
Abstraction for Non-Ground Answer Set
Programs ?

Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Institute of Logic and Computation, TU Wien

Abstract. We address the issue of abstraction, a widely used notion to
simplify problems, in the context of Answer Set programming (ASP),
which is a highly expressive formalism and a convenient tool for declara-
tive problem solving. We introduce a method to automatically abstract
non-ground ASP programs given an abstraction over the domain, which
ensures that each original answer set is mapped to some abstract an-
swer set. We discuss abstraction possibilities on several examples and
show the use of abstraction to gain insight into problem instances, e.g.,
domain details irrelevant for problem solving; this makes abstraction at-
tractive for getting to the essence of the problem. We also provide a tool
implementing automatic abstraction from an input program.

1 Introduction

Abstraction is an approach that is widely used in Computer Science and AI
to simplify problems, cf. [8, 22, 2, 16, 14]. By omitting details, complex scenarios
are reduced to ones that are easier to deal with and to understand; in fact,
abstraction is ubiquitous in building models of reality, which approximate the
latter to meet specific application purposes.

Surprisingly, abstraction has not been considered much in the context of
nonmonotonic knowledge representation and reasoning, and specifically not in
Answer Set Programming (ASP) [7]. Simplification methods such as equivalence-
based rewriting [12, 25], partial evaluation [6, 20], or forgetting (cf. [23] for a
recent survey), have been extensively studied. However, they strive for pre-
serving the semantics, while abstraction may change it and lead to an over-
approximation of the models (answer sets) of a program, in a modified language.

Recently, Saribatur and Eiter [27] presented such an approach that omits
atoms from an ASP program, similar in spirit to abstraction in planning prob-
lems [18]. The approach is propositional in nature and does not account for the
fact that in ASP, non-ground rules talk about a domain of discourse; e.g., a rule

col(X, r)← node(X),not col(X, g),not col(X, b).

may express that a node X in a graph must be colored red, if it is not colored
green nor blue; or the rule

? We thank the reviewers for their feedback. This work has been supported by Austrian
Science Fund (FWF) project W1255-N23 and Austrian Federal Ministry of Transport
Innovation and Technology (BMVIT) project 861263 (DynaCon).

{moveToTable(B,A, T)} ← on(B,B1, T), free(B, T)

that the block B on top of a stack may at time T be moved to a table area A.
For the (non)existence of an answer set, the precise set of elements (nodes resp.
blocks and areas) may not matter, but rather how certain elements are related;
for that, some elements may be abstracted into single elements. Then, a coloring
of the abstracted graph, if exists, may be refined to the original graph; if not, the
latter is not colorable. Similarly, a plan for a blocksworld problem with abstract
areas may be turned into a concrete one by instantiating them.

It is unexplored how for a non-ground ASP program Π, given an abstraction
over its domain, a suitable abstract programΠ ′ can be automatically constructed
and evaluated. We tackle this issue and make the following contributions.

• We introduce the notion of domain abstraction for ASP programs. For that,
an abstraction of domain elements for a program Π is supplied with an abstract
program Π ′ such that each answer set of Π maps to an abstract answer set of
Π ′.
• We provide a method to automatically construct such an abstract program
Π ′. It works modularly on the syntactic level, by constructing for each rule ab-
stract rules with a similar structure, where uncertainty caused by the abstracted
domain is carefully respected.
• We show how abstract answer sets can be computed and further processed.
This includes a concreteness check, with possible output of an answer set of the
original program, and a refinement strategy to deal with spurious answer sets
using local search. The whole approach is implemented in a tool that provides
automatic abstraction from an input program.
• We consider the domain abstraction approach for several examples, where
we also discuss how to use it for subdomains (sorts) such as time, and how to
compose sort abstractions. An experimental evaluation shows the potential of
the approach for various applications.

2 Domain Abstraction for ASP

ASP. We adopt as a function-free first order language, in which a logic program
Π is a finite set of rules r of the form α←B(r) where α is an atom and the
body B(r) = l1, . . . , ln is a set of positive and negative literals li of the form β
or not β, respectively, where β is an atom and not is default negation; B+(r)
and B−(r) are the sets of all positive resp. negative literals in B(r). A rule r
resp. program Π is ground, if it is variable-free, and r is a fact if moreover n= 0.
Rules r with variables stand for the sets grd(r) of their ground instances, and
semantically Π induces a set AS (Π) of stable models (or answer sets) [15] which
are Herbrand models (i.e., sets I of ground atoms) of Π justified by the rules,
in that I is a ⊆-minimal model of fΠI = {r ∈ grd(Π) | I |= B(r)} [11], where
grd(Π) =

⋃
r∈Π grd(r). A program Π is unsatisfiable, if AS (Π) = ∅. A common

syntactic extension are choice rules of the form {α}←B, which stands for the
rules α←B,not α′ and α′←B,not α, where α′ is a fresh atom.

To illustrate various challenges of abstraction we use the following example.

