is more intuitive than existing ones because heuristics can use nega-
tion as failure and aggregates, both of which are evaluated on a partial solver state.
Such conditions are a frequent ingredient of existing domain-specific heuristics,
e.g., for placing an item that has not been placed yet in bin packing. State-of-
the-art solvers do not allow a declarative specification of such preconditions.
We implement support for heuristic directives under this semantics in the lazy-
grounding ASP system Alpha and experimentally validate that the combination
of ASP solving with lazy grounding and our novel heuristics can be a vital ingre-
dient for solving industrial-size problems.

Keywords: answer set programming · domain-specific heuristics · lazy grounding

1 Introduction

Answer Set Programming (ASP) [4, 19, 26] is a declarative knowledge representation
formalism that has been applied successfully in a variety of industrial and scientific
applications such as configuration [2, 29], team building [37], molecular biology [36],
planning [12], and others [13,15]. In the vast majority of these applications well-known
ASP solvers, such as CLINGO [18] or DLV [31], applied the ground-and-solve ap-
proach. That is, such solvers first instantiate the given non-ground program and then
apply various strategies to find answer sets of the obtained ground program.

Modern applications showed however that there are two issues with the ground-and-
solve approach. First, problem instances in industrial applications can be quite large and
cannot be grounded by modern grounders like GRINGO [21] or I-DLV [5] in acceptable
time and/or space [11]. Second, even if the problem can be grounded, computation of

https://orcid.org/0000-0001-7639-1616
https://orcid.org/0000-0002-0286-0958
https://orcid.org/0000-0002-1837-126X
https://orcid.org/0000-0003-2040-6123
https://www.siemens.com/innovation

answer sets might take considerable time, as indicated by the results of the last ASP
Competitions [6, 24].

There are two directions in the research on ASP systems aiming to resolve these
issues. In the first case, lazy grounding ASP systems, such as GASP [8], ASPERIX [30],
OMIGA [9], or ALPHA [40], interleave grounding and solving in order to instantiate
and store only relevant parts of the ground program in memory.

To overcome the second issue modern solvers employ various techniques. Among
them the ability to use domain-specific heuristics is fundamental to solve complex prob-
lems [25]. In the first approach [22] heuristics are specified using a dedicated declarative
language as a part of the encoding. The solver then evaluates all heuristics rules as a part
of the program. The approach presented in [10] allows for specification of procedural
heuristics that interact directly with the internal decision-making procedures and there-
fore can dynamically evaluate heuristics wrt. a partial solution. For example, a heuristic
for bin packing may need to compute the amount of space left in a bin after an item is
placed into it. As the authors show in [10], static heuristics [22] should generate all pos-
sible amounts of space left in bins after all possible placements of items in those bins.
Dynamic heuristics can compute all required sums on-the-fly given a partial assignment
of items to bins.

However, procedural heuristics of Dodaro et al. [10] counteract the declarative na-
ture of ASP. Also, declarative heuristics for the lazy-grounding case have not yet been
addressed. They have to be adapted for such systems because of the different solving
mechanisms in effect.

In this work we present a novel approach that combines lazy-grounding ASP sys-
tems with dynamic declarative heuristics for solution of large and complex problems.
In summary, our work makes the following contributions:

– we present a variant of the declarative language presented in [22] and equip it with a
novel semantics that makes declarative specifications of domain-specific heuristics
more intuitive;

– we show how the language can be integrated into a well-known lazy-grounding
ASP system ALPHA and provide a reference implementation;

– finally, we demonstrate the benefits of our approach by preliminary experimental
results.

The remainder of this paper is organized as follows: After briefly describing ASP’s
syntax and semantics in Section 2, we discuss the state of the art of domain-specific
heuristics in ASP in Section 3. Then we present a novel semantics for such heuristics in
Section 4 and show how to integrate it into a lazy-grounding ASP solver in Section 5.
Finally, experimental results are presented and discussed in Section 6.

2 Preliminaries

Answer Set Programming (ASP) [4,19,26] is an approach to declarative programming.
Instead of stating how to solve a problem at hand, the programmer should formulate
the problem in the form of a logic program. An ASP solver then finds models (so-
called answer sets) for this logic program, which correspond to solutions for the original
problem.

2

2.1 Syntax

An answer-set program P is a finite set of rules of the form

h1; . . . ; hd ← b1, . . . ,bm, not bm+1, . . . , not bn. (1)

where h1, . . . ,hd and b1, . . . ,bm are positive literals (i.e. atoms) and not bm+1, . . . ,not bn
are negative literals.

An atom is either a classical atom, a cardinality atom, or an aggregate atom. A clas-
sical atom is an expression p(t1, . . . , tn) where p is an n-ary predicate and t1, . . . , tn are
terms. If p is preceded by a minus sign indicating the strong negation, then the classi-
cal atom is negative, otherwise it is positive. ASP knows a second kind of negation: A
literal is either an atom a or its default negation not a. Default negation refers to the
absence of information, i.e. an atom is assumed to be false as long as it is not proven to
be true. Note that, while strong negation is usually compiled away, in this work it will
be vital to combine strong and default negation to express domain-specific heuristics
over partial solver assignments.

