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Abstract. Epistemic logic programs (ELPs) are a popular generaliza-
tion of standard Answer Set Programming (ASP) providing means for
reasoning over answer sets within the language. This richer formalism
comes at the price of higher computational complexity reaching up to
the fourth level of the polynomial hierarchy. However, in contrast to
standard ASP, dedicated investigations towards tractability have not
been undertaken yet. In this paper, we give first results in this direction
and show that central ELP problems can be solved in linear time for
ELPs exhibiting structural properties in terms of bounded treewidth.
We also provide a full dynamic programming algorithm that adheres
to these bounds. Finally, we show that applying treewidth to a novel
dependency structure—given in terms of epistemic literals—allows to
bound the number of ASP solver calls in typical ELP solving procedures.

1 Introduction

Epistemic logic programs (ELPs) [32], also referred to as the language of Epistemic
Specifications [17], have received renewed attention in the research community as
of late. ELPs are an extension of the language of Answer Set Programming (ASP)
[5, 31] with epistemic operators. Gelfond [17] introduced the operators K and
M in order to represent the concepts of known to be true and may be true, and
defined an initial semantics. Several improvements to the semantics have since
been proposed in the literature [18, 34, 24, 10]. Shen and Eiter [32] realized that
these two operators can be represented via a single negation-type operator that
they called epistemic negation, denoted not , and gave a new semantics based
on this operator. Morak [28] proposed a novel characterization of the central
construct of the ELP semantics: the worldview. While a recent analysis [6] has
shown that this semantics still does not eliminate all existing flaws, we will make
use of it in this paper, since no clear “winner” semantics has as of yet emerged,
and our approach should be equally applicable to other existing semantics that
have been proposed.

Evaluating ELPs is a computationally hard task. The central decision problem,
checking whether an ELP has a worldview, is ΣP

3 -complete, and problems even
higher on the polynomial hierarchy exist [32, 28]. In order to deal with this high
complexity efficiently, we propose to use a method from the field of parameter-
ized complexity, namely, investigate how the runtime behaves when looking at
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different structural parameters of the problem. For standard ASP, this topic has
received considerable interest [27, 21, 15, 3, 14, 12] and even systems exhibiting
the parameter treewidth have been proposed [13]. However, the parameterized
complexity of epistemic ASP has remained largely unexplored so far. In this
paper, we will investigate, in particular, whether ELPs can be solved efficiently
if their treewidth (i.e., a measure for the tree-likeness of graphs) is bounded.

It turns out that this question can be answered in the affirmative: the main
decision problems become tractable. In practice, a dynamic programming al-
gorithm on tree decompositions can be used to exploit this directly. However,
we also aim to investigate a more interesting angle. Many ELP solvers today
work by making (up to exponentially many) calls to an underlying ASP solving
system in order to check worldview existence. Being able to find a bound on the
number of these ASP solver calls would be very useful. Using so-called epistemic
(primal) graphs of ELPs that focus on epistemically negated literals only, we can
again employ treewidth to establish such bounds. This novel use of structural
decomposition intuitively works well in some interesting cases including instances
of the scholarship eligibility (SE) benchmark set3, provided with the “EP-ASP”
system [33]. Using the epistemic primal graph representation, these instances
naturally decompose into their individual sub-problems, that is, one sub-instance
of the SE problem for each student within the original instance.

Contributions. Our contributions are summarized below:

– We investigate the complexity of the ELP worldview existence problem when
parameterized by the treewidth of the ELP instance. We establish that this
problem is fixed-parameter tractable in this setting, and, in fact, can be
solved in linear time if the treewidth is bounded from above by a constant.
The same holds for the even more complex problem of worldview formula
evaluation.

– Then, we propose a novel graph representation of ELPs, namely, the epistemic
primal graph and show how this can be exploited to bound the number of
calls to an underlying ASP solver in a classical ELP solver setting. It turns
out that the number of calls is bounded in case the epistemic primal graph
has bounded treewidth.

