
ASP and Projected Counting Meets Bounded
Treewidth?

Johannes K. Fichte1 and Markus Hecher2

1 TU Dresden, Fakultät Informatik, Germany, johannes.fichte@tu-dresden.de
2 TU Wien, Logic and Computation, Austria, hecher@dbai.tuwien.ac.at

Abstract. In this paper, we introduce a novel algorithm to solve the
problem projected answer set counting (#PAs) for head-cycle-free pro-
grams. #PAs interests in outputting the number of distinct projected
answer sets, which are answer sets that have been restricted to a given set
of projected atoms. Our algorithms exploit small treewidth of the primal
graph of the input instance by dynamic programming (DP). Therefore, we
first establish a new algorithm to compute answer sets of head-cycle-free
programs and then apply very recent results for projected counting. Our
algorithms run in time double exponential of the treewidth and polyno-
mial in the input size of the instance. Finally, we take the exponential time
hypothesis (ETH) into account and establish lower bounds. In particular,
one cannot expect (under ETH) to solve #PAs in polynomial time in
the instance size while being single exponential in the treewidth.

Introduction

Answer Set Programming (ASP) is an important framework for declarative
modeling and problem solving for hard combinatorial problems in artificial
intelligence (AI) [7, 15]. In ASP, one typically solves a given problem by encoding
the problem into a logic program whose solutions (answer sets) correspond to the
solutions of the problem. Then, by computing the answer sets using a solver one
obtains the solution to the original problem. If the problem involves a counting
question, the corresponding answer set problem is #As, which recently received
increasing attention and asks to output the number of answer sets of a given
program. A natural abstraction of #As is to consider projected counting where
we ask to count the answer sets of a program when the answer sets are restricted
to a given set of projected atoms (#PAs) [1].

For disjunctive programs, the computational complexity of the plain count-
ing problem is #·coNP-complete [13], which is even harder than counting the
models of a Boolean formula (#SAT). Note that #SAT is already a considerably
challenging task in practice. The problem #PAs for disjunctive programs is
even harder, more precisely, complete for #·Σ2P [9]. A well-established way in
theory to solve such computationally hard problems is to exploit structural pa-
rameters of the instance such as bounded treewidth [8]. Intuitively, for treewidth

? This paper completes an extended abstract [9].

2 Fichte and Hecher

we consider a graph representation of a program and then assess how far this
graph representation is from being a tree. The underlying idea is that problems
on trees often allow for a monotonicity in the evaluation, which makes solving
computationally easier. In ASP, we can employ graph representations such as
the primal graph.

For disjunctive programs and the problem #PAs, a very recent abstract
stated a triple exponential runtime in the treewidth and showed that under
reasonable assumptions similar lower bounds hold [9]. However, when modeling
in ASP one rarely requires the full power of disjunctive programs [15]. Hence,
additional algorithms that work fast on restricted classes of programs can be a
big step towards practical solving. A well-established fragment of programs is the
class of head-cycle-free (hcf) programs [2], which intuitively requires the absence
of cycles in a certain graph representation of the program. Hcf programs are
widely exploited in practical ASP solving. Theoretically, finding an answer set for
a given hcf program is of lower complexity than for disjunctive programs. Similar
for projected counting, we can show that the problem #PAs is #·coNP when
the input is restricted to hcf programs. If there are no projected atoms, then
#PAs(hcf) is NP-complete. If all atoms are projected atoms, then #PAs(hcf)
is #P-complete. Then, a challenging question for #PAs(hcf) is whether we can
also significantly improve the runtime when exploiting treewidth. Therefore, we
establish the following contributions:

– We present the classical complexity for #PAs(hcf).
– We establish a novel algorithm that finds an answer set of an hcf program in

time single exponential in the treewidth.
– By exploiting treewidth, we introduce a formal framework that allows for

counting projected answer sets. Therefore, we lift recent results from projected
model counting in the domain of Boolean formulas to counting projected
answer sets. We establish an algorithm that is double exponential in the
treewidth if the input is restricted to hcf programs.

– Using the exponential time hypothesis (ETH) for lower bounds, we establish
that #PAs(hcf) cannot be solved in time single exponential in the treewidth.

Related Work. Gebser et al. [16] considered projected enumeration for ASP.
Aziz [1] introduced techniques to modify modern ASP solvers in order to count
projected answer sets. Jakl et al. [20] presented DP algorithms that solve counting
in time double exponential in the treewidth. Pichler et al. [28] investigated the
complexity of extended programs, which contain for example weights, and other
constructs and also presented DP algorithms for it. We employ ideas from their
algorithms to solve hcf programs. Fichte et al. [13] presented algorithms to solve
counting for the full standard syntax of modern solvers. Recently DP algorithms
for projected #SAT and lower bounds were established [14].

Preliminaries

Basics and Combinatorics. For a setX, let 2X be the power set of X consisting
of all subsets Y with ∅ ⊆ Y ⊆ X. Let s be a sequence of elements of X. When

ASP and Projected Counting Meets Bounded Treewidth 3

we address the i-th element of the sequence s for a given positive integer i, we
simply write s(i). The sequence s induces an ordering <s on the elements in X by
defining the relation <s := {(s(i), s(j)) | 1 ≤ i < j ≤ |s|}. Given some integer n
and a family of finite subsets X1, X2, . . ., Xn. Then, the generalized combinatorial
inclusion-exclusion principle [18] states that the number of elements in the union

over all subsets is
∣∣∣⋃nj=1Xj

∣∣∣ =
∑
I⊆{1,...,n},I 6=∅(−1)|I|−1

∣∣⋂
i∈I Xi

∣∣.
Computational Complexity. We assume familiarity with standard notions in
computational complexity [27] and use counting complexity classes as defined by
Durand et al. [10]. For parameterized complexity, we refer to standard texts [8].
Let Σ and Σ′ be some finite alphabets. We call I ∈ Σ∗ an instance and ‖I‖
denotes the size of I. Let L ⊆ Σ∗×N and L′ ⊆ Σ′∗×N be parameterized problems.
An fpt-reduction r from L to L′ is a many-to-one reduction from Σ∗×N to Σ′∗×N
such that for all I ∈ Σ∗ we have (I, k) ∈ L if and only if r(I, k) = (I ′, k′) ∈ L′
with k′ ≤ g(k) for a fixed computable function g : N→ N, and r is computable
in time O(f(k)‖I‖c) for a computable function f and constant c.