2

Example 1 (Running example) Consider the following example program Π
with domain predicate int for an integer domain D = {0, . . . , 5}.

c(X)← not d(X), X < 5, int(X). (1)

d(X)← not c(X), int(X). (2)

b(X,Y)← a(X), d(Y), int(X), int(Y). (3)

e(X)← c(X), a(Y), X ≤ Y, int(X), int(Y). (4)

← b(X,Y), e(X), int(X), int(Y). (5)

We also have facts a(1), a(3), int(0), . . . , int(5).

Abstraction. A generic notion of abstraction is as follows.

Definition 1 Given ground programs Π and Π ′ on sets A and A′ of atoms,
respectively, where |A| ≥ |A′|, Π ′ is an abstraction of Π, if a mapping m :A →
A′ exists s.t. for each I ∈AS (Π), I ′= {m(a) | a∈ I} is an answer set of Π ′.

We refer to m as an abstraction mapping. This notion aims at the grounding
(propositional) view of programs. In this paper, we take a first-order view in
which A is the Herbrand base of Π, which results from the available predicate
symbols and the constants symbols (the domain D of discourse, i.e., the Her-
brand universe), which are by default those occurring in Π. Domain abstraction
induces abstraction mappings in which constants are merged.

Definition 2 Given a domain D of Π, a domain (abstraction) mapping is a

function m :D→ D̂ for a set D̂ (the abstracted domain) with |D̂| ≤ |D|.

Thus, a domain mapping divides D into clusters of elements {d∈D |m(d) = d̂},
where d̂∈ D̂, seen as equal; if unambiguous, we also write d̂ for its cluster m−1(d̂).

Example 2 (ctd) A possible abstraction mapping for Π with D̂1 = {k1, k2, k3}
clusters 1, 2, 3 to the element k1 and 4 and 5 to singleton clusters, i.e., m1 = {{1,
2, 3}/k1, {4}/k2, {5}/k3}. A naive mapping is m2 = {{1, .., 5}/k} with D̂2={k}.

Each domain mapping m naturally extends to ground atoms a= p(v1, . . . , vn)
by m(a) = p(m(v1), . . . ,m(vn)). To obtain for a program Π and a Herbrand base
A an induced abstraction mapping m : A → A′ where A′ = m(A) = {m(a) |
a ∈ A}, we need a program Π ′ as in Definition 1. However, simply applying m
to Π does not work. Moreover, we want domain abstraction for non-ground Π
that results in a non-ground program Π ′. Building a suitable Π ′ turns out to be
challenging and needs to solve several issues, which we gradually address in the
next section.

3 Towards an Abstract Program

Handling built-ins and (in)equalities. Original rules may rely on certain
built-in relations involving variables, such as <,≤ in (1) and (4), or = and 6=. The
idea is to lift the rules by lifting these relations and dealing with the uncertainty
caused by the domain clustering.

3

Example 3 (ctd) We abstract from Π using m2. The rule (3) has no built-in
relation and thus it is lifted with no change:

b(X,Y)← a(X), d(Y), înt(X), înt(Y);

however, lifting rule (4) simply to

e(X)← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

does not work, as X ≤Y behaves differently over the cluster k. As k≤ k, when-
ever c(k) and a(k) holds the rule derives e(k). This applies, e.g., to the ab-
straction of I = {a(1), a(3), c(4), d(0), . . . , d(3)}, where (4) derives no e-atom
as 4� 3 and 4� 1. However, I is an answer set of Π and must not be lost in
the abstraction. Thus, when a cluster causes uncertainties over the built-ins, we
modify the above rule to

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

which allows to skip e(k) even if c(k) and a(k) holds.

Negation. A naive abstraction approach is to turn all rule heads into choices.
However, negative literals or certain built-ins (e.g., 6=, <) may cause a loss of
original answer sets in the abstraction.

Example 4 (ctd) We change in (4) the symbol ≤ to 6= and consider

{e(X)} ← c(X), a(Y), X 6=Y, înt(X), înt(Y).

As k= k, the abstract body is never satisfied and e(k) is never derived. However,
Π has answer sets containing c(2),a(3) and thus also e(2), as 2 6= 3; they are all
lost. Adding an additional choice rule with a flipped relation, X = Y , is able to
catch such cases.

Similarly, let us change in (4) a(Y) to not a(Y). When the rule is lifted to
the abstract rule

{e(X)} ← c(X),not a(Y), X ≤ Y, înt(X), înt(Y)

e(k) is not derived as a(k) holds and originally a holds only for 1 and 3. Thus
original answer sets I may contain e(2) or e(4); such I exist, and they are lost.
Such cases can be caught with additional rules

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

Constraints. Naively lifting the constraints to the abstract rules would result
in losing answer sets for the non-singleton domain clusters.

Example 5 (ctd) If the constraint (5) is lifted with no change, then b(k, k) and
e(k) would never occur in the abstract answer sets, while in the original program
answer sets can contain b(x1, y) and c(x2) as long as x1 6= x2.

In conclusion, only creating choices is not enough to preserve all original an-
swer sets; we need a fine-grained, systematic approach to deal with uncertainties
by abstraction.

Lifted built-in relations. As shown before, built-in relations need special
treatment, and so do multiple usages of a variable in a rule. To unify both

4

issues, our approach focuses on rules of form r : l ← B(r), Γrel(r) where the
variables in B(r) are standardized apart and Γrel consists of built-in atoms that
impose restrictions on the variables in B(r).