A cardinality atom is of the form l {a1 : l11 , . . . , l1m ; . . . ;an : ln1 , . . . , lno} u, where

– ai : li1 , . . . , lim represent conditional literals in which ai (the head of the conditional
literal) and all li j are literals, and

– l and u are terms representing non-negative integers indicating lower and upper
bound. If one or both of the bounds are not given, their defaults are used, which are
0 for l and ∞ for u.

As an extension of cardinality atoms, ASP also supports aggregate atoms that apply
aggregate functions like max, min or sum to such sets [3].

Given a rule r, H(r) = {h1, . . . ,hd} is called the head of r, and B(r) = {b1, . . . ,bm,
not bm+1, . . . ,not bn} is called the body of r. A rule r with H(r) consisting of a single
cardinality atom is called choice rule. A rule r with a head consisting of more than one
classical atom (i.e. |H(r)|> 1) is called disjunctive rule. A rule r with H(r) consisting
of at most one classical atom is called a normal rule. A normal rule r where H(r) = {},
e.g. ← b., is called integrity constraint, or simply constraint. A normal rule r where
B(r) = {}, e.g. h← ., is called fact.

2.2 Semantics

There are several ways to define the semantics of an answer-set program, i.e. to define
the set of answer sets AS(P) of an answer-set program P. An overview is provided by
[33]. Probably the most popular semantics is based on the Gelfond-Lifschitz reduct [27].
The FLP semantics also covers aggregates [14]. A variant that applies to choice rules
also is presented in [6].

Informally, an answer set A of a program P is a subset-minimal model of P (i.e. a set
of atoms interpreted as true) which satisfies the following conditions: All rules in P are
satisfied by A; and all atoms in A are “derivable” by rules in P. A rule is satisfied if its
head is satisfied or its body is not. The disjunctive head of a rule is satisfied if at least one
of its atoms is. Rules containing cardinality atoms or aggregates are usually rewritten

3

by the solver, a process in which auxiliary atoms are introduced. A cardinality atom is
satisfied if l ≤ |C| ≤ u holds, where C is the set of head atoms in the cardinality atom
whose conditions (e.g. li1 , . . . , lim for ai) are satisfied and which are satisfied themselves.
Similarly, an aggregate atom is satisfied if the value computed by the aggregate function
respects the given bounds. For example, 1 = #sum{1 : a;2 : b} is satisfied if a but not b
is true.

3 Domain-Specific Heuristics in ASP: State of the Art

State-of-the-art ASP solvers are well suited to solve a wide range of problems, as
shown in the ASP competitions and other experiments reported in the literature (see,
e.g., [6, 7, 13]). However, applying general ASP solvers to large instances of industrial
problems often does not perform well enough. In some cases, sophisticated encodings
or solver tuning methods, e.g. portfolio solvers like CLASPFOLIO [28] or ME-ASP [34],
can significantly improve performance.

However, the major breakthrough in solving industrial configuration problems was
achieved by applying domain-specific heuristics to ASP. For example, the HWASP solver
could find solutions for all available instances of the Partner Units Problem (PUP) using
a number of externally embedded heuristics [10].

There is a number of approaches to embed heuristic knowledge into the ASP solving
process. HWASP [10] is an extension of the solver WASP that facilitates the integration
of external heuristics implemented in a procedural language which are consulted at
specific points during the solving process via an API.

One of the first approaches integrating domain-specific heuristics in ASP was sug-
gested in [22]. It consists of an extension of the ASP language that allows for declarative
specification of atom weights and signs for the internal heuristics of the CLASP solver.
The initial suggestion of using atoms of a dedicated heuristic predicate was later revised.
Currently, the CLINGO system supports #heuristic directives, which are described in
detail in [17, Section 10]. The weight of an atom influences the order in which atoms are
considered by the solver when making a decision and a sign modifier instructs whether
the selected atom must be assigned true or false.

In CLINGO, the following (non-ground) meta statement defines domain-specific
heuristics, where A is an atom, B is a rule body, and w, p, and m are terms [17].

#heuristic A : B. [w@p,m] (2)

The optional term p gives a preference between heuristic values for the same atom
(preferring those with higher p). The term m specifies the type of heuristic information:
m=true specifies that A should be guessed to true with weight w if B is true, m=false
is the analog heuristic for false. The weight defines a partial order over atoms and atoms
with a higher weight are assigned a value before atoms with a lower weight. Further val-
ues for m are init and factor, which allow to replace initial scores and dynamically
modify scores assigned to atoms by the VSIDS heuristic underlying the domain-specific
heuristics [17, 22].

To the best of our knowledge, the first account of domain-specific heuristics in the
special case of lazy-grounding ASP solving is presented in [39], where heuristic deci-
sions are also made procedurally.

4

Although purely declarative approaches are preferable to those resorting to procedu-
ral means, so far declarative approaches suffer from a modelling issue that we illustrate
in the following.

Consider the following program containing two heuristic directives:

{ a(2) ; a(4) ; a(6) ; a(8) ; a(5) }← .