Answer Set Programming (ASP). We follow standard definitions of proposi-
tional disjunctive ASP. For comprehensive foundations, we refer to introductory
literature [21]. Let `, m, n be non-negative integers such that ` ≤ m ≤ n,
a1, . . ., an be distinct propositional atoms. Moreover, we refer by literal to
an atom or the negation thereof. A program Π is a set of rules of the form
a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an. For a rule r, we let Hr :=
{a1, . . . , a`}, B+

r := {a`+1, . . . , am}, and B−r := {am+1, . . . , an}. We denote the
sets of atoms occurring in a rule r and in a program Π by at(r) := Hr∪B+

r ∪B−r
and at(Π) :=

⋃
r∈Π at(r). The program Π is normal, if |Hr| ≤ 1 for every r ∈ Π.

The positive dependency digraph DΠ of Π is the directed graph defined on the
set of atoms from

⋃
r∈Π Hr ∪B+

r , where for every rule r ∈ Π two atoms a ∈ B+
r

and b ∈ Hr are joined by an edge (a, b). A head-cycle of DΠ is an {a, b}-cycle3 for
two distinct atoms a, b ∈ Hr for some rule r ∈ Π. Program Π is head-cycle-free
if DΠ contains no head-cycle [2].

An interpretation I is a set of atoms. I satisfies a rule r if (Hr ∪ B−r) ∩ I 6= ∅
or B+

r \ I 6= ∅. I is a model of Π if it satisfies all rules of Π, in symbols I |= Π.
The Gelfond-Lifschitz (GL) reduct of Π under I is the program ΠI obtained
from Π by first removing all rules r with B−r ∩ I 6= ∅ and then removing all ¬z
where z ∈ B−r from the remaining rules r [17]. I is an answer set of a program Π
if I is a minimal model of ΠI . Deciding whether a disjunctive program has an
answer set (consistency problem) is ΣP

2 -complete [12]. If the input is restricted to
normal programs, the complexity drops to NP-complete [3, 26]. A head-cycle-free
(hcf) program Π can be translated into a normal program in polynomial time [2].
The following well-known characterization of answer sets is often invoked when
considering normal programs [25]. Given a model I of a normal program Π and
an ordering σ of atoms over I. An atom a ∈ I is proven if there is a rule r ∈ Π

3 Let G = (V,E) be a digraph and W ⊆ V . Then, a cycle in G is a W -cycle if it
contains all vertices from W .

4 Fichte and Hecher

with a ∈ Hr where (i) B+
r ⊆ I, (ii) I ∩ B−r = ∅, (iii) I ∩ (Hr \ {a}) = ∅, and

(iv) b <σ a for every b ∈ B+
r .

Then, I is an answer set of Π if (i) I is a model of Π, and (ii) every atom a ∈ I
is proven. This characterization vacuously extends to hcf programs by applying
the results of Ben-Eliyahu et al. [2].

Counting Projected Answer Sets. An instance is a pair (Π,P), where Π is
a program and P ⊆ at(Π) is the set of projection atoms. The projected answer
set count of Π with respect to P is the number of subsets I ⊆ P such that I ∪ J
is an answer set of Π for some set J ⊆ at(Π) \P . The counting projected answer
set problem (#PAs) asks to output the projected answer set count of Π, i.e.,
|{I ∩ P | I ∈ S}| where S is the set of all answer sets of Π.

Example 1. Consider Π := {
r1︷ ︸︸ ︷

a ∨ b← ;

r2︷ ︸︸ ︷
c ∨ e← ;

r3︷ ︸︸ ︷
d ∨ e← b;

r4︷ ︸︸ ︷
b← e,¬d;

r5︷ ︸︸ ︷
d← ¬b}.

It is easy to see that Π is head-cycle-free. The set A = {b, c, d} is an answer
set of Π. Consider the ordering σ = 〈b, c, d〉, from which we can prove atom b
by rule r1, atom c by rule r2, and atom d by rule r3. Further answer sets are
B = {a, c, d}, C = {b, e}, and D = {a, d, e}.

Consider the set P := {d, e} of projection atoms. When we project the answer
sets to the set P , we only have the three answer sets {d}, {e}, and {d, e}. Hence,
while Π has 4 answer sets, the projected answer set count of (Π,P) is 3.

Proposition 1 (?4). The problem #PAs is #·NP-complete when the input is
restricted to head-cycle-free programs.

Tree Decompositions (TDs). For basic terminology on graphs and digraphs,
we refer to standard texts [6]. For a tree T = (N,A, n) with root n and a
node t ∈ N , we let children(t, T) be the sequence of all nodes t′ in arbitrarily but
fixed order, which have an edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree
decomposition (TD) of graph G is a pair T = (T, χ), where T = (N,A, n) is a
rooted tree, n ∈ N the root, and χ a mapping that assigns to each node t ∈ N a set
χ(t) ⊆ V , called a bag, such that the following conditions hold: (i) V =

⋃
t∈N χ(t)

and E ⊆ ⋃t∈N{{u, v} | u, v ∈ χ(t)}; and (ii) for each r, s, t, such that s lies on the
path from r to t, we have χ(r)∩χ(t) ⊆ χ(s). Then, width(T) := maxt∈N |χ(t)|−1.
The treewidth tw(G) of G is the minimum width(T) over all tree decompositions
T of G. For arbitrary but fixed w ≥ 1, it is feasible in linear time to decide if a
graph has treewidth at most w and, if so, to compute a TD of width w [4]. In
order to simplify case distinctions in the algorithms, we always use so-called nice
TDs, which can be computed in linear time without increasing the width [22]
and are defined as follows. For a node t ∈ N , we say that type(t) is leaf if
children(t, T) = 〈〉; join if children(t, T) = 〈t′, t′′〉 where χ(t) = χ(t′) = χ(t′′) 6= ∅;
int (“introduce”) if children(t, T) = 〈t′〉, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem
(“remove”) if children(t, T) = 〈t′〉, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for
every node t ∈ N , type(t) ∈ {leaf, join, int, rem} and bags of leaf nodes and the
root are empty, then the TD is called nice.

4 Proofs of statements marked with “?” are omitted for space reasons.

ASP and Projected Counting Meets Bounded Treewidth 5

e

a

d

c b

{c, e}t1 {b, d, e}
t2

{a, b, e}t3

Fig. 1: Graph G1 and a tree decomposition of G1.

Example 2. Figure 1 illustrates a graph G1 and a tree decomposition of G1 of
width 2. By a basic property5 of TDs [22], the treewidth of G1 is 2.

Dynamic Programming on TDs

In order to use TDs for ASP solving, we need a dedicated graph representation
of ASP programs [20]. The primal graph GΠ of program Π has the atoms of Π
as vertices and an edge {a, b} if there exists a rule r ∈ Π and a, b ∈ at(r).

Example 3. Recall program Π from Example 1 and observe that graph G1 in
Figure 1 is the primal graph GΠ of Π.