Example 6 (ctd) The rule (3) has Γrel(r) => while the rule (5) needs to be
standardized apart by rewriting it into←b(X,Y), e(X1), Γrel with Γrel = (X =X1).

The uncertainty by abstraction may occur due to relation restrictions over
non-singleton clusters (i.e., |d̂| > 1) or negative literals mapped to non-singleton
abstract literals.

For simplicity, we first focus on binary built-ins, e.g., =, <,≤, 6=, and a Γrel(r)
of the form rel(X, c) or rel(X,Y). When the relation rel is lifted to the abstract

domain, the following cases (or types) τI–τIV for rel(d̂1, d̂2) occur in a mapping:

τ relI (d̂1, d̂2): rel(d̂1, d̂2)∧∀x1 ∈ d̂1, ∀x2 ∈ d̂2. rel(x1, x2)

τ relII (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∀x1 ∈ d̂1, ∀x2 ∈ d̂2.¬rel(x1, x2)

τ relIII (d̂1, d̂2): rel(d̂1, d̂2)∧∃x1 ∈ d̂1, ∃x2 ∈ d̂2.¬rel(x1, x2)

τ relIV (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∃x1 ∈ d̂1, ∃x2 ∈ d̂2. rel(x1, x2)

If rel(d̂1, d̂2) holds for some d̂1, d̂2 ∈ D̂, type III is more common in domain

abstractions with clusters, while type I occurs for singleton mappings (i.e., |d̂1| =
|d̂2| = 1) or for relations such as 6=, <.

Example 7 Consider a mapping m= {{1}/k1, {2, 3}/k2, {4, 5}/k3}. For the
relation “=”, k1 = k1 holds and for any x1, x2 ∈ k1 = {1}, x1 =x2 holds and type
I applies. In contrast, k2 = k2 holds while 2, 3 ∈ k2 and 2 6= 3; so type III applies.
Further, k2<k3 holds and for any x ∈ k2 = {2, 3} and y ∈ k3 = {4, 5}, we have
x<y and so type I applies.

If rel(d̂1, d̂2) does not hold for some d̂1, d̂2 ∈ D̂, type II is common, e.g., =,≤,
whereas type IV may occur for 6=, <.

Example 8 (ctd) Reconsider m. Then k2 6= k2 does not hold while k2 = {2, 3}
has different elements 2 6= 3 (type IV). Moreover, k1 = k2 does not hold in D̂
nor does x= y for every x ∈ k1 = {1} and y ∈ k2 = {2, 3} (type II).

For an abstraction m, we let Tm be the set of all atoms τ relι (d̂1, d̂2) where

ι ∈ {I, . . . , IV} is the type of the built-in instance rel(d̂1, d̂2) for m; note that Tm
is easily computed.

4 Abstract Program Construction

By our analysis, the basic idea to construct an abstract program for a program
Π with a domain mapping m is as follows: we either just abstract each atom in
a rule, or in case of uncertainty due to domain abstraction, we guess rule heads
to catch possible cases, or we treat negated literals by shifting their polarity
depending on the abstract domain clusters.

5

For simplicity and ease of presentation, we first consider programs Π with
rules having (i) at most one negative body literal which shares an argument with
the relation, (ii) a single, binary built-in literal and (iii) no cyclic dependencies
between non-ground atoms.

For any rule r and ∗∈{+,−}, let the set S∗rel(r) = {lj ∈ B∗(r) | arg(lj) ∩
{t1, t2} 6= ∅} be the positive and negative body literals, respectively, that share
an argument with rel(t1, t2). By assumption (i) we have B−(r) ⊆ S∗rel(r).

Definition 3 Given a program Π and a domain mapping m, we construct an
abstract program Πm as follows. For each rule r∈Π of form l← B(r), rel(t1, t2)
we add:

(1) If S+
rel(r) = ∅: m(l)← m(B(r)).

(2) If S+
rel(r) 6= ∅:

(a) m(l)←m(B(r)), rel(t̂1, t̂2), τ relI (t̂1, t̂2).
(b) {m(l)}←m(B(r)), rel(t̂1, t̂2), τ relIII (t̂1, t̂2).
(c) {m(l)} ← m(B(r)), rel(t̂1, t̂2), τ relIV (t̂1, t̂2).

(3) If li∈S−rel(r):

(a′) {m(l)}←m(Bsh
li

(r)), rel(t̂1, t̂2), τ relIII (t̂1, t̂2).

(b′) if S+
rel(r) = ∅: same as (c),

{m(l)}←m(Bsh
li

(r)), rel(t̂1, t̂2), τ relIV (t̂1, t̂2).

{m(l)}←m(Bsh
li

(r)), rel(t̂1, t̂2).

where Bsh
li

(r)=B+(r)∪ {li},not B−(r)\{li}, rel denotes the complement of rel ,

and for j ∈{1, 2}, if tj is a constant then t̂j =m(tj), else t̂j = tj, i.e., variables
are not mapped.