← #sum { X : a(X) }= S, S\2 6= 0. % S mod 2 6= 0
#heuristic a(5). [1, true]

#heuristic a(4) : not a(5). [2, true]

The program guesses a subset of {a(2),a(4),a(6),a(8),a(5)}, and the constraint for-
bids that the sum of the extension of a/1 is odd, i.e., a(5) must not be chosen. The
heuristic statements specify that a(5) shall be set to true with weight 1, and that a(4)
shall be set to true if not a(5) is true with weight 2.

In solving this program, CLINGO (v. 5.2.2) used in our experiments first assigns
a(5) to true, although a(4) has a higher level and a(5) is not known to be true in the
beginning. Next, a(8) is chosen to be false, the solver backtracks and only a(5) stays
assigned. Finally, a(8) is chosen to be true and a conflict is learned such that after
backtracking a(5) is also made false. Now that not a(5) is satisfied, the second heuristic
chooses a(4) to be true, and we obtain the answer set {a(4),a(8)} after a few more
guesses on the yet unassigned atoms.

The second heuristic becomes active only late because not a(5) is evaluated with
respect to the answer set where it is true if a(5) is false. This has small implications in
our toy example but might be crucial for industrial problems where heuristics must be
defined depending on the variables that were not assigned so far by the solver. There-
fore, we propose to evaluate negation as failure (i.e., not) in heuristic statements with
respect to the solver process. Then, not X is true if X is false or still unassigned.

Similarly, heuristics comprising aggregate atoms are not evaluated by the current
semantics as expected. Consider the best-fit heuristic for the bin-packing problem (BPP)
that suggests to place items in a bin such that after placement the amount of free space in
the bin is minimal. For a simple BPP, where sizes of items correspond to their numbers,
this heuristic can be encoded using aggregate atoms as follows:

1{ in(I,B) : bin(B) }1← item(I).

← #sum { I : in(I,B) }>C,bcap(C),bin(B).

#heuristic in(I,B) : bin(B), item(I),bcap(C),

C ≥ S+ I,S = #sum { I′ : in(I′,B) }. [S+ I, true]

The program guesses among possible assignments of items to bins (in/2) and forbids
those guesses in which the sum of item sizes assigned to one bin is greater than the
capacity (bcap/1). The heuristic directive assigns level and sign values to atoms over
in/2 and thus aims to influence choices made by the solver. According to the best-fit
heuristic, for any item I and bin B the aggregate atom sums up sizes of all items in
B including I. If this sum is greater than the bin capacity C, then no level and sign
are assigned to an atom in the head and, therefore, such atoms will have the smallest

5

priority among all choice atoms. Otherwise, the larger the sum, the more preferred is
the assignment.

For example, if a BPP instance with three bins, five items, and bin capacity set to 5:

bcap(5). bin(1..3). item(1..5).

then according to the heuristic the solver should place item 5 first, since the sum of
items in a bin after placing this item is 5 and, consequently, the remaining space 0.
Next, the heuristic would suggest to place item 4 into some bin,5 followed by the item
1 in the same bin, and so forth.

Nevertheless, evaluation of aggregate atoms using the current semantics of heuris-
tic directives does not allow for expected evaluation of the best-fit heuristic. Let partial
assignment A include all facts and nothing else, i.e. A = {bcap(5),bin(1), . . . , item(5)}.
Then, one would expect that each body of the heuristic directives is evaluated to true
with all aggregate functions returning 0, since none of the atoms over in/2 predicate
are true. Given the results of the heuristic evaluation the solver selects one of the
atoms in(5,1), in(5,2), or in(5,3) and assigns it to true. However, after the item 5 is
assigned, e.g. A = {bcap(5),bin(1), . . . , item(5)}∪{in(5,3)}, evaluation of the all ag-
gregate atoms would be different for all ground heuristic directives, e.g. which body
comprises the atom bin(3) the sum would be 5 instead of 0. This behavior is however
impossible given the standard semantics of aggregates [14,16] implemented in CLINGO.

4 A Novel Semantics for Declarative Domain-Specific Heuristics
in ASP

Supporting the declarative specification of domain-specific heuristics in ASP plays an
important role in enabling ASP to solve large-scale industrial problems. Although the
language and semantics of heuristic directives in CLINGO have shown to be beneficial
in many cases, dynamic aspects of negation as failure and aggregates in heuristic con-
ditions have not been addressed satisfactorily. An alternative approach is necessary.

In this paper, we present a novel semantics for heuristic directives in ASP that im-
proves this situation.

Definition 1. Slightly different from (2), we define a heuristic directive to have the fol-
lowing form, where h is a classical atom, c1, . . . ,ck,not ck+1, . . . ,not cn is a rule body
(the so-called heuristic condition), and w and l are terms:

#heuristic h : c1, . . . ,ck,not ck+1, . . . ,not cn. [w@l]

A heuristic directive must be safe, i.e. all variables occurring in it must also occur in
{c1, . . . ,ck}.

5 Note that this depends on whether the solver can recognize at this point that an item can be
placed into only one bin. If this is not the case, an additional atom not in(I,) can be used in
the condition of the heuristic directive to prevent the heuristic from preferring to assign item 5
to a second bin after placing it in the first one.