Let T = (T, χ) be a TD of primal graph GΠ of a program Π. Further, let T =
(N, ·, n) and t ∈ N . The bag-program is defined as Πt := {r | r ∈ Π, at(r) ⊆ χ(t)},
the program below t as Π≤t := {r | r ∈ Πt′ , t

′ ∈ post-order(T, t)}, and the program
strictly below t as Π<t := Π≤t \Πt, where post-order(T, n) provides a sequence
of nodes for tree T rooted at n in post-order. It holds that Π≤n = Π<n = Π [13].
Analogously, we define the atoms below t by at≤t :=

⋃
t′∈post-order(T,t) χ(t′), and

the atoms strictly below t by at<t := at≤t \ χ(t).

Algorithms that decide consistency or solve #As [13, 20] proceed by dynamic
programming along the tree decomposition (in post-order) where at each node
of the tree information is gathered [5] in a table by a local algorithm A. More
generally, a table is a set of rows, where a row u is a sequence of fixed length.
Similar as for sequences when addressing the i-th element, for a set U of rows
(table) we let U(i) := {u(i) | u ∈ U}. The actual length, content, and meaning of
the rows depend on the algorithm A. Since we later traverse the tree decomposition
repeatedly running different algorithms, we explicitly state A-row if rows of this
type are syntactically used for algorithm A and similar A-table for tables. In
order to access tables computed at certain nodes after a traversal as well as to
provide better readability, we attribute tree decompositions with an additional
mapping to store tables. Formally, a tabled tree decomposition (TTD) of graph G
is a pair T = (T, χ, τ), where (T, χ) is a TD of G and τ maps nodes t of T to
tables. If not specified otherwise, we assume that τ(t) = {} for every node t of T .
When a TTD has been computed using algorithm A after traversing the entire
decomposition, we call the decomposition the A-TTD of the given input instance.
Then, DP for ASP performs the following steps for a given program Π:

1. Compute a tree decomposition of primal graph GΠ of Π.

5 The vertices e,b,d are all neighbors to each other in G1.

6 Fichte and Hecher

Listing 1: Algorithm DPA((Π,P), T): Dynamic programming on TTD T , c.f., [13].

In: Problem instance (Π,P), TTD T = (T, χ, ι) of GΠ such that n is the root
of T and children(t, T) = 〈t1, . . . , t`〉.

Out: A-TTD (T, χ, o) with A-table mapping o
1 o← empty mapping
2 for iterate t in post-order(T,n) do
3 o(t)← A(t, χ(t), ι(t), (Πt, P), 〈o(t1), . . . , o(t`)〉)
4 return (T, χ, o)

2. Run algorithm DPA (see Listing 1). It takes a tabled TD T = (T, χ, ι) with
T = (N, ·, n) and traverses T in post-order. At each node t ∈ N it computes a
new A-table o(t) by executing the algorithm A. The algorithm A has a “local
view” on the computation and can access only t, the atoms in the bag χ(t),
the bag-program Πt, and child A-table o(t′) for any child t′ of t.6

3. Print the solution by interpreting table o(n) for root n of the resulting
A-tabled tree decomposition (T, χ, o).

Then, the actual computation of algorithm A is a somewhat technical case
distinction of the types type(t) we can have when considering node t. Algorithms
for counting answer sets of disjunctive programs [20] and its extensions have
already been established. Implementations of these algorithms can be useful also
for solving [13], but the running time is clearly double exponential time in the
treewidth in the worst case. We, however, establish an algorithm (PHC) that
is restricted to hcf programs. The runtime of our algorithm is factorial in the
treewidth and therefore faster than previous algorithms. Our constructions are
inspired by ideas used in previous dynamic programming algorithms [28]. In
the following, we first present the (local) algorithm for the problem of deciding
whether an hcf program has an answer set (consistency). In the end, this algorithm
outputs a new tabled tree decomposition, which we later reuse to solve our actual
counting problem. Note that the tree decomposition itself remains the same, but
for readability, we keep the computed tables and nodes aligned.

Consistency of Hcf Programs

We can use algorithm DPPHC to decide the consistency problem for hcf programs
and simply specify our new local algorithm (PHC) that “transforms” tables from
one node to another. As graph representation we use the primal graph. The
idea is to implicitly apply along the tree decomposition the characterization
of answer sets by Lin et al. [25] extended to hcf programs [2]. To this end, we
store in table o(t) at each node t rows of the form 〈I,P, σ〉. The first position
consists of an interpretation I restricted to the bag χ(t). For a sequence u,
we write I(u) := u(1) to address the interpretation part. The second position

6 Note that in Listing 1, A takes in addition as input the set P and table ιt. We will
later reuse this listing. Then, P represents the set of projected atoms and ιt is a table
at t from an earlier traversal.

ASP and Projected Counting Meets Bounded Treewidth 7

Listing 2: Local algorithm PHC(t, χt, ·, (Πt, ·), 〈τ1, . . .〉).
In: Node t, bag χt, bag-program Πt, 〈τ1, . . .〉 is the sequence of PHC-tables

of children of t. Out: PHC-table τt.
1 if type(t) = leaf then τt ← {〈∅, ∅, 〈〉〉}
2 else if type(t) = int and a∈χt is the introduced atom then
3 τt ← {〈J,P ∪ proven(J, σ′, Πt), σ

′〉 | 〈I,P, σ〉 ∈ τ1, J ∈ {I, I+a }, J |= Πt,
σ′ ∈ ords(σ, {a} ∩ J)}

4 else if type(t) = rem and a 6∈ χt is the removed atom then
5 τt ← {〈I−a ,P−a , σ∼a 〉 | 〈I,P, σ〉 ∈ τ1, a ∈ P ∪ ({a} \ I)}
6 else if type(t) = join then
7 τt ← {〈I,P1 ∪ P2, σ〉 | 〈I,P1, σ〉 ∈ τ1, 〈I,P2, σ〉 ∈ τ2}
8 return τt

σ∼σi :=〈σ1, . . . , σi−1, σi+1, . . . , σk〉 with σ = 〈σ1, . . . , σk〉, S+
e :=S∪{e}, and S−e :=S\{e}.

consists of a set P ⊆ I that represents atoms in I for which we know that they
have already been proven. The third position σ is a sequence of the atoms I
such that there is a super-sequence σ′ of σ, which induces an ordering <σ′ . Our
local algorithm PHC stores interpretation parts always restricted to bag χ(t) and
ensures that an interpretation can be extended to a model of program Π≤t. More
precisely, it guarantees that interpretation I can be extended to a model I ′ ⊇ I
of Π≤t and that the atoms in I ′ \ I (and the atoms in P ⊆ I) have already been
proven, using some induced ordering <σ′ where σ is a sub-sequence of σ′. In the
end, an interpretation I(u) of a row u of the table o(n) at the root n proves
that there is a superset I ′ ⊇ I(u) that is an answer set of Π = Π≤n.