In case (1), we have positive literals that do not share arguments with rel ;
this includes rel=> (e.g., (3)). Here the abstraction of r is added. If B−(r) 6= ∅,
then the assumption on B−(r) prohibits the case B−(r)\S−rel(r) 6= ∅ (i.e., there
is no default negated literal without a respective relation).

In case (2), rel(t1, t2) shares arguments with a positive body literal. We add
rules to grasp possible effects of the relation type. In case of uncertainty, the
head becomes a choice, and for case IV, we flip the relation, rel , to catch the
case of the relation holding true.

The constraints in the program (e.g., (5)) gets omitted in the cases with
uncertainty (i.e., case (2-b,c) and case (3)).

Example 9 (ctd) Consider Ex. 1 with domain mapping m= {{1}/k1,{2, 3}/k2,
{4, 5}/k3}. In rule (4), the relation X ≤Y has S+

≤(r) = {c(X), a(Y)}. We have

τ≤I (x, y) true for (x, y)∈{(k1, k1), (k1, k2), (k1, k3), (k2, k3)}, and τ≤III(x, y) true
for (x, y)∈ {(k2, k2), (k3, k3)}, and only type II for all other tuples (x, y). The
abstract rules for (4) are:

e(X)← c(X), a(Y), X ≤ Y, τ≤I (X,Y), înt(X), înt(Y).

{e(X)}← c(X), a(Y), X ≤ Y, τ≤III(X,Y), înt(X), înt(Y).

6

In case (3) of Definition 3, rel(t1, t2) shares arguments with a negative body
literal. We grasp the uncertainty arising from negation by adding rules where
the related literal is shifted to the positive body via Bsh

li
(r). (3-b′) deals with

the special case of a type IV relation and a negative literal.

Example 10 (ctd) Rule (1) has a negative literal, not d(X), and the relation
X < 5 with shared argument X. When it is lifted to X <k3, it has τ<II (a, b) true
for (a, b)∈ {(k3, k1), (k3, k2)}, τ<IV(k3, k3), and type I for all other tuples (a, b).

By case (1), it is abstracted without change for τI abstract values, while for
τIV specially treated rules are added:

c(X)← not d(X), X < k3, înt(X).

{c(X)}← not d(X), X ≥ k3, τ<IV(X, k3), înt(X).

{c(X)}← d(X), X ≥ k3, τ<IV(X, k3), înt(X).

{c(X)}← d(X), X < k3, înt(X).

The abstract program is now as follows.

Definition 4 Given a program Π and a domain abstraction m, the program
Πm consists of all non-facts of Π rewritten as shown above, facts {x. |x∈Tm}
and facts p(t) of the original program lifted to abstract facts p(m(t)).

Notably, the construction of Πm is modular, rule by rule.

Theorem 1 Let m be a domain mapping of a program Π under the above as-
sumptions (i)–(iii). Then for every I ∈ AS (Π), m(I) ∪ Tm ∈ AS (Πm).

Proof (sketch). The rules added in cases (1),(2a-2b) and (3a′) are to ensure that
m(I) is a model of Πm, as either the original rule is kept or it is changed to a
choice rule. The rules added in cases (2c) and (3b′) serve to catch the cases that
may violate the minimality of the model due to a negative literal or a relation
over non-singleton clusters.

Abstract Program (General Case). We now describe how to remove the
restrictions (i)–(iii) on programs from above.

(i) Multiple negative literals. If rule r has |B−(r)|>1, we shift each negative
literal that either (a) shares an argument with the abstracted relation rel , or (b)
shares arguments mapped to a non-singleton cluster. Thus, instead of having
Bsh
l (r) for one literal, we consider the shifting of multiple literals at a time

Bsh
L (r)=B+(r) ∪ L,not B−(r)\L, and all combinations of (non-)shifting of the

literals in L ∈ B−(r).

(ii) Multiple relation literals. A simple approach to handle a built-in part
Γrel = rel(t1,1, t2,1), . . . , rel(t1,k, t2,k), k > 1, is to view it as literal of an 2k-ary
built-in rel ′(X1,1, X2,1, . . . , X1,k, X2,k). The abstract version of such rel ′ and the
cases I-IV are readily lifted from x1, x2 to x1, . . . , xn. E.g., for Γrel = (X1 =X2,

X3 =X4), we use a new relation rel ′(X1, X2, X3, X4). For abstract values d̂1,

. . . , d̂4 such that d̂1 = d̂2 ∧ d̂3 = d̂4 holds, we have type τI if all d̂i are singleton

7

clusters and τIII if some d̂i is non-singleton; otherwise (i.e., rel ′(d̂1, d̂2, d̂3, d̂4)
holds) type τII applies.

(iii) Cyclic dependencies. Rules which are involved in a cyclic dependency
containing at least one negation between two literals need special consideration.

Example 11 Consider the rules (1)-(2) (Ex.1) and the mapping {{1, . . . ,5}/k}.
The abstract rules for them are

{c(X)} ← not d(X), X ≥ k, τ<IV(X, k), înt(X).