6

This proposal differs from CLINGO’s in the following ways: We do not use the
modifier m. Instead, the sign can be implicitly encoded in h: If h is a positive atom, the
heuristic makes the solver guess h to be true; if it is of the strongly negated form −a, a
will be made false. Instead of weight w and tie-breaking priority p, we use terms w and
l denoting weight and level as familiar from optimize statements in ASP-Core-2 [3] or
weak constraints in DLV [31]. Level is more important than weight, both default to 1,
and together they are called priority.

We now describe our semantics more formally. In this description, we assume that
the underlying solver can assign to any atom one of the three values: true (denoted with
T), false (F), and must-be-true (M) (cf. [40]). For solvers that do not use the third truth
value M, the following definitions can be used without modification, the set of atoms
assigned must-be-true will just be empty in this case. Also, we will use the following
notations in the definitions below:

The pos modifier removes strong negation from an atom, i.e. pos(−a) = pos(a)
= a. The head of a heuristic directive d of the form given in Definition 1 is denoted
by H(d) = h, its weight by weight(d) = w if given, else 1, and its level by level(d) =
l if given, else 1. A (partial) assignment A is a set of signed literals over T,F, and M. Its
atom projection A± := {a |Ta∈A or Ma∈A}∪{−a |Fa∈A}maps atoms currently as-
signed T or M to positive atoms and those assigned F to negative atoms. The (heuristic)
condition of a heuristic directive d is denoted by c(d) := {c1, . . . ,ck,not ck+1, . . . ,not cn}.
The positive condition is c+(d) := {c1, . . . ,ck} and the negative condition is c−(d) :=
{ck+1, . . . ,cn}.

Definition 2. Given a ground heuristic directive d and a partial assignment A, c(d) is
satisfied w.r.t. A iff c+(d)⊆ A± and c−(d)∩A± = /0.

Intuitively, a heuristic condition is satisfied if and only if its positive part is already true
and all its default-negated literals are either false or unassigned.

Definition 3. A ground heuristic directive d is applicable w.r.t. a partial assignment A
iff: c(h) is satisfied , Tpos(H(d)) /∈ A, and Fpos(H(d)) /∈ A.

Intuitively, a heuristic directive is applicable if and only if its condition is satisfied and
its head is assigned neither T nor F. If the head is M, the heuristic directive may still be
applicable, however: The intuition of this is that M is a ‘weak’ truth value which may
be overriden by a ‘strong’ one by a guess driven by the heuristic.

Definitions 2 and 3 reveal the main difference between the semantics proposed here
and the one implemented by CLINGO: In our approach, strong negation can be used in
heuristic conditions to reason about atoms that are already assigned F in a partial as-
signment, while default negation can be used to reason about atoms that are assigned F
or still unassigned. Our semantics truly means default negation in the current partial as-
signment, while the one implemented by CLINGO basically amounts to strong negation
in the current search state. This difference is crucial, since reasoning about incomplete
information is important in many cases. An example is a heuristic for bin packing that
only applies to items not yet placed.

What remains to be defined is the semantics of weight and level. Given a set of
applicable heuristic directives, from the ones on the highest level one with the highest

7

weight will be chosen. If there are several with the same maximum priority, the solver
can use a domain-independent heuristic like VSIDS [35] as a fallback to break the tie.

Definition 4. Given a set D of applicable ground heuristic directives, the subset eligible
for immediate choice is defined as maxpriority(D) in two steps:

maxlevel(D) := {d | d ∈ D and level(d) = max
d∈D

level(d)}

maxpriority(D) := {d | d ∈ maxlevel(D) and weight(d) = max
d∈maxlevel(D)

weight(d)}

After choosing a heuristic using maxpriority, a CDNL-based ASP solver makes a
decision on the head atom of the heuristic directive. The other parts of CDNL, e.g.
deterministic propagation, are unaffected by this.

Example 1. Consider the program given in section 3. Its heuristic directives, when con-
verted to the syntax proposed in Definition 1, look like directives (3) and (4) in the
following program. Consider also the newly introduced directives (5) and (6) in this
program.

#heuristic a(5). [1] (3)
#heuristic a(4) : not a(5). [2] (4)
#heuristic −a(5) : a(4). [2] (5)
#heuristic a(6) : −a(5). [2] (6)

Intuitively, directive (3) unconditionally prefers to make a(5) true with weight 1. Note
that the weight 1 is just given for clarity and could be omitted because 1 is the default
weight. The other directives all have the higher weight 2, but they become applicable
at different points in time. Directive (4) prefers to make a(4) true if a(5) is not true,
directive (5) prefers to make a(5) false if a(4) is true and directive (6) prefers to make
a(6) true if a(5) is false.