– Finally, we provide a full dynamic programming algorithm that could be
used in practice to directly exploit the tractability result above. We also show
that the worst-case runtime of this algoritm cannot be significantly improved
under reasonable complexity-theoretic assumptions.

2 Preliminaries

Answer Set Programming (ASP). A ground logic program with nested nega-
tion (also called answer set program, ASP program, or, simply, logic program) is
a pair P = (A,R), where A is a set of propositional (i.e., ground) atoms and R
3 The Scholarship Eligibility problem was a prime motivator for ELPs [17].
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is a set of rules of the form a1 ∨ · · · ∨ al ← al+1, . . . , am,¬`1, . . . ,¬`n, where the
comma symbol stands for conjunction, 0 ≤ l ≤ m, 0 ≤ n, ai ∈ A for all 1 ≤ i ≤ m,
and each `i is a literal, that is, either an atom a or its (default) negation ¬a for
any atom a ∈ A.4 Note that, therefore, doubly negated atoms may occur. We
will sometimes refer to such rules as standard rules. Each rule r ∈ R consists
of a head H (r) = {a1, . . . , al} and a body B(r) = {al+1, . . . , am,¬`1, . . . ,¬`n},
and is alternatively denoted by H (r) ← B(r). The positive body is given by
B+(r) = {al+1, . . . , am}. Sometimes, we add a set of rules R′ to a logic program
P = (A,R). By some abuse of notation, let P ∪R′ denote the logic program
(A ∪A′,R∪R′), where A′ is the set of atoms occurring in the rules of R′.

An interpretation I (over A) is a set of atoms, that is, I ⊆ A. A literal ` is
true in an interpretation I ⊆ A, denoted I � `, iff a ∈ I and ` = a , or a 6∈ I and
` = ¬a; otherwise ` is false in I, denoted I 6� `. Finally, for some literal `, we
define that I � ¬` if I 6� `. This notation naturally extends to sets of literals. An
interpretation M is called a model of r, denoted M � r, if, whenever M � B(r),
it holds that M � H (r). We denote the set of models of r by mods(r); the models
of a logic program P = (A,R) are given by mods(P) =

⋂
r∈Rmods(r). We also

write I � r (resp. I � P) if I ∈ mods(r) (resp. I ∈ mods(P)). The GL-reduct
of a logic program P = (A,R) with respect to an interpretation I is given by
PI = (A,RI) with RI = {H (r)← B+(r) | r ∈ R,∀(¬`) ∈ B(r) : I 6� `}.

Definition 1 ([19, 20, 25]). M ⊆ A is an answer set of a logic program P if (1)
M ∈ mods(P) and (2) there is no subset M ′ ⊂M such that M ′ ∈ mods(PM ).

The set of answer sets of a logic program P is denoted by AS (P). The
consistency problem of ASP, that is, to decide whether for a given logic program
P it holds that AS (P) 6= ∅, is Σ2

P -complete [9], and remains so also in the case
where doubly negated atoms are allowed in rule bodies [29].

Epistemic Logic Programs. An epistemic literal is a formula not `, where
` is a literal and not is the epistemic negation operator. A ground epistemic
logic program (ELP) is a pair Π = (A,R), where A is a set of atoms and
R is a set of ELP rules, which are implications of the form a1 ∨ · · · ∨ ak ←
`1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn, where each ai is an atom from A, each `i
is a literal over A, and each ξi is an epistemic literal of the form not `, where `
is a literal over A. Similarly to logic programs, let H (r) = {a1, . . . , ak}, and let
B(r) = {`1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn}. Further, at(r) ⊆ A denotes the
set of atoms ocurring in ELP rule r, and atel(r) ⊆ at(r) denotes the set of atoms
used in epistemic literals of r. These notions naturally extend to sets of rules.