Listing 2 presents the algorithm PHC. Intuitively, whenever an atom a is
introduced (int), we decide whether we include a in the interpretation, determine
bag atoms that can be proven in consequence of this decision, and update the
sequence σ accordingly. To this end, we define for a given interpretation I and
a sequence σ the set proven(I, σ,Πt) :=

⋃
r∈Πt,a∈Hr

{a | B+
r ⊆ I, I ∩ B−r =

∅, I ∩ (Hr \ {a}) = ∅, B+
r <σ a} where B+

r <σ a holds if b <σ a is true for every
b ∈ B+

r . Moreover, given a sequence σ = 〈σ1, . . . , σk〉 and a set A of atoms, we
compute the potential sequences involving A. Therefore, we let ords(σ,A) :=
{σ | A = ∅} ∪⋃a∈A{〈a, σ1, . . . , σk〉, . . . , 〈σ1, . . . , σk, a〉}. When removing (rem)
an atom a, we only keep those rows where a has been proven (contained in P)
and then restrict remaining rows to the bag (not containing a). In case the node
is of type join, we combine two rows in two different child tables, intuitively,
we are enforced to agree on the interpretations I and sequences σ. However,
concerning individual proofs P, it suffices that an atom is proven in one row.

Example 4. Recall program Π from Example 1. Figure 2 depicts a TD T = (T, χ)
of the primal graph G1 of Π. Further, the figure illustrates a snippet of tables of
the TTD (T, χ, τ), which we obtain when running DPPHC on program Π and TD T
according to Listing 2. In the following, we briefly discuss some selected rows of
those tables. Note that for simplicity and space reasons, we write τj instead of
τ(tj) and identify rows by their node and identifier i in the figure. For example,
the row u13.3 = 〈I13.3,P13.3, σ13.3〉 ∈ τ13 refers to the third row of table τ13 for

8 Fichte and Hecher

∅ t1

{a}t2

{a, b} t3

{b} t4

∅t5

{c}t6

{c, e}t7

{e}t8

{d, e}t9

{b, d, e}t10

{b, d}
t11

{b}t12

{b}t13

∅
t14

T :

〈I3.i, P3.i, σ3.i〉
〈{a}, {a}, 〈a〉〉
〈{b}, {b}, 〈b〉〉
〈{a, b},∅, 〈a, b〉〉
〈{a, b},∅, 〈b, a〉〉

τ3
i

1
2
3
4

〈I4.i,P4.i,σ4.i〉
〈∅, ∅, 〈〉〉
〈{b},{b}, 〈b〉〉

τ4

i

1
2

i

1
2
3
4
5

〈I9.i, P9.i, σ9.i〉
〈∅, ∅, 〈〉〉
〈{d}, ∅, 〈d〉〉
〈{e}, {e}, 〈e〉〉
〈{d, e},{e}, 〈d, e〉〉
〈{d, e},{e}, 〈e, d〉〉

τ9

〈I13.i,P13.i,σ13.i〉
〈∅, ∅, 〈〉〉
〈{b}, {b}, 〈b〉〉

τ13

i

1
2

〈I1.i,P1.i,σ1.i〉
〈∅, ∅, 〈〉〉

τ1
i

1

〈I12.i,P12.i,σ12.i〉
〈∅, ∅, 〈〉〉
〈{b}, ∅, 〈b〉〉
〈{b}, {b}, 〈b〉〉

τ12

〈I11.i, P11.i, σ11.i〉
〈{d}, {d}, 〈d〉〉
〈{b}, ∅, 〈b〉〉
〈{b}, {b}, 〈b〉〉
〈{b, d},∅, 〈d, b〉〉
〈{b, d},∅, 〈b, d〉〉
〈{b, d},{d}, 〈b, d〉〉

τ11

i

1
2
3
4
5
6

i

1
2
3

〈I10.i, P10.i, σ10.i〉
〈{d}, {d}, 〈d〉〉
〈{b, d}, ∅, 〈d, b〉〉
〈{b, d}, {d}, 〈b, d〉〉
〈{b, e}, {e}, 〈b, e〉〉
〈{b, e}, {b, e}, 〈e, b〉〉
〈{d, e}, {d, e}, 〈d, e〉〉
〈{d, e}, {d, e}, 〈e, d〉〉
〈{b, d, e},{e}, 〈b, d, e〉〉
〈{b, d, e},{e}, 〈b, e, d〉〉
〈{b, d, e},{e}, 〈d, b, e〉〉
〈{b, d, e},{e}, 〈e, b, d〉〉
〈{b, d, e},{e}, 〈d, e, b〉〉
〈{b, d, e},{e}, 〈e, d, b〉〉

τ10
i

1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 2: Selected tables of τ obtained by DPPHC on TD T .

node t13. Node t1 is of type leaf. Table τ1 has only one row, which consists of
the empty interpretation, empty set of proven atoms, and the empty sequence
(Line 1). Node t2 is of type int and introduces atom a. Executing Line 3 results in
τ2 = {〈∅, ∅, 〈〉〉, 〈{a}, ∅, 〈a〉〉}. Node t3 is of type int and introduces b. Then, bag-
program at node t3 is Πt3 = {a∨ b←}. By construction (Line 3) we ensure that
interpretation I3.i is a model of Πt3 for every row 〈I3.i,P3.i, σ3.i〉 in τ3. Node t4
is of type rem. Here, we restrict the rows such that they contain only atoms
occurring in bag χ(t4) = {b}. To this end, Line 5 takes only rows u3.i of table τ3
where atoms in I3.i are also proven, i.e., contained in P3.i. In particular, every
row in table τ4 originates from at least one row in τ3 that either proves a ∈ P3.i or
where a 6∈ I3.i. Basic conditions of a TD ensure that once an atom is removed, it
will not occur in any bag at an ancestor node. Hence, we also encountered all rules
where atom a occurs. Nodes t5, t6, t7, and t8 are symmetric to nodes t1, t2, t3,
and t4. Nodes t9 and t10 again introduce atoms. Observe that P10.4 = {e} since
σ10.4 does not allow to prove b using atom e. However, P10.5 = {b, e} as the
sequence σ10.5 allows to prove b. In particular, in row u10.5 atom e is used to
derive b. As a result, atom b can be proven, whereas ordering σ10.4 = 〈b, e〉 does
not serve in proving b. We proceed similar for nodes t11 and t12. At node t13
we join tables τ4 and τ12 according to Line 7. Finally, τ14 6= ∅. Hence, Π has an
answer set, namely, {b, e}, which we obtain by combining interpretation parts I
of the yellow marked rows of Figure 2.