Let A±0 = /0 be the atom projection of the empty partial assignment before any de-
cision has been made. W.r.t. this assignment, (3) is applicable because its condition is
empty and its head is still unassigned. Directive (4) is also applicable, because a(5) is
still unassigned. Directives (5) and (6) are not applicable w.r.t. the empty assignment.
From (3) and (4), (4) is chosen because it has the higher priority. Thus, a(4) is assigned
T, which updates our assignment to A±1 = {a(4)}. This makes (5) applicable, a(5) is
assigned F and our assignment is A±2 = {a(4),−a(5)}. Note that the condition of (4)
was still satisfied at this point, but it was not applicable because its head was already
assigned. Now, also (3) is not applicable anymore and the only directive that remains
is (6). Since it is applicable, a(6) is made true and added to the assignment. Next, the
atoms that remained unassigned are guessed by the default heuristic until an answer set
is found. Note that all choices driven by the heuristics are only possible to be executed
by the solver because there are corresponding rules in the input program that can fire.

5 Integration into a Lazy-Grounding ASP Solver

Most ASP systems split the evaluation into grounding and solving. The first step pro-
duces the grounding of a program, i.e. its variable-free equivalent. Thereby, the vari-

8

ables in each rule of the program are substituted by constants. The second step then
solves this propositional encoding. The associated blow-up in space leads to the so-
called grounding bottleneck which is tackled by lazy grounding [32, 40].

The approach presented in Section 4 is not tailored towards a specific solving pa-
radigm in ASP. We describe in this section how to integrate it into a lazy-grounding
ASP solver. Integration into a ground-and-solve system belongs to future work. The
lazy-grounding system we are working with is ALPHA, which is briefly described in
the following paragraphs. More details can be found in [40].

5.1 ALPHA: Answer Set Solving with Lazy Grounding

Alpha combines lazy grounding with CDNL search (cf. [23]) to avoid the grounding
bottleneck of ASP and obtain very good search performance. CDNL-based ASP solvers
require a fully grounded input, usually in the form of nogoods. Alpha provides this by
having two dedicated components: a lazy grounder and a modified CDNL solver. This
separation is common for pre-grounding ASP solvers, but for ALPHA these components
interact cyclically: whenever the solving component derives new truth assignments to
atoms, the grounding component is queried for new ground nogoods obtainable by the
new assignments. In contrast to traditional CDNL-based solving, the result of this in-
terplay is a computation sequence.

Most importantly, the solver does not guess on each atom whether it is true or false,
but it guesses on ground instances of rules whether they fire or not. This is realised
by creating a unique atom for each ground body and then guessing on these body-
representing atoms (henceforth called choice points). The solver can guess on a choice
point if it is active, which is the case when the corresponding ground rule is applicable.
A rule is applicable w.r.t a partial assignment A± if its positive body has already been
derived and its negative body is not contradicted, i.e. B+(r)⊆ A± and B−(r)∩A± = /0.

Intuitively, the ALPHA algorithm incrementally grounds those rules whose positive
body is already satisfied. Supportedness of answer sets is not achieved by completion
nogoods, but by optionally designating one literal in a nogood as the nogood’s head
and deriving the justified truth value ‘true’ (Ta) when propagating to heads, while the
not-yet-justified truth value ‘must-be-true’ (Ma) is propagated in other directions.

Note that ALPHA does not (yet) support the full language of ASP as described
in section 2.1. For example, it supports neither disjunctive rules nor upper bounds of
cardinality and aggregate atoms.

5.2 Respecting heuristic directives in lazy grounding and solving

To be able to reuse standard grounding procedures, a preprocessor component in AL-
PHA transforms heuristic directives occurring in input programs to normal rules with
head atoms of a built-in predicate, henceforth called heuristic rules. The body of the
heuristic rule equals the heuristic condition, while information on weight, level, heuris-
tic head and sign are stored in the head of the rule. Due to this transformation, a heuristic
directive is grounded under the same precondition as a normal rule: which is, when its
positive body is satisfied.

9

The way the heuristic directive is grounded is similar to the way a normal rule is
grounded, but still has to be different. Bodies of heuristic rules are not represented as
choice points, but as a distinct type of atoms, such that the solver can then treat heuristic
rules differently.

When a heuristic rule is applicable (i.e. its positive body is already derived and its
negative body is not yet contradicted), it is not eligible for choice but the heuristic itself
becomes applicable. When a heuristic rule ceases to be applicable, the corresponding
heuristic information is also not used by the solver any longer. Thus, a heuristic condi-
tion is satisfied if and only if its corresponding heuristic rule is applicable.

The task of finding the applicable heuristic with the highest priority is aided by
the use of efficient data structures like a heap. When this heuristic is found, it cannot
be chosen immediately in a lazy-grounding system like ALPHA. The reason for this is
that the head of a heuristic directive is an ordinary atom, but ALPHA can only choose
on choice points – on atoms representing rule bodies. Therefore, an additional step is
necessary: The set of known ground rules that can derive the chosen atom is determined.
From this set, a fallback heuristic chooses one. Then, the choice point corresponding to
this rule is assigned true or false, depending on the sign given by the heuristic directive.
Propagation following this choice will immediately assign the desired truth value to the
atom originally chosen.

Example 2. Consider the following program P:

x(1..2).
{a(X) : x(X)}.
b(X)← x(X),not c(X).

c(X)← x(X),not b(X).