In order to define the semantics of an ELP, we will use the approach by
Morak [28], which follows the semantics defined in [32], but uses a different formal
representation. Given an ELP Π = (A,R), a candidate world interpretation
(CWI) I for Π is a consistent subset I ⊆ L, where L is the set of all literals
that can be built from atoms in A. Note that a CWI I naturally gives rise to a
three-valued truth assignment to all the atoms in A; hence, we will sometimes
treat a CWI I as a triple of disjoint sets 〈IP , IN , IU 〉, where IP = {a | a ∈ I},
4 In this case, we say that it is a literal over A.
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IN = {a | ¬a ∈ I} and IU = (A \ IP ) \ IN , with the intended meaning that all
atoms in IP , IN , and IU are assigned the truth values “always true,” “always
false,” and “unknown,” respectively.

With the above definition in mind, we now define when a CWI is compatible
with a given set of interpretations.

Definition 2. Let I be a set of interpretations over a set of atoms A. Then, a
CWI I is compatible with I iff the following conditions hold:

1. I 6= ∅;
2. for each atom a ∈ IP , it holds that for each J ∈ I, a ∈ J ;
3. for each atom a ∈ IN , it holds that for each J ∈ I, a 6∈ J ;
4. for each atom a ∈ IU , there are J, J ′ ∈ I, such that a ∈ J , but a 6∈ J ′.

The epistemic reduct [32, 28] of program Π = (A,R) w.r.t. a CWI I, denoted
ΠI , is defined as ΠI = (A, {rI | r ∈ R} where rI denotes rule r where each
epistemic literal not ` is replaced by ¬` if ` ∈ I, and by > otherwise. Note that,
hence, ΠI is a plain logic program without epistemic negation.5

Now, a CWI I is a candidate worldview (CWV) of Π iff the set AS (ΠI) of
answer sets is compatible with I. The set of CWVs of an ELP Π is denoted
cwv(Π). Following the principle of knowledge minimization, furthermore I is a
worldview (WV) iff it is a CWV and there is no proper subset J ⊂ I such that
J ∈ cwv(Π). The set of WVs of an ELP Π is denoted wv(Π).

One of the main reasoning tasks regarding ELPs is the worldview existence
problem, that is, given an ELP Π, decide whether wv(Π) 6= ∅ (or, equivalently,
whether cwv(Π) 6= ∅). This problem is known to be ΣP

3 -complete [32, 28]. Another
interesting reasoning task is deciding, given an ELP Π = (A,R) and an arbitrary
propositional formula ϕ over A, whether ϕ holds in some WV, that is, whether
there exists W ∈ wv(Π) such that W � ϕ. This formula evaluation problem is
even harder, namely ΣP

4 -complete [32].

Tree Decompositions and Treewidth. We assume that graphs are undirected,
simple, and free of self-loops. Let G = (V,E) be a graph, T a rooted tree, and χ
a labeling function that maps every node t of T to a subset χ(t) ⊆ V called the
bag of t. The pair T = (T, χ) is called a tree decomposition (TD) [30] of G iff (i)
for each v ∈ V , there exists a t in T , such that v ∈ χ(t); (ii) for each {v, w} ∈ E,
there exists t in T , such that {v, w} ⊆ χ(t); and (iii) for each r, s, t of T , such
that s lies on the unique path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). For a
node t of T , we say that type(t) is leaf if t has no children and χ(t) = ∅; join if t
has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); intr (“introduce”) if
t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem (“removal”) if t
has a single child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)|+ 1. If for every node t ∈ T ,
type(t) ∈ {leaf, join, intr, rem}, then (T, χ) is called nice. The width of a TD is
defined as the cardinality of its largest bag minus one. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all TDs of G.

5 In fact, ΠI may contain triple-negated atoms ¬¬¬a. According to [25], such formulas
are equivalent to simple negated atoms ¬a, and we treat them as such.
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Monadic Second Order Logic and Courcelle’s Theorem. Monadic Second
Order logic (MSO) extends First Order logic (FO) with set variables that range
over sets of domain elements. Atomic MSO-formulas over a signature σ are either
(1) atoms over some predicate in σ; (2) equality atoms; or (3) atoms of the form
x ∈ S, where x is a FO variable, and S is a set variable. MSO-formulas are closed
under FO operators. It is convenient to use symbols like 6∈, ⊆, ⊂, ∩, or ∪, with the
obvious meanings as abbreviations for the corresponding MSO (sub-)formulas.