Next, we provide a notion to reconstruct answer sets from a computed
TTD, which allows for computing for a given row its predecessor rows in the

ASP and Projected Counting Meets Bounded Treewidth 9

corresponding child tables, c.f., [14]. Let Π be a program, T = (T, χ, τ) be
an A-TTD of GΠ , and t be a node of T where children(t, T) = 〈t1, . . . , t`〉. Given
a sequence s = 〈s1, . . . , s`〉, we let 〈{s}〉 :=〈{s1}, . . . , {s`}〉. For a given A-row u,
we define the originating A-rows of u in node t by A-origins(t,u) :={s | s ∈
τ(t1)× · · · × τ(t`),u ∈ A(t, χ(t), ·, (Πt, ·), 〈{s}〉)}. We extend this to an A-table ρ
by A-origins(t, ρ) :=

⋃
u∈ρ A-origins(t,u).

Example 5. Consider program Π and PHC-tabled tree decomposition (T, χ, τ)
from Example 4. We focus on u1.1 = 〈∅, ∅, 〈〉〉 of table τ1 of leaf t1. The row u1.1

has no preceding row, since type(t1) = leaf. Hence, we have PHC-origins(t1,u1.1) =
{〈〉}. The origins of row u11.1 of table τ11 are given by PHC-origins(t11,u11.1),
which correspond to the preceding rows in table τ10 that lead to row u11.1 of
table τ11 when running algorithm PHC, i.e., PHC-origins(t11,u11.1) = {〈u10.1〉,
〈u10.6〉, 〈u10.7〉}. Origins of row u12.2 are given by PHC-origins(t12,u12.2) =
{〈u11.2〉, 〈u11.6〉}. Note that u11.4 and u11.5 are not among those origins, since
d is not proven. Observe that PHC-origins(tj ,u) = ∅ for any row u 6∈ τj . For
node t13 of type join and row u13.2, we obtain PHC-origins(t13,u13.2) = {〈u4.2,
u12.2〉, 〈u4.2, u12.3〉}.

Theorem 1 (?). The algorithm DPPHC is correct. In other words, given an hcf
program Π and a TTD T = (T, χ, ·) of GΠ where T = (N, ·, n) with root n.
Then, algorithm DPPHC((Π, ·), T) returns the PHC-TTD (T, χ, τ) such that Π
has an answer set if and only if 〈∅, ∅, 〈〉〉 ∈ τ(n). Further, we can construct all
the answer sets of Π from transitively following the origins of τ(n).

Proof (Idea). For soundness, we state an invariant and establish that this invariant
holds for every node t ∈ N . For each row u = 〈I,P, σ〉 ∈ τ(t), we have I ⊆
χ(t),P ⊆ I, and σ is a sequence over atoms in I. Intuitively, we ensure that
I |= Π≤t and that exactly the atoms in at<t and P can be proven using a
super-sequence σ′ of σ. By construction, we guarantee to decide consistency
if row 〈∅, ∅, 〈〉〉 ∈ τ(n). Further, we can reconstruct answer sets, by following
PHC-origins of this row to the leaves. For completeness, we show that we obtain
all rows required to output all answer sets of Π.

Theorem 2. Given an hcf program Π and a TD T = (T, χ) of GΠ of width k
with g nodes. Algorithm DPPHC runs in time O(3k · k! · g).

Proof (Proof (Sketch).). Let d = k + 1 be maximum bag size of the TD T . The
table τ(t) has at most 3d · d! rows, since for a row 〈I,P, σ〉 we have d! many
sequences σ, and by construction of algorithm PHC, an atom can be either in I,
both in I and P , or neither in I nor in P . In total, with the help of efficient data
structures, e.g., for nodes t with type(t) = join, one can establish a runtime bound
of O(3d · d!). Then, we apply this to every node t of the TD, which resulting in
running time O(3d · d! · g) ⊆ O(3k · k! · g).

7 ν contains rows obtained by recursively following origins of τ(n).
8 Later we use (among others) PCNTPHC where A = PHC.

10 Fichte and Hecher

A natural question is whether we can significantly improve this algorithm
for fixed k. To this end, we take the exponential time hypothesis (ETH) into
account, which states that there is some real s > 0 such that we cannot decide
satisfiability of a given 3-CNF formula F in time 2s·|F | · ‖F‖O(1).

Proposition 2 (?). Unless ETH fails, we cannot decide consistency of a given
hcf program Π in time 2o(k) ·‖Π‖o(k) where k is the treewidth of primal graph GΠ .

Dynamic Programming for #PAs(hcf)

In this section, we present our dynamic programming algorithm8 PCNTA, which
allows for solving the projected answer set counting problem #PAs(hcf). PCNTA
is based on an approach of projected counting for Boolean formulas [14] where
TDs are traversed multiple times. We show that ideas from that approach can
be fruitfully extended to answer set programming. First, we construct the primal
graph GΠ of the input program Π and compute a TD of Π. Then, we traverse the
TD a first time by running DPA (Step 2a), which outputs a TTD Tcons = (T, χ, τ).
Afterwards, we traverse Tcons in pre-order and remove all rows from the tables
that cannot be extended to an answer set (“Purge non-solutions”). In other
words, we keep only rows u of table τ(t) at node t, if u is involved in those
rows that are used to construct an answer set of Π, and let the resulting TTD
be Tpurged = (T, χ, ν)7. We refer to ν as purged table mapping. In Step 2b (DPPROJ),
we traverse Tpurged to count interpretations with respect to the projection atoms
and obtain Tproj = (T, χ, π). From the table π(n) at the root n of T , we can then
read the projected answer set count of the input instance. In the following, we
only describe the local algorithm (PROJ), since the traversal in DPPROJ is the
same as before. For PROJ, a row at a node t is a pair 〈ρ, c〉 ∈ π(t), where ρ ⊆ ν(t)
is an A-table and c is a non-negative integer. In fact, integer c stores the number
of intersecting (overlapping) answer sets (ipasc) restricted to P ∩ at≤t, to which
all the rows in ρ can be extended. However, we ultimately aim for the projected
answer set count (pasc), whose computation requires additional definitions, which
we hence widen from recent work [14].