{c(X)} ← d(X), X ≥ k, τ<IV(X, k), înt(X). (6)

{c(X)} ← d(X), X < k, înt(X). (7)

{d(X)} ← c(X), înt(X). (8)

in addition to the abstracted rules due to case (1). While {c(k), d(k)} is a
model of the rules, it is not minimal and hence not an answer set. However, the
original rules have “choice” answer sets with c- and d-atoms, e.g., I = {c(0),
d(1), c(2), d(3), c(4), d(5)}; they are lost by the abstraction.

To resolve this, we preprocess the program Π and mark atoms involved in a
negative cyclic dependency. Then, in step (3) of Definition 3, we modify Bsh

li
(r)

to eliminate marked literals li instead of shifting their polarity.

Example 12 (ctd) Instead of (6)–(8), the abstract rules are

{c(X)}←X ≥ k, τ<IV(X, k), înt(X). {c(X)} ← X < k, înt(X). {d(X)} ← înt(X).

Let Πm denote the program obtained from a general program Π with the gen-
eralized abstraction procedure. Then:

Theorem 2 Let m be a domain mapping of a program Π. Then for every
I ∈AS (Π), Î =m(I)∪Tm is an answer set of Πm.

Proof (sketch). For (i) and (iii), shifting the polarity of each negative literal
related with a non-singleton cluster and omitting the ones that are involved in a
negative cycle with the head of the rule ensures that the minimality is preserved.
The approach in (ii) is a simple combination of the relations.

Over-approximation. The abstraction yields in general an over-approxima-
tion of the answer sets of a program. This motivates the following notion.

Definition 5 An abstract answer set Î ∈AS (Πm) is concrete, if Î =m(I)∪Tm
for an I ∈AS (Π), else it is spurious.

A spurious abstract answer set does not have any corresponding concrete answer
set. (Non-)existing spurious answer sets allow us to infer properties of the original
program.

Proposition 3 For any program Π,

8

(i) For the identity mapping id = {{x}/x |x∈D} we have that
AS (Π id) = {I ∪Tid | I ∈AS (Π)}.

(ii) AS (Πm) = ∅ implies that AS (Π) = ∅.
(iii) AS (Π) = ∅ iff some Πm has only spurious answer sets.

Checking spuriousness has the following complexity.

Theorem 4 Deciding whether an abstract answer set Î ∈ AS (Πm) of a pro-
gram Π is spurious is NEXP-complete in general and Σp

2 -complete for bounded
predicate arities.

That is, the worst case complexity is the one of answer set existence for non-
ground programs; the two problems can be reduced to each other in polynomial
time. However, it drops to Σp

2 if the domain size |D| is polynomial in the ab-

stracted domain size |D̂|; e.g., if each abstract cluster is small (and multiple clus-
ters exist). Notably, deciding whether Πm has some spurious abstract answer
set of Π can be shown to be NEXPNP-complete in general and Σp

3 -complete
for bounded predicate arities (i.e., by a constant). The membership is shown
by a guess & check algorithm involving ordinary answer set existence, and the
hardness by encoding the evaluation of suitable second-order formulas.

5 Abstract Answer Set Computation

After constructing the abstract program Πm, we can run an ASP solver to obtain
abstract answer sets Î for the program Π with the mapping m. We then need
to check its concreteness, which can be done as follows.

Concreteness check. Let Qm
Î

be the following constraints:

⊥←{α |m(α) = α̂} ≤ 0. α̂∈ Î \ Tm (9)

⊥←α. α̂ /∈ Î \ Tm,m(α) = α̂ (10)

Here (9) ensures that a witnessing answer set I of Π contains for every non-τι,

abstract atom in Î some atom that is mapped to it. The constraint (10) ensures

that I has no atom that is mapped to an abstract atom not in Î. We then obtain:

Proposition 5 Î is spurious iff Π ∪Qm
Î

is unsatisfiable.

Refining Abstractions. After checking an abstract answer set, one can either
continue finding other abstract answer sets and check their correctness, or refine
the abstraction to reach an abstraction where less spurious answer sets occur.

Definition 6 Given a domain mapping m : D → D′, a mapping m′ : D →
D′′, where D′′ 6= D′, is a refinement of m if for all x ∈ D, m′−1(m′(x)) ⊆
m−1(m(x)).

Refinement is on dividing the abstract clusters to a finer grained domain.

Example 13 Consider m={{1}/k1, {2, 3}/k2, {4,5}/k3}. The mapping m′ =
{{1}/k1, {2}/k2,1, {3}/k2,2, {4, 5}/k3} is a refinement of m since for x∈{2, 3},
we have that m′−1(m′(x)) = {x} ⊆ {2, 3} = m−1(m(x)), while for x∈{1, 4, 5},
we have that m′−1(m′(x)) = m−1(m(x)).

9

5.1 Implementation

We have implemented the workflow above in a tool1, that uses Python and
Clingo 5 [13]. We next discuss practical implementation issues.

Concreteness check. We use a non-ground version of Qm
Î

:

⊥← in(α̂), {α : map(X1, X̂1), . . . ,map(Xk, X̂k)} ≤ 0.

⊥←α,not in(α̂),map(X1, X̂1), . . . ,map(Xk, X̂k)

where α = p(X1, ..., Xk) and α̂ = p(X̂1, ..., X̂k), and map(Xi, X̂i) expresses the
abstract mapping.