MSO formulas are important in the context of parameterized complexity in
order to establish running time bounds, as the following landmark theorem by
Courcelle [7] shows:

Theorem 1 ([7]). Let ϕ be a fixed MSO formula over signature σ and let A be
a σ-structure with tw(A) 6 k, for some integer k. Then, evaluating ϕ over A can
be done in time O(f(k) · |A|), for some function f not depending on |A|.

Problems with a parameter k that can be solved in time O(f(k) ·nc) for constant
c, where f does not depend on n are called fixed-parameter tractable (FPT) [8].

3 An MSO Encoding for ELPs

The main objective in this section is to investigate how the semantics of ELPs
can be encoded in terms of an MSO formula and thereby investigate, from a
theoretical perspective, the time complexity of evaluating ELPs, specifically
looking at tree-like instances. In order to start, we first need to define how logical
structures can be represented as graphs, and how their tree-likeness is defined:
Given a structure A over some logical signature σ of arity at most two and
with domain dom(A), we say that the treewidth of A equals tw(GA), where
GA = (V,E) is a graph with V = dom(A) and edge {a, b} ∈ E iff r(a, b) ∈ A,
where r is some relation in σ.

Now, our goal will be to offer a fixed MSO encoding, in the spirit of [21],
that is able to solve the worldview existence problem for an ELP by evaluating
it over a suitable logical structure representing the ELP. In order to begin the
construction of this, we first need to fix the signature over which our MSO
encoding will be expressed. To this end, let signature

σ = {atom, rule, h, b, b¬, bnot , bnot¬, b¬not , b¬not¬},
where atom(a) and rule(r) represent the fact that domain elements a and r are an
atom and a rule, respectively; where h(a, r) represents that atom a appears in the
head of rule r; and where b�(a, r), with � ∈ {ε,¬,not ,¬not ,not¬,¬not¬}
and ε the empty word, represents that fact that the sub-formula �a, with a an
atom, appears in the body of rule r. We now construct our MSO encoding.

Lemma 1. Consider the signature σ above. WV existence can be expressed by
means of a fixed MSO formula over σ.

Proof. Recall that, in order to check the existence of a WV, it suffices to check
the existence of a CWV (since WVs are simply subset-minimal CWVs). We
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will construct an MSO formula cwv(P,N,U) with the intended meaning that it
evaluates to true iff the input set variables P, N, and U represent a CWV W
with WP = P, WN = N, and WU = U. The form of our formula will be:

cwv(P,N,U) ≡ cwi(P,N,U) ∧
4∧
i=1

chki(P,N,U)

where cwi ensures that P, N, and U indeed encode a valid CWI (i.e., a three-
partition of the set of atoms stored in atom), and chki verifies that Condition i
of Definition 2 holds. We will now give the construction of these checks.

First, the check for a valid CWI is expressed as follows:

cwi(P,N,U) ≡∀X (atom(X )⇔ X ∈ P ∪N ∪U)∧
¬∃X ((X ∈ P ∩N) ∨ (X ∈ N ∩U) ∨ (X ∈ P ∩U))

The four remaining checks have a similar structure:

chk1 (P,N,U) ≡ ∃X as(X,P,N,U);

chk2 (P,N,U) ≡ ∀X (X ∈ P⇒
∀X (as(X,P,N,U)⇒ X ∈ X)) ;

chk3 (P,N,U) ≡ ∀X (X ∈ N⇒
∀X (as(X,P,N,U)⇒ X 6∈ X)) ;

chk4 (P,N,U) ≡ ∀X (X ∈ U⇒
(∃X (as(X,P,N,U) ∧X ∈ X)∧
∃X (as(X,P,N,U) ∧X 6∈ X))) .

The four checks encode precisely the conditions of Definition 2, where as(X,P,N,U)
is a sub-formula, to be defined below, that expresses that X is an answer set of
the epistemic reduct w.r.t. the CWI represented by the sets P, N, and U. For
example, chk3 encodes that for each atom X that is set to “always false” in the
CWI (i.e., X ∈ N), it must hold that for every stable model X of the epistemic
reduct, X must not be true in that stable model (i.e., X 6∈ X).