In the remainder, we assume (Π,P) to be an instance of #PAs, (T, χ, τ) to
be an A-TTD of GΠ and the mappings τ , ν, and π as used above. Further, let t be
a node of T with children(t, T) = 〈t1, . . . , t`〉 and let ρ ⊆ ν(t). The relation =P ⊆
ρ×ρ considers equivalent rows with respect to the projection of its interpretations
by =P :={(u,v) | u,v ∈ ρ, I(u) ∩ P = I(v) ∩ P}. Let bucketsP (ρ) be the set of
equivalence classes induced by =P on ρ, i.e., bucketsP (ρ) := (ρ/=P) = {[u]P |
u ∈ ρ}, where [u]P = {v | v =P u,v ∈ ρ} [29]. Further, sub-bucketsP (ρ) :={S |
∅ (S ⊆ B,B ∈ bucketsP (ρ)}.
Example 6. Consider program Π, set P of projection atoms, TTD (T, χ, τ), and
table τ10 from Example 6 and Figure 2. Note that during purging rows u10.2

and u10.8, . . . ,u10.13 are removed (highlighted gray), since they are not in-
volved in any answer set, resulting in table ν10. Then, u10.4 =P u10.5 and
u10.6 =P u10.7. The set ν10/=P of equivalence classes of ν10 is bucketsP (ν10) =
{{u10.1}, {u10.3}, {u10.4,u10.5}, {u10.6,u10.7}}.

ASP and Projected Counting Meets Bounded Treewidth 11

∅ t1

{a}t2

{a, b}t3

{b} t4

∅t5

{c}t6

{c, e}t7

{e}t8

{d, e} t9

{b, d, e}t10

{b, d}t11

{b}t12

{b} t13

∅ t14T :

〈ν3.i, c3.i〉
〈{〈{a}, {a}, 〈a〉〉},1〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈{a}, {a}, 〈a〉〉, 1〉〈{b}, {b}, 〈b〉〉}, π3

i
1
2

3

〈ν4.i, c4.i〉
〈{〈∅, ∅, 〈〉〉}, 1〉
〈{〈{b}, {b}, 〈b〉〉},1〉
〈{〈∅, ∅, 〈〉〉, 1〉〈{b}, {b}, 〈b〉〉},

π4

i
1
2
3
4

5

〈ν9.i, c9.i〉
〈{〈{d}, ∅, 〈〉〉}, 1〉
〈{〈{e}, {e}, 〈e〉〉}, 1〉
〈{〈{d, e}, {e}, 〈d, e〉〉},1〉
〈{〈{d, e}, {e}, 〈e, d〉〉},1〉
〈{〈{d, e}, {e}, 〈d, e〉〉, 1〉〈{d, e}, {e}, 〈e, d〉〉},

π9

〈ν13.i, c13.i〉
〈{〈∅, ∅, 〈〉〉}, 2〉
〈{〈{b}, {b}, 〈b〉〉},2〉
〈{〈∅, ∅, 〈〉〉, 1〉〈{b}, {b}, 〈b〉〉},

π13

〈ν1.i, c1.i〉
〈{〈∅, ∅, 〈〉〉},1〉

π1

〈ν14.i, c14.i〉
〈{〈∅, ∅, 〈〉〉},3〉

π14

i
1

i
1

〈ν12.i, c12.i〉
〈{〈∅, ∅, 〈〉〉}, 2〉
〈{〈{b}, ∅, 〈b〉〉}, 2〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, ∅, 〈b〉〉}, 1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, {b}, 〈b〉〉}, 0〉
〈{〈{b}, ∅, 〈b〉〉, 〈{b}, {b}, 〈b〉〉},1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, ∅, 〈b〉〉, 0〉〈{b}, {b}, 〈b〉〉},

π12

〈ν10.i, c10.i〉
〈{〈{d}, {d}, 〈d〉〉}, 1〉
〈{〈{b, d}, {d}, 〈b, d〉〉}, 1〉
〈{〈{d}, {d}, 〈d〉〉, 1〉〈{b, d}, {d}, 〈b, d〉〉},
〈{〈{b, e}, {e}, 〈b, e〉〉}, 1〉
〈{〈{b, e}, {b, e}, 〈e, b〉〉}, 1〉
〈{〈{b, e}, {e}, 〈b, e〉〉, 1〉〈{b, e}, {b, e}, 〈e, b〉〉},
〈{〈{d, e}, {d, e}, 〈d, e〉〉},1〉
〈{〈{d, e}, {d, e}, 〈e, d〉〉},1〉
〈{〈{d, e}, {d, e}, 〈d, e〉〉, 1〉〈{d, e}, {d, e}, 〈e, d〉〉},

π10

〈ν11.i, c11.i〉
〈{〈{d}, {d}, 〈d〉〉}, 2〉
〈{〈{b, d}, {d}, 〈b, d〉〉}, 1〉
〈{〈{d}, {d}, 〈d〉〉, 1〉〈{b, d}, {d}, 〈b, d〉〉},
〈{〈{b}, ∅, 〈b〉〉}, 1〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈{b}, ∅, 〈b〉〉, 1〉〈{b}, {b}, 〈b〉〉},
〈{〈{d, e}, {d, e}, 〈d, e〉〉},1〉

π11

Fig. 3: Selected tables of π obtained by DPPROJ on TD T and purged table mapping ν
(obtained by purging on τ , c.f, Figure 2).

Later, we require to reuse already computed projected answer set counts
for tables of children of a given node t. Therefore, we define the stored ipasc
of a table ρ ⊆ ν(t) in table π(t) by s-ipasc(π(t), ρ) :=

∑
〈ρ,c〉∈π(t) c. We ex-

tend this to a sequence s = 〈π(t1), . . . , π(t`)〉 of tables of length ` and a
set O = {〈ρ1, . . . , ρ`〉, 〈ρ′1, . . . , ρ′`〉, . . .} of sequences of ` tables by s-ipasc(s,O) =∏
i∈{1,...,`} s-ipasc(s(i), O(i)). This allows to select the i-th position of the sequence

together with sets of the i-th positions from the set of sequences.
Intuitively, when we are at a node t in algorithm DPPROJ we have already

computed π(t′) of Tproj for every node t′ below t. Then, we compute the
projected answer set count of ρ ⊆ ν(t). Therefore, we apply the inclusion-
exclusion principle to the stored projected answer set count of origins. We define
pasc(t, ρ, 〈π(t1), . . .〉) :=

∑
∅(O⊆A-origins(t,ρ) (−1)(|O|−1) · s-ipasc(〈π(t1), . . .〉, O).

Vaguely speaking, pasc determines the A-origins of table ρ, goes over all subsets
of these origins and looks up the stored counts (s-ipasc) in the PROJ-tables of
the children ti of t in order to count the answer sets restricted to P ∩ at≤t, to
which rows in ρ can be extended.