If an abstract answer set Î is spurious, Π∪Qm
Î

is unsatisfiable; this gives us no
information on the reason of spuriousness. To overcome this, we add abnormality
atoms, ab, in the rules of Π that contain arguments from the domain. This
approach is inspired from [5] and the introduced ok atoms to the rules. We use a
simplified encoding by disregarding loop formulas, thus, deal with tight programs
only. E.g., in Example 1 rule (3) is converted to

b(X,Y)← a(X), d(Y), int(X), int(Y),not ab(r3, X, Y).

and new rules for a guess over ab at a cost for its existence in the answer set are
added. This extended program, Πab, gives us the possibility to catch the rules
that need to be deactivated to keep satisfiability while checking the concreteness
of an abstract answer set Î, in case it is spurious.

Refinement search. We run a basic search among all possible refinements
of a given initial abstraction (by default, the mapping m= {D/k1}) until an
abstraction that gives a concrete answer set is reached. In that, for a refinement
m′ of m, we check the first abstract answer set, Î, of Πm′

, using Πab, i.e.,
Πab ∪ Qm

′

Î
, to see if Î is concrete. We then choose the answer set with the

smallest number of ab atoms in it; this number is the cost of the refinement
m′. Then a local, distance-based search is done, where the distance between an
abstraction and its refinement is the difference in the number of abstract clusters.
The refinement with the least cost is picked as the new abstraction until cost 0
is achieved.

Further features. In our implementation, strong negated literals ¬α are en-
coded, at a preprocessing step, as neg α and constraints of form ← α,neg α
are added to the encoding. Choice rules are treated specially by ensuring that
the abstraction is done on the body, and the choice over the head is kept. We
precompute the deterministic part of a problem and encode it as facts which are
then lifted without introducing (unnecessary) nondeterminism.

6 Applications

Applications usually contain sorts that form subdomains of the Herbrand uni-
verse. For example, blocksworld contains sorts for blocks and time while in
scheduling there are sorts of tasks and time or in coloring there are sorts for
nodes and colors. We define an abstraction over a sort as follows.
1 http://www.kr.tuwien.ac.at/research/systems/abstraction/

10

Fig. 1. Graph 3-coloring instance and abstract solution

1(blue) a1

3(red) a3 2 a2 (green)
4

5 6

a4 = {4, 5, 6}
(red)

Fig. 2. A blocksworld instance with multiple tables

b1
 t1

b3

 t2

b2

 t10

b1 b3

 tˆ2

b2m

 tˆ1

Definition 7 An abstraction is limited to a sort Di ⊆ D if all elements x∈D \
Di form singleton clusters {x}/x.

For practical purposes, sorts can use overlapping elements of the domain, pro-
vided that all occurrences of the sort are guarded by domain predicates.

We next show our abstraction method on examples.

Example 14 Consider the 3-coloring problem (encoding omitted for space rea-
sons) and the graph with 6 nodes in Figure 1. The abstraction {{1}/a1, {2}/a2,
{3}/a3, {4, 5, 6}/a4}, which distinguishes the nodes in the clique 1-2-3 and clus-

ters all others, has only concrete abstract answer sets, one of them is Î = {col(a1,
b), col(a2, g), col(a3, r), col(a4, r)} where the nodes 4,5,6 clustered to a4 are red.

The next problem shows where abstraction allows to grasp the essence of the
problem.

Example 15 Consider a generalized blocks world with multiple tables (Fig. 2).
Initially, blocks can be located anywhere; the goal is to pile them up at a picked ta-
ble, say #1. The (natural) encoding (which is omitted for space reasons) contains
the actions moveToT (B,Ta, T) and moveToB(B,B′, T) that denotes the moving
block B onto table Ta and onto block B′, respectively, at time T . An abstraction
that distinguishes table #1 and clusters all other tables, i.e., {{t1}/t̂1, {t2, . . . ,
t10}/t̂2}, leads to a concrete abstract answer set containing moveToT (b2, t̂2, 0),
moveToT (b3, t̂1, 1),moveToB(b2, b3, 2),moveToB(b1, b2, 3).

Starting with an abstraction that puts all tables in one cluster, a one-step
refinement that moves table #1 into its own cluster immediately reaches a con-
crete abstract answer set. This shows that for solving the problem, the number
of tables is irrelevant as long as the picked table is distinguished.

Abstraction over Time. In ASP, it is customary to represent time by an
additional argument in atoms. Abstraction over time is handled equivalently as
to other domains, which can be useful, e.g., in scheduling, time intervals where
‘nothing changes’ in a schedule can be abstracted as single time points. Moreover,
time is an ordered domain which must be respected by the refinements, e.g., by
splitting intervals.