It now remains to define the sub-formula for checking answer sets. This
construction is based on the one presented in [21, Theorem 3.5], but adapted to
take the computation of the epistemic reduct into account. Firstly, a set of atoms
M is an answer set if it is a model and no proper subset of M is a model of the
GL-reduct w.r.t. M . This is expressed as follows (note that any model M is also
a model of its GL-reduct):

as(X,P,N,U) ≡ gl(X,X,P,N,U) ∧ ∀Y (Y ⊂ X⇒ ¬gl(X,Y,P,N,U)) .

Intuitively, gl(X,Y,P,N,U) shall hold iff Y is a model of the GL-reduct w.r.t.
X of the epistemic reduct w.r.t. the CWI represented by P, N, and U:

gl(X,Y,P,N,U) ≡ ∀R (rule(R)⇒ ∃Z ( (h(Z ,R) ∧ Z ∈ Y)

∨ (b(Z ,R) ∧ Z 6∈ Y) ∨ (b¬(Z ,R) ∧ Z ∈ X)

∨ (bnot (Z ,R) ∧ Z ∈ P ∧ Z ∈ X)

∨ (bnot¬(Z ,R) ∧ Z ∈ N ∧ Z 6∈ X)

∨ (b¬not (Z ,R) ∧ ((Z ∈ N ∪U) ∨ (Z ∈ P ∧ Z 6∈ X))

∨(b¬not¬(Z ,R) ∧ ((Z ∈ P ∪U) ∨ (Z ∈ N ∧ Z ∈ X))
)
.
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Note that the definition of the gl -relation is such that it precisely mirrors the
definition of both the epistemic reduct and the GL-reduct. It amounts to check-
ing that every rule in the GL-reduct is satisfied, and amounts to a large case
distinction, dealing with all seven cases of how atoms can appear in a rule (that
is, either in the head, or nested under six combinations of default and epistemic
negation in the body). For example, in line three, the first disjunct says that rule
R is satisfied if there is an atom Z in the positive body, but this atom is not
present in the reduct model Y (satisfying rule R by not satisfying the body).
Line four treats the case of an epistemically negated atom Z in the body. Such
a rule is satisfied iff Z is set to “always true” in the CWI (since otherwise the
epistemic literal is replaced by > in the epistemic reduct, and the rule cannot be
satisfied solely by this body element in this case), and Z is false in the original
model X (since in the epistemic reduct, the epistemic negation turns into default
negation in this case, and default-negated atoms are evaluated over X).

This completes our MSO encoding. Correctness follows by construction, as
explained above. In order to solve the WV existence problem via this encoding,
we simply have to quantify the relevant set variables:

ϕ = ∃P∃N∃U cwv(P,N,U).

Evaluating this formula over a σ-structure P that represents an ELP Π, we get
that Π has a CWV iff P � ϕ.

With the above reduction in mind, lets take a closer look at what worst-
case solving time guarantees we can give for solving ELPs, in particular w.r.t.
structural properties. Let Π = (A,R) be an ELP, and let P be the σ-structure
that represents it. Recall that tw(P) = tw(GP). In our case, GP coincides
with the so-called incidence graph of the ELP Π, a graph representation that
is well-known and studied in the literature for a wide range of logic-based
formalisms, and, in particular, for ASP [23, 13]. The incidence graph of an ELP
Π is the graph G = (V,E) with V = A ∪ R and {a, r} ∈ E iff atom a ∈ A
occurs in rule r ∈ R in Π. It is not difficult to verify that the σ-structure P,
when represented as a graph, mirrors the incidence graph of Π precisely. From
this correspondence, Theorem 1, and Lemma 1, we thus obtain the following,
fundamental parameterized complexity result:

Theorem 2. Let Π be an ELP, let G be its incidence graph, and let tw(G) 6 k,
for some integer k. Then, checking whether cwv(Π) 6= ∅ can be done in time
O(f(k) · |Π|), for some function f that does not depend on |Π|.