#heuristic b(X) : x(X),not a(X). [X@2]

Let h/3 be the built-in predicate used to define heads of heuristic rules. In a pre-
processing step, the heuristic statement in P is first translated to the heuristic rule
h(b(X),X ,2)← x(X),not a(X). Since the positive body of every rule in P is satisfied,

the full grounding of P is immediately produced. Under the initial partial assignment
consisting just of facts A±0 = {x(1),x(2)}, both ground heuristic rules are applicable,
since both their positive bodies are satisfied and neither a(1) nor a(2) is assigned yet.
The directive in which X has been substituted by 2 has the higher weight, however. For
this reason, it is chosen, and the solver finds the (in this case) only rule that can make
the heuristic’s head b(2) true: b(2)← x(2),not c(2). The choice point representing the
body of this rule is made true and, after some propagation, the new partial assignment
will contain b(2) (amongst other consequences of propagation).

6 Experimental Results

We ran a set of experiments on encodings of the House Reconfiguration Problem (HRP).
The HRP is an abstracted version of an industrial reconfiguration problem [38]. Given a
set of things that belong to one person each, the task is to assign these things to cabinets

10

and the cabinets to rooms such that no room contains things of more than one person.
Things and cabinets have various sizes. There are various constraints that constrain the
search space.

The full encodings used during our experiments are available online.6 The version
of ALPHA used for the experiments is available in the history of our open-source reposi-
tory.7 ALPHA was used in its default configuration. The Java Virtual Machine was called
with command-line parameters -Xmx16g -jar Alpha-bundled.jar. For compari-
son, CLINGO [20] was used in version 5.2.2.

HRP is originally an optimisation problem. Since ALPHA does not support optimi-
sation statements yet, we had to discard them from the encoding. However, heuristic
directives can be written in a way that optimal or near-optimal solutions are preferably
found. For experiments with CLINGO, optimisation was therefore also switched off.8

The encoding for CLINGO does not contain domain-specific heuristics. To measure time
and memory consumption, PYRUNLIM9 was used. A machine with an Intel R© Xeon R©
CPU E5-2630 v2 @ 2.60GHz with two cores, 31.4G of memory and Ubuntu 16.04.5
LTS was employed to conduct the experiments. 20 instances of the HRP were gener-
ated, ranging from 5 persons owning 25 things to 100 persons owning 500 things. All
instances used for these experiments use an empty legacy configuration, i.e. we con-
sider a configuration problem and not a reconfiguration problem. Future experiments
will also consider other classes of problem instances. The heuristic implemented in our
ALPHA encoding manages to solve all these instances with zero backtracks.

Experimental results are shown in fig. 1. A striking feature of these plots is that
CLINGO cannot solve the three largest instances from our benchmark set within avail-
able memory, while ALPHA can solve all instances by successful application of lazy
grounding. Time consumption of ALPHA grows a bit faster than that of CLINGO, but
generally compares well with it. It has to be kept in mind, however, that CLINGO man-
ages to produce these results with domain-independent heuristics alone, while ALPHA
(currently) needs domain-specific heuristics to compete in these terms. Adding domain-
specific heuristics to the CLINGO encoding could possibly make it even more efficient,
but that would also aggravate its memory consumption problem.

Turning our attention to the memory consumption shown in the plot on the right-
hand side, we see the overwhelming benefits of the lazy-grounding approach. While
ALPHA needs more memory than CLINGO until instance sizes of about 200 (which
probably results from the fact that CLINGO has been optimized for over a decade now),
its memory consumption grows much slower asymptotically. Within available memory
much larger instances could be solved by ALPHA, while instances larger than 425 things
are out of reach for CLINGO under the given encoding.

6 Encodings house_alpha_2018-09-10b.asp and house_clingo_2018-06-15c.asp

as well as instances at https://github.com/alpha-asp/Alpha/blob/domspec_

heuristics/src/test/resources/DomainHeuristics/House/
7 https://github.com/alpha-asp/Alpha/commit/

7229f1e32e4977ea0cf590a9487b32258f41fab5
8 Optimisation was switched off in CLINGO using command-line argument
--opt-mode=ignore.

9 https://alviano.com/software/pyrunlim/

11

house_alpha_2018-09-10b.asp
house_clingo_2018-06-15c.asp
https://github.com/alpha-asp/Alpha/blob/domspec_heuristics/src/test/resources/DomainHeuristics/House/
https://github.com/alpha-asp/Alpha/blob/domspec_heuristics/src/test/resources/DomainHeuristics/House/
https://github.com/alpha-asp/Alpha/commit/
7229f1e32e4977ea0cf590a9487b32258f41fab5
https://alviano.com/software/pyrunlim/

0 200 400
0

500

1,000

1,500

2,000

instance size (number of things)

tim
e

co
ns

um
pt

io
n

(s
) CLINGO

ALPHA

0 200 400
0

10

20

30

instance size (number of things)

m
em

or
y

co
ns

um
pt

io
n

(G
iB

)

CLINGO

ALPHA

Fig. 1. Time and memory consumption for finding the first answer set for various HRP instances

7 Conclusions and Future Work

We have proposed a novel semantics for declarative domain-specific heuristics in ASP,
demonstrated how to integrate them in a lazy-grounding ASP system and presented
experimental results obtained with the lazy-grounding solver ALPHA. Our semantics
differs from the previous state of the art by evaluating default negation with respect to
incomplete information more naturally during solving. Benefits of this semantics for
many problem domains have been made evident by use of examples. Our experimental
results show that our approach is feasible, exhibiting encouraging time consumption
and outstanding memory consumption behaviour.