11

Fig. 3. Abstract and concrete plan of Example 17

 bˆ bˆ

 moveToT(,)bˆ tˆ moveToB(, ′)bˆ tˆ

b2

b1

b3

b2

b1
 moveToT(, 1)b1

 moveToT(, 2)b2

 moveToB(, , 3)b3 b4

 moveToB(, , 4)b2 b3

 moveToB(, , 5)b1 b2
b4 b4b3

Example 16 Consider the disjunctive scheduling problem of [1]: given tasks I
with fixed duration D (task(I,D)), earliest start time S (est(I, S)), latest end
time E (let(I, E)), and disjunctive constraints (disj (I, I ′)) for tasks that cannot
overlap, assign to each task a start time such that all constraints are satisfied. We
use the provided encoding (with variables standardized apart) and precomputed
deterministic part of the program.

For an instance {task(a, 7), est(a, 1), let(a, 8), task(b, 5), est(b, 3), let(b, 10),
task(c, 2), est(c, 8), let(c, 10), disj (a, c), disj (b, c)}, we reach from {{1, . . . ,10}/k}
the abstraction {{4, . . . , 7}/k1, {9, 10}/k2} where only 2 abstract answer sets
exist, and a concrete one is easily identified; it yields a solution time(a, 1),
time(b, 3), time(c, 8).

Abstraction over Multiple Sorts. While time is important in scheduling and
planning, abstracting only over time may not suffice for planning as spurious
abstract answer sets with an incorrect order of action execution may occur.
This can be countered by additional abstraction over other sorts in the agent
domain, which allows for more abstract instances of actions that abstract from
the concrete order of application as shown in Example 17 below. It is particularly
desirable that the individual abstractions fulfill the following property.

Definition 8 For a program Π and domain D, subdomains D1, . . . , Dn ⊆ D
are independent, if no rel-atom in Π shares arguments from Di and Dj, 1 ≤
i < j ≤ n.

For independent sorts, abstractions can be composed.

Proposition 6 For domain mappings m1 and m2 over independent domains
D1 and D2, (Πm2)

m1 = (Πm1)
m2 .

This property readily extends to multiple sorts. Note that sorts in the problems
above mentioned are often independent; e.g., blocks, tables and time in Exam-
ple 15. However, if block number i can not be put on table number j if i= j,
then above property can not hold.

Abstraction over time and the agent domain allows to obtain abstract plans
representing sequences of concrete actions.

Example 17 Consider a blocksworld problem with a single table shown in Fig.3.
The encoding used in Ex. 15 is standardized apart according to the block sort and
the time sort. Suppose further rules realize a policy that first puts all blocks
on the table and piles them up in a second phase. Given the initial state

12

Table 1. Experimental results for
3-coloring (averages)

full projected

number of steps 7.65 5.25
abs domain size 8.65 6.19
faithful abs domain size 7.42 6.32

concrete answer in 1 step 0% 3%
trivial abstractions (id) 47% 6%
faithful & non-trivial abs. 27% 43%
non-faithful abstraction 26% 51%

Table 2. Experimental results for task
scheduling (averages)

t = 10 t = 20 t = 30
v1 v2 v1 v2 v1 v2

number of steps 7.25 3.7 14.6 5.2 22.6 7.4
abs domain size 8.25 8.6 15.6 13.9 23.6 20

{onT (b4,1),onT (b3,1),onB(b2, b3,1), onB(b1, b2, 1)} and time domain {1, . . . , 6},
we abstract using the block mapping {{b1, . . . , b4}/b̂} and the time mapping
{{1, 2}/t̂, {3, . . . , 6}/t̂′}. The abstract program has 8 answer sets, including

{moveToT (b̂, t̂), onT (b̂, t̂), onB(b̂, b̂, t̂), onT (b̂, t̂′), onB(b̂, b̂, t̂′),moveToB(b̂, b̂, t̂′)},
which contains two abstract actions: moveToT (b̂, t̂) and moveToB(b̂, t̂′) (Fig. 3).

7 Experiments

To assess the approach and the tool, we conducted preliminary experiments for
three of the problems presented above.

3-Coloring. We randomly generated 20 graphs on 10 nodes with edge proba-
bility 0.1, 0.2, . . . , 0.5 each; out of the 100 graphs, 74 were 3-colorable. We eval-
uated the abstraction m reached from the single-cluster abstraction, by checking
whether the corresponding abstract program has spurious abstract answer sets
(if not, m is faithful). In addition, we considered a projected notion of concrete-
ness that limits the checking to a set of relevant atoms. E.g., only the colors
of nodes 1-3 may be relevant, and an abstraction that assigns colors to them
may be sufficient. Table 1 shows the collected results. In case of projection,
the trivial abstraction is reached (in 9 steps) much less than in the full case;
moreover, more non-trivial faithful abstractions are reached, which is beneficial.
Moreover, 80% of the non-colorable graphs were revealed by non-trivial, faithful
full abstractions, and 77% under projection; hence, abstraction may be useful to
catch and explain unsolvability.

Disjunctive scheduling. For each t∈{10, 20, 30}, we generated 20 instances
with 5 tasks over time {1, . . . , t}. Table 2 shows the collected results. For the
refinement search, we considered besides the one from above (v1) another one
that looks at the domain elements in the ab atoms and guides the refinement
either to not map these elements to the same cluster or to map them into single-
ton clusters (v2). Observe that in v2 the number of steps to obtain a solution is
greatly reduced which moreover has fewer clusters (except for t= 10 as creating
singleton clusters quickly ends up with the trivial abstraction). The results show
that with larger domains, the effect of the abstraction can be seen much better,
e.g., the average abstract domain size reached for t= 30 is 66.6% (=20/30) of

13

the original domain, while for t= 10, it shrinks to 86%. Note that with more
sophisticated refinement methods, better abstractions can be reached.