Example 7. Consider again program Π and TD T from Example 1 and Figure 2.
First, we compute the projected count pasc(t4, {u4.1}, 〈π(t3)〉) for row u4.1 of ta-
ble ν(t4), where π(t3) :=

{
〈{u3.1}, 1〉, 〈{u3.2}, 1〉, 〈{u3.1,u3.2}, 1〉

}
with u3.1 =

〈∅, ∅, 〈〉〉 and u3.2 = 〈{a}, ∅, 〈a〉〉. Note that t5 has only the child t4 and therefore
the product in s-ipasc consists of only one factor. Since PHC-origins(t4,u4.1) =
{〈u3.1〉}, only the value of s-ipasc for set {〈u3.1〉} is non-zero. Hence, we obtain
pasc(t4, {u4.1}, 〈π(t3)〉) = 1. Next, we compute pasc(t4, {u4.1,u4.2}, 〈π(t3)〉). Ob-
serve that PHC-origins(t4, {u4.1,u4.2}) = {〈u3.1〉, 〈u3.2〉}. We sum up the values
of s-ipasc for sets {u4.1} and {u4.2} and subtract the one for set {u4.1,u4.2}.
Hence, we obtain pasc(t4, {u4.1,u4.2}, 〈π(t3)〉) = 1 + 1− 1 = 1.

12 Fichte and Hecher

Listing 3: Local algorithm PROJ(t, ·, νt, (·, P), 〈π1, . . .〉) for projected counting.

In: Node t, purged table mapping νt, set P of projection atoms, 〈π1, . . .〉 is the
sequence of PROJ-tables of children of t.

Out: PROJ-table πt of pairs 〈ρ, c〉, where ρ ⊆ νt, and c ∈ N.
1 πt←

{
〈ρ, ipasc(t, ρ, 〈π1, . . .〉)〉

∣∣ ρ ∈ sub-bucketsP (νt)
}

2 return πt

Next, we provide a definition to obtain ipasc, which can be determined at a
node t for given table ρ ⊆ ν(t) by computing the pasc for children ti of t using
stored ipasc values from tables π(ti), subtracting and adding ipasc values for
subsets ∅ (ϕ (ρ accordingly. Formally, ipasc(t, ρ, s) :=1 if type(t) = leaf and
otherwise ipasc(t, ρ, s) :=

∣∣ pasc(t, ρ, s) +
∑
∅(ϕ(ρ(−1)|ϕ| · ipasc(t, ϕ, s)

∣∣ where
s = 〈π(t1), . . .〉. In other words, for (empty) nodes of type leaf the ipasc is one.
Otherwise, we compute the “non-overlapping” count of given table ρ ⊆ ν(t) with
respect to P ∩ at≤t, by exploiting the inclusion-exclusion principle on A-origins
of ρ such that we count every projected answer set only once. Then we subtract
and add ipasc (“all-overlapping” counts) for strict subsets ϕ of ρ, accordingly.

Finally, Listing 3 presents the local algorithm PROJ, which stores π(t) con-
sisting of every sub-bucket of the given table ν(t) together with its ipasc. For the
only row at root node n, ipasc and pasc values coincide and solve #PAs.

Example 8. Recall instance (Π,P), TD T , and tables τ1, . . ., τ14 from Examples 6,
4, and Figure 2. Figure 3 depicts selected tables of π1, . . . , π14 obtained after
running DPPROJ for counting projected answer sets. We assume that row i in table
πt corresponds to vt.i = 〈ρt.i, ct.i〉 where ρt.i ⊆ ν(t). Recall that for some nodes t,
there are rows among different PHC-tables that are removed (highlighted gray
in Figure 2) during purging. Purging avoids correcting counters (backtracking)
whenever a row has no “succeeding row”.

Next, we discuss selected rows obtained by DPPROJ((Π,P), (T, χ, ν)). Tables π1,
. . ., π14 are shown in Figure 3. Since type(t1) = leaf, we have π1 = 〈{〈∅, ∅, 〈〉〉}, 1〉.
Intuitively, at t1 the row 〈∅, ∅, 〈〉〉 belongs to 1 bucket. Node t2 introduces
atom a, which results in table π2 :=

{
〈{u2.1}, 1〉, 〈{u2.2}, 1〉, 〈{u2.1,u2.2}, 1〉

}
,

where u2.1 = 〈∅, ∅, 〈〉〉 and u2.2 = 〈{a}, ∅, 〈a〉〉 (derived similarly to table π4 as in
Example 7). Node t10 introduces projected atom e, and node t11 removes e. For
row v11.1 we compute the count ipasc(t11, {u11.1}, 〈π10〉) by means of pasc. There-
fore, take for ϕ the singleton set {u11.1}. We simply have ipasc(t11, {u11.1}, 〈π10〉)
= pasc(t11, {u11.1}, 〈π10〉). To compute pasc(t11, {u11.1}, 〈π10〉), we take for O
the sets {u10.1}, {u10.6}, {u10.7}, and {u10.6,u10.7} into account, since all other
non-empty subsets of origins of u11.1 in ν10 do not occur in π10. Then, we take
the sum over the values s-ipasc(〈π10〉, {u10.1}) = 1, s-ipasc(〈π10〉, {u10.6}) =
1, s-ipasc(〈π10〉, {u10.7}) = 1 and subtract s-ipasc(〈π10〉, {u10.6,u10.7}) = 1.
This results in pasc(t11, {u11.1}, 〈π10〉) = c10.1 + c10.7 + c10.8 − c10.9 = 2. We
proceed similarly for row v11.2, resulting in c11.2 = 1. Then for row v11.3,
ipasc(t11, {u11.1,u11.6}, 〈π10〉) = | pasc(t11, {u11.1,u11.6}, 〈π10〉) − ipasc(t11, {
u11.1}, 〈π10〉) − ipasc(t11, {u11.6}, 〈π10〉)| = |2− c11.1 − c11.2| = |2 − 2 − 1| =
|−1| = 1 = c11.3. Hence, c11.3 = 1 represents the number of projected answer

ASP and Projected Counting Meets Bounded Treewidth 13

sets, both rows u11.1 and u11.6 have in common. We then use it for table t12.
Node t12 removes projection atom d. For node t13 where type(t13) = join one
multiplies stored s-ipasc values for A-rows in the two children of t13 accordingly.
The projected answer set count of Π results in s-ipasc(〈π14〉,u14.1) = 3.

Runtime Analysis and Correctness

Next, we present asymptotic upper bounds on the runtime of our Algorithm DPPROJ.
We assume γ(n) to be the number of operations required to multiply two n-bit
integers, which can be achieved in time n · log n · log log n [23, 19].