Using a simple extension of the MSO construction in the proof of Lemma 1, we
can state a similar result for the formula evaluation problem. The MSO formula

∃P∃N∃U cwv(P,N,U) ∧ entails(P,N,U, ϕ)

∧ ¬ (∃P′∃N′∃U′ (P′ ⊂ P ∨N′ ⊂ N) ∧ cwv(P′,N′,U′))

checks whether there is at least one WV that satisfies formula ϕ, where the atom
entails(P,N,U, ϕ) encodes the check that the WV represented by P, N, and U
cautiously entails formula ϕ, a straightforward model-checking construction left
to the interested reader. We obtain the following (using argument of Theorem 2):
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Theorem 3. Let Π, G, and k be as in Theorem 2, and let ϕ be a propositional
formula. Then, checking whether Π has a WV that cautiously entails ϕ can be
done in time O(f(k) · |Π|), for some function f that does not depend on |Π|.

From the above theorems we immediately obtain the fact that ELPs of
bounded treewidth can be solved in linear time in the size of the ELP. We will
investigate how to exploit this result and pinpoint function f(k) in the next
sections.

4 Bounding Calls to Standard ASP Solvers

Before providing a concrete algorithm for the FPT result in Theorem 2 we will
investigate a more abstract approach. Many ELP solvers today make use of
standard ASP solvers to check the compatibility of a CWI with the set of answer
sets of its epistemic reduct. However, the number of calls to such an ASP solver
can be at worst exponential. In this section, we will propose an algorithm that
makes use of the structural relationships between the epistemic literals in an ELP
in order to control the number of ASP solver calls needed and give finer-grained
worst-case bounds on this number. In the next section, we will then extend these
concepts to a full dynamic programming algorithm using the result in Theorem 2.

We first need to define the structural relationship between atoms occurring in
epistemic literals in an ELP. To this end, let Π = (A,R) be an ELP. Then, the
primal graph PΠ = (V,E) of Π is a graph with V = A and {a, b} ∈ E iff atoms a
and b with a 6= b appear together in a rule in R, that is, iff ∃r ∈ R : {a, b} ⊆ at(r).
Two vertices a, b in the primal graph are non-epistemically connected iff there is
a path 〈a, v1, . . . , vn, b〉 with n ≥ 0 in PΠ , such that each vertex vi, 1 ≤ i ≤ n,
belongs to the set A \ atel(Π). Now, the epistemic primal graph EΠ = (V,E)
of Π is a graph with the vertex set V = atel(Π) being the set of atoms appearing
in epistemic literals in Π, and an edge {a, b} ∈ E iff a 6= b and vertices a, b are
non-epistemically connected in PΠ . Intuitively, two atoms from atel(Π) form
an edge in EΠ iff they are connected in PΠ via atoms that do not appear in
epistemic literals. The concept of epistemic primal graph is inspired by the notion
of the torso graph [16], which is used in parameterized complexity to decompose
certain abstraction graphs.

Example 1. Consider the classic scholarship eligibility problem encoding, first
investigated by Gelfond [17]:

eligible(X )← highGPA(X )
ineligible(X )← lowGPA(X )
⊥ ← eligible(X ), ineligible(X )
interview(X )← not eligible(X ),not ineligible(X ).

Now, assume the above abstract (non-ground) program is instantiated with
two students (assume that it is copied twice and mike and mark are substituted
for X ), and that we add the following rules, resulting in ELP Π:

lowGPA(mike) ∨ highGPA(mike)
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lowGPA(mark) ∨ highGPA(mark)

Epistemic primal graph EΠ contains four nodes: eligible(mike), ineligible(mike),
and the same two for mark . Further, EΠ does not have any edges except an edge
between the two mike-atoms, and the same for mark . Since EΠ forms a forest,
the treewidth of EΠ is 1.

While the epistemic primal graph does not directly provide new complexity
results, it will allow us to give firm guarantees on the number of ASP solver calls
needed. As a side-effect, this algorithm is conceptually simpler than the one of
the next section, but prepares ideas for later.