The experiments reported in this paper are rather limited. In future experiments we
plan to compare the solvers ALPHA, CLASP, and WASP with each other, each with and
without domain-specific heuristics.

Further work is planned to extend syntax and semantics proposed here. For example,
aggregates in heuristic conditions remain to be studied. Also, it could be worthwhile to
adopt more ideas like init and factor modifiers from CLINGO for our semantics. It
should also be examined how to support randomness and restarts, since such features
are used by several real-world domain-specific heuristics. Since our approach has only
been implemented in a lazy-grounding system so far, an adaption to ground-and-solve
systems like CLINGO [20] or WASP [1] should be investigated in the future.

Acknowledgements

This work has been conducted in the scope of the research project DynaCon (FFG-PNr.:
861263), which is funded by the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the program “ICT of the Future” between 2017 and 2020
(see https://iktderzukunft.at/en/ for more information).

This research was also supported by the Academy of Finland, project 251170, and
by EU ECSEL Joint Undertaking under grant agreement no. 737459 (project Produc-
tive4.0).

We also thank Andreas Falkner for his comments on an earlier version of this paper.

12

https://iktderzukunft.at/en/

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A Native ASP Solver Based
on Constraint Learning. In: Cabalar, P., Son, T.C. (eds.) Logic Programming and Nonmono-
tonic Reasoning. Lecture Notes in Computer Science, vol. 8148, pp. 54–66. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 6

2. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A.,
Thorstensen, E.: Optimization Methods for the Partner Units Problem. In: Proceedings of the
8th International Conference on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems. pp. 4–19. CPAIOR’11, Springer-Verlag,
Berlin, Heidelberg (2011)

3. ASP Standardization Working Group: ASP-Core-2 Input Language Format (2012-12-13),
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder of DLV.
Intelligenza Artificiale 11(1), 5–20 (2017)

6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the Fifth
Answer Set Programming Competition. Artificial Intelligence 231, 151–181 (2016).
https://doi.org/10.1016/j.artint.2015.09.008

7. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming com-
petition. Theory and Practice of Logic Programming 14(01), 117–135 (2014).
https://doi.org/10.1017/S1471068412000105

8. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer Set Programming with Lazy
Grounding. Fundamenta Informaticae 96(3), 297–322 (2009)

9. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA: An Open Minded
Grounding On-The-Fly Answer Set Solver. In: Fariñas del Cerro, L., Herzig, A., Mengin,
J. (eds.) Logics in Artificial Intelligence. Lecture Notes in Artificial Intelligence, vol. 7519,
pp. 480–483. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-
8 38

10. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Combin-
ing Answer Set Programming and domain heuristics for solving hard industrial problems
(Application Paper). Theory and Practice of Logic Programming 16(5-6), 653–669 (2016).
https://doi.org/10.1017/S1471068416000284

11. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming
with bounded predicate arities and implications. Annals of Mathematics and Artificial Intel-
ligence 51(2), 123 (2008). https://doi.org/10.1007/s10472-008-9086-5

12. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to
knowledge-state planning, II: the dlvk system. Artif. Intell. 144(1-2), 157–211 (2003)

13. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Magazine
37(3), 53–68 (2016), http://www.aaai.org/ojs/index.php/aimagazine/article/
view/2678

14. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence 175(1), 278–298 (2011).
https://doi.org/10.1016/j.artint.2010.04.002

15. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial applications
of answer set programming. KI 32(2-3), 165–176 (2018)

16. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM Trans.
Comput. Log. 12(4), 25:1–25:40 (2011)

13

https://doi.org/10.1007/978-3-642-40564-8_6
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
https://doi.org/10.1016/j.artint.2015.09.008
https://doi.org/10.1017/S1471068412000105
https://doi.org/10.1007/978-3-642-33353-8_38
https://doi.org/10.1007/978-3-642-33353-8_38
https://doi.org/10.1017/S1471068416000284
https://doi.org/10.1007/s10472-008-9086-5
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2678
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2678
https://doi.org/10.1016/j.artint.2010.04.002

17. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,
Schaub, T., Thiele, S.: Potassco User Guide version 2.1.0 (2017), https://github.com/
potassco/guide/releases/tag/v2.1.0

18. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3.
In: LPNMR. Lecture Notes in Computer Science, vol. 9345, pp. 368–383. Springer (2015)

19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, Morgan and Claypool Pub-
lishers (2012)

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + Control: Preliminary
Report. In: Leuschel, M., Schrijvers, T. (eds.) Technical Communications of the Thirtieth
International Conference on Logic Programming (ICLP’14). vol. arXiv:1405.3694v1 (2014)

21. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: LPNMR.
Lecture Notes in Computer Science, vol. 6645, pp. 345–351. Springer (2011)

22. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific
Heuristics in Answer Set Programming. In: Proceedings of the Twenty-Seventh AAAI Con-
ference on Artificial Intelligence. pp. 350–356. AAAI Press (2013)

23. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven Answer Set Solv-
ing: From Theory to Practice. Artificial Intelligence 187-188, 52–89 (2012).
https://doi.org/10.1016/j.artint.2012.04.001

24. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competition. J. Ar-
tif. Intell. Res. 60, 41–95 (2017). https://doi.org/10.1613/jair.5373, https://doi.org/10.
1613/jair.5373

25. Gebser, M., Ryabokon, A., Schenner, G.: Combining Heuristics for Configuration Prob-
lems Using Answer Set Programming. In: Calimeri, F., Ianni, G., Truszczyński, M.
(eds.) Logic Programming and Nonmonotonic Reasoning. Lecture Notes in Artificial
Intelligence, vol. 9345, pp. 384–397. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-23264-5 32

26. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press, New York,
NY, USA (2014)

27. Gelfond, M., Lifschitz, V.: The Stable Model Semantics For Logic Programming. In: Kowal-
ski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium
of Logic Programming. pp. 1070–1080. MIT Press (1988)

28. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection for an-
swer set programming. TPLP 14(4-5), 569–585 (2014)

29. Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.: Chap-
ter 6 - Configuration Knowledge Representation and Reasoning. In: Felfernig, A., Hotz,
L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based Configuration, pp. 41–72. Morgan
Kaufmann, Boston (2014). https://doi.org/10.1016/B978-0-12-415817-7.00006-2, https:
//www.sciencedirect.com/science/article/pii/B9780124158177000062

30. Lefèvre, C., Béatrix, C., Stéphan, I., Garcia, L.: ASPeRiX, a first-order forward chaining
approach for answer set computing. Theory and Practice of Logic Programming 17(3), 266–
310 (2017). https://doi.org/10.1017/S1471068416000569

31. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transaction on Computational
Logic 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.1149117

32. Leutgeb, L., Weinzierl, A.: Techniques for Efficient Lazy-Grounding ASP Solving. In:
Seipel, D., Hanus, M., Abreu, S. (eds.) Declare 2017 - Conference on Declarative Program-
ming. pp. 123–138. Technical Report, University of Würzburg (2017)

14

https://github.com/potassco/guide/releases/tag/v2.1.0
https://github.com/potassco/guide/releases/tag/v2.1.0
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1613/jair.5373
https://doi.org/10.1613/jair.5373
https://doi.org/10.1613/jair.5373
https://doi.org/10.1007/978-3-319-23264-5_32
https://doi.org/10.1016/B978-0-12-415817-7.00006-2
https://www.sciencedirect.com/science/article/pii/B9780124158177000062
https://www.sciencedirect.com/science/article/pii/B9780124158177000062
https://doi.org/10.1017/S1471068416000569
https://doi.org/10.1145/1149114.1149117

33. Lifschitz, V.: Thirteen Definitions of a Stable Model. In: Blass, A., Dershowitz, N., Reisig,
W. (eds.) Fields of Logic and Computation, Lecture Notes in Computer Science, vol. 6300,
pp. 488–503. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-
8 24

34. Maratea, M., Pulina, L., Ricca, F.: The multi-engine ASP solver me-asp. In: JELIA. pp.
484–487 (2012)

35. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference. pp. 530–
535. IEEE (2001)

36. Ostrowski, M., Schaub, T., Durzinsky, M., Marwan, W., Wagler, A.: Automatic network
reconstruction using ASP. CoRR abs/1107.5671 (2011), http://arxiv.org/abs/1107.
5671

37. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. TPLP 12(3), 361–381 (2012)

38. Ryabokon, A.: Knowledge-based (Re)configuration of Complex Products and Services.
Ph.D. thesis, Alpen-Adria-Universität Klagenfurt (2015), http://netlibrary.aau.at/
urn:nbn:at:at-ubk:1-26431

39. Taupe, R., Weinzierl, A., Schenner, G.: Introducing Heuristics for Lazy-Grounding ASP
Solving. In: 1st International Workshop on Practical Aspects of Answer Set Programming
(2017), https://sites.google.com/site/paoasp2017/Taupe-et-al.pdf

40. Weinzierl, A.: Blending Lazy-Grounding and CDNL Search for Answer-Set Solv-
ing. In: Logic Programming and Nonmonotonic Reasoning. pp. 191–204 (2017).
https://doi.org/10.1007/978-3-319-61660-5 17

15

https://doi.org/10.1007/978-3-642-15025-8_24
https://doi.org/10.1007/978-3-642-15025-8_24
http://arxiv.org/abs/1107.5671
http://arxiv.org/abs/1107.5671
http://netlibrary.aau.at/urn:nbn:at:at-ubk:1-26431
http://netlibrary.aau.at/urn:nbn:at:at-ubk:1-26431
https://sites.google.com/site/paoasp2017/Taupe-et-al.pdf
https://doi.org/10.1007/978-3-319-61660-5_17

	Towards Exploiting Partial Knowledge inDeclarative Domain-Specific Heuristics for ASP