Theorem 3. Given a #PAs(hcf) instance (Π,P) and a TTD Tpurged = (T, χ, ν)
of GΠ of width k with g nodes. Then, DPPROJ runs in time O(24m · g · γ(‖Π‖))
where m := max({ν(t) | t ∈ N}).
Proof. For each node t of T , we consider the table ν(t) of Tpurged. Let TDD (T, χ, π)
be the output of DPPROJ. In worst case, we store in π(t) each subset ρ ⊆ ν(t)
together with exactly one counter. Hence, we have at most 2m many rows in ρ. In
order to compute ipasc for ρ, we consider every subset ϕ ⊆ ρ and compute pasc.
Since |ρ| ≤ m, we have at most 2m many subsets ϕ of ρ. Finally, for computing
pasc, we consider in the worst case each subset of the origins of ϕ for each child
table, which are at most 2m · 2m because of nodes t with type(t) = join. In total,
we obtain a runtime bound of O(2m ·2m ·2m ·2m ·γ(‖Π‖)) ⊆ O(24m ·γ(‖Π‖)) due
to multiplication of two n-bit integers for nodes t with type(t) = join at costs γ(n).
Then, we apply this to every node of T resulting in runtime O(24m · g · γ(‖Π‖)).

From the theorem we immediately obtain that PCNTPHC runs in time O(23
k+1.27·k! ·

‖Π‖ · γ(‖Π‖)). Then, the next result establishes lower bounds.

Theorem 4. Unless ETH fails, #PAs(hcf) cannot be solved in time 22o(k) ·
‖Π‖o(k) for a given instance (Π,P), where k is the treewidth of primal graph GΠ .

Proof. Assume for proof by contradiction that there is such an algorithm. We
show that this contradicts a very recent result [24, 14], which states that one

cannot decide the validity of a QBF ∀V1.∃V2.E in time 22
o(k) · ‖E‖o(k), where E

is in CNF. Let (∀V1.∃V2.E, k) be an instance of ∀∃-SAT parameterized by the
treewidth k. Then, we define an fpt-reduction to an instance ((Π,P), 2k) of the
decision version #PAs(hcf)-exactly-2|V1| when parameterized by treewidth of GΠ
such that P = V1, the number of solutions is exactly 2|V1|, and Π is as follows.
For each v ∈ V1 ∪ V2, program Π contains rule v ∨ nv ← . Each clause x1 ∨ . . . ∨
xi ∨¬xi+1 ∨ . . .∨¬xj results in one additional rule ← ¬x1, . . . ,¬xi, xi+1, . . . , xj .
It is easy to see that the reduction is correct and therefore instance ((Π,P), 2k)
is a yes instance of #PAs(hcf)-exactly-2|V1| if and only if (∀V1.∃V2.E, k) is a yes
instance of problem ∀∃-SAT. In fact, since the stated reduction at most doubles
the treewidth of Π, the result of ∀∃-SAT carries over.

Proposition 3 (?). Algorithm PCNTPHC is correct and gives for any instance of
#PAs(hcf) its projected answer set count.

14 Fichte and Hecher

Conclusions

We introduced a novel algorithm to count projected answer sets (#PAs) of hcf
programs, which employs dynamic programming and exploits small treewidth of
the primal graph of the input program. Moreover, we presented a formal frame-
work to solve projected answer set counting, which lifts results from the setting
of Boolean formulas to ASP and also applies to disjunctive programs. Finally,
we established complexity lower bounds using ETH, showing that #PAs(hcf)
cannot be solved in time significantly better than double exponential in the
treewidth and still stay polynomial. Our results extend previous work to ASP
and we believe that it is also applicable to other hard combinatorial problems,
such as argumentation [11].

References

1. Aziz, R.A.: Answer Set Programming: Founded Bounds and Model Counting. Ph.D.
thesis, Department of Computing and Information Systems, The University of
Melbourne (2015)

2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs.
Ann. Math. Artif. Intell. 12(1), 53–87 (1994)

3. Bidóıt, N., Froidevaux, C.: Negation by default and unstratifiable logic programs.
Theoretical Computer Science 78(1), 85–112 (1991)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

6. Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244.
Springer Verlag, New York, USA (2008)

7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Dániel Marx, M.P., Pilipczuk,
M., Saurabh, S.: Parameterized Algorithms. Springer Verlag (2015)

9. Doe, J., Bloggs, J.: Disjunctive #PAs and treewidth. (2018), extended abstract. To
appear.

10. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. Theoretical Computer Science 340(3),
496–513 (2005)

11. Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract
argumentation. Artif. Intell. 186, 157–173 (2012)

12. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

13. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) Proceedings of the 14th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’17). Lecture Notes in Computer Science, vol. 10377, pp. 132–145. Springer
Verlag, Espoo, Finland (2017)

14. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for projected
model counting and its limits. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
Proceedings on the 21th International Conference on Theory and Applications of

ASP and Projected Counting Meets Bounded Treewidth 15

Satisfiability Testing (SAT’18). Lecture Notes in Computer Science, vol. 10929, pp.
165–184. Springer Verlag, Oxford, UK (2018)

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in
Practice. Morgan & Claypool (2012)

16. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean
search problems. In: van Hoeve, W.J., Hooker, J.N. (eds.) Proceedings of the 6th
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’09). Lecture
Notes in Computer Science, vol. 5547, pp. 71–86. Springer Verlag, Berlin, Germany
(2009)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

18. Graham, R.L., Grötschel, M., Lovász, L.: Handbook of combinatorics, vol. I. Elsevier
Science Publishers, North-Holland (1995)

19. Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. J.
Complexity 36, 1–30 (2016)

20. Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth.
In: Proceedings of the 21st International Joint Conference on Artificial intelligence
(IJCAI’09). vol. 2, pp. 816–822 (2009)

21. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag-
azine 37(3), 13–24 (2016), http://www.aaai.org/ojs/index.php/aimagazine/

article/view/2671

22. Kloks, T.: Treewidth. Computations and Approximations, Lecture Notes in Com-
puter Science, vol. 842. Springer Verlag (1994)

23. Knuth, D.E.: How fast can we multiply? In: The Art of Computer Programming,
Seminumerical Algorithms, vol. 2, chap. 4.3.3, pp. 294–318. Addison-Wesley, 3 edn.
(1998)

24. Lampis, M., Mitsou, V.: Treewidth with a quantifier alternation revisited. In: Lok-
shtanov, D., Nishimura, N. (eds.) Proceedings of the 12th International Symposium
on Parameterized and Exact Computation (IPEC’17). Dagstuhl Publishing (2017)

25. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings
of the 18th International Joint Conference on Artificial intelligence (IJCAI’03). pp.
853–858. Morgan Kaufmann, Acapulco, Mexico (2003)

26. Marek, W., Truszczyński, M.: Autoepistemic logic. J. of the ACM 38(3), 588–619
(1991)

27. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
28. Pichler, R., Rümmele, S., Szeider, S., Woltran, S.: Tractable answer-set programming

with weight constraints: bounded treewidth is not enough. Theory Pract. Log.
Program. 14(2) (2014)

29. Wilder, R.L.: Introduction to the Foundations of Mathematics. John Wiley & Sons,
2nd edn. (1965)