Multi-table blocksworld. We considered varying numbers of blocks and ta-
bles, starting with 5 each. Faithful abstractions readily resulted by 1-step refine-
ments which separated the chosen table from the rest. However, as the abstrac-
tion is syntactic, other encodings may need more steps (e.g., bad auxiliary rules
causing choices/spuriousness).

8 Conclusion

Related Work. Apart from simplification approaches to ASP we mentioned
earlier, abstraction has been studied in logic programming [9]. However, the
focus was on the use of abstract interpretations and termination analysis, and
stable semantics was not addressed.

In planning, plan refinement [26, 21] uses abstract plans computed in an
abstract space to find a concrete plan, while abstraction-based heuristics [10, 17]
use the costs of abstract solutions to guide the plan search. Pattern databases [10]
project the state space to a set of variables (a ’pattern’), while merge & shrink
abstraction [17] starts with a suite of single projections, and then computes an
abstraction by merging them and shrinking. In [19], abstraction for numeric
planning problems by reduction to classical planning is studied.

Abstraction is further studied for agent verification in situation calculus ac-
tion theory [2] and multi-agent systems against specifications in epistemic logic
[24] and temporal logic [3]. Lomuscio and Michaliszyn [24] present an automated
predicate abstraction method in 3-valued semantics, and interpolant-based re-
finement [4].

Apparently, all these works are quite different from ours, as they address
specific applications and are based on different (monotonic) logic formalisms.

Outlook. This seminal work has room for improvement, especially in the search
for an abstraction and the refinement. Different heuristics may be employed in
the search on the refinements of an abstraction. The latter can be made more so-
phisticated by using domain-specific knowledge. Furthermore, the current qual-
ity assessment of refinements can be made more sophisticated by considering
more than one abstract answer set or making the largest cluster size a parame-
ter in determining the refinement quality. Predicate abstraction, where different
predicates are represented with a single abstract one, would be an interesting
extension of this work.

References

1. ASPCOMP-11: Third (open) answer set programmming competition: Disjunctive
scheduling (2011), www.mat.unical.it/aspcomp2011

2. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus
action theories. In: Proc. of AAAI. pp. 1048–1055 (2017)

14

3. Belardinelli, F., Lomuscio, A.: Abstraction-based verification of infinite-state reac-
tive modules. In: Proc. of ECAI. pp. 725–733 (2016)

4. Belardinelli, F., Lomuscio, A., Michaliszyn, J.: Agent-based refinement for predi-
cate abstraction of multi-agent systems. In: ECAI. pp. 286–294 (2016)

5. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
asp programs by means of asp. In: Proc. LPNMR. pp. 31–43. Springer (2007)

6. Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial
evaluation. J. Log. Program. 32(3), 207–228 (1997)

7. Brewka, G., Eiter, T., Truszczyski, M.: Answer set programming at a glance. Com-
munications of the ACM 54(12), 92–103 (2011)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
TOPLAS pp. 1512–1542 (1994)

9. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
The Journal of Logic Programming 13(2), 103 – 179 (1992)

10. Edelkamp, S.: Planning with pattern databases. In: Sixth European Conf. on Plan-
ning (2001)

11. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proc. JELIA. pp. 200–212. Springer (2004)

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Proc. ICLP. pp. 190–205 (2008)

13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam Answer Set Solving Collection. AI Comm. 24(2), 107–
124 (2011)

14. Geißer, F., Keller, T., Mattmüller, R.: Abstractions for planning with state-
dependent action costs. In: ICAPS. pp. 140–148 (2016)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. pp. 1070–1080 (1988)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. AIJ 57(2-3), 323–389 (1992)
17. Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge-and-shrink abstraction:

A method for generating lower bounds in factored state spaces. JACM 61(3), 16
(2014)

18. Hoffmann, J., Sabharwal, A., Domshlak, C.: Friends or Foes? an AI planning per-
spective on abstraction and search. In: ICAPS. pp. 294–303 (2006)

19. Illanes, L., McIlraith, S.A.: Numeric planning via search space abstraction. In:
Proc. KnowProS@IJCAI (2016)

20. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality
and disjunctions in stable model semantics. ACM TOCL 7(1), 1–37 (Jan 2006)

21. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial in-
telligence 68(2), 243–302 (1994)

22. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of
robot swarms. In: Proc. of AAAI (2015)

23. Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Proc.
LPNMR. pp. 10–22 (2017)

24. Lomuscio, A., Michaliszyn, J.: Verification of multi-agent systems via predicate
abstraction against ATLK specifications. In: Proc. of AAMAS. pp. 662–670 (2016)

25. Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen,
B., Lifschitz, V. (eds.) Logic Programming. pp. 210–224 (2004)

26. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artificial intelligence
5(2), 115–135 (1974)

27. Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs. In:
Proc. KR. pp. 42–51 (2018)

15