Algorithms that solve problems of bounded treewidth typically proceed by
dynamic programming (DP), bottom-up, along a TD where at each node t of the
TD information is gathered [4] in a table τ(t). A table τ(t) is a set of rows, where
a row in τ(t) is a fixed-length sequence of elements. Tables are derived by an
algorithm executed in each bag, called bag algorithm, which determine the actual
content and meaning of the rows. Then, the DP approach DPB for an epistemic
logic program Π and a given bag algorithm B performs the following steps:

1. Construct graph representation G of Π that is used by B.
2. Heuristically compute a (nice) TD T = (T, χ) of G.
3. Execute B for every node t in TD T in post-order. As input, B takes a node t,

a bag χ(t), a solving program (depending on χ(t) and B), which is the part
of Π currently visible in t, and the tables computed at children of t. Bag
algorithm B outputs a table τ(t).

4. Print the result by interpreting the table for root n of T .

Next, we define a bag algorithm EPRIM for the epistemic primal graph
representation of Π. To this end, let Π = (A,R) be the given input epistemic
program, T = (T, χ) be a nice TD of EΠ , t be a node of T , and ≺ be any arbitrary
total ordering among the nodes in T . To ease notation, for some set X ⊆ atel(R),
let conn(X) be the set of vertices (i.e., atoms) from PΠ that lie on a path that
non-epistemically connects any two vertices a and b in X.6 We now define the
induced bag rules for node t of T , denoted by RE

t , as follows. For every rule
r ∈ R, r is compatible with node t of T iff (a) at(r)∩conn(atel(R)) ⊆ conn(χ(t)),
and (b) χ(t) is subset-maximal among all nodes of T . Now, r ∈ RE

t iff t is the
≺-minimal node among all nodes t′ in T with type(t′) = intr compatible with r.
The induced bag program for node t is the ELP ΠE

t = (at(RE
t ),RE

t ).
Observe that any set of vertices that form a clique within EΠ will appear

together in some node t of T . Note that for each node t of T that has not a non-
subset-maximal bag, or has one, but is not ≺-minimal for any compatible r ∈ R,
the induced bag program is empty. Therefore, we have that for each rule r ∈ R
there is exactly one node t of T where r ∈ RE

t , and, even more stringent, that
each atom a ∈ at(r) \ atel(r) appears only in the induced bag program of t, but
not in any other node. The bag algorithm EPRIM uses the induced bag program

6 Note that we may have that a = b, and hence, conn({a}) contains all those vertices
from A \ atel(Π) connected to atom a.
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Listing 1: Bag algorithm EPRIM(t, χt, Π
E
t , 〈τ1, . . .〉) for nice TDs of the epistemic

primal graph representation.

In: Node t, bag χt, induced bag program ΠE
t , tables 〈τ1, . . .〉 for child

nodes 〈t1, . . .〉 of t. Out: Table τ(t).
1 if type(t) = leaf then τ(t) = {〈∅〉}/* Abbrevs. below. */

2 else if type(t) = intr, and a∈χt is introduced then

3 τ(t)={〈J〉 | 〈I〉 ∈ τ1, J ∈ {I+a , I+¬a, I},P=(ΠE
t )J ,RE

t =∅ or

4 [ AS(P) 6= ∅,AS(P ∪ {⊥ ← (JP ∪ JN )}) = ∅,
for every b ∈ JU :AS(P ∪ {⊥ ← b}) 6= ∅,AS(P ∪ {⊥ ← ¬b}) 6= ∅ ]}

5 else if type(t) = rem, and a 6∈ χt is removed then
6 τ(t)={〈I−a 〉 | 〈I〉 ∈ τ1}
7 else if type(t) = join then τ(t) = τ1 ∩ τ2

S+
e := S ∪ {e}, S−e := S \ {e,¬e}, S := {¬s | s ∈ S}.

as its solving program, and, following the argument above, can check all rules
containing atoms from A \ atel(Π) in a single node. Hence, during its traversal
of the tree decomposition, it does not need to store anything about these atoms.
Instead, every row computed as part of a table by EPRIM for a node t, called an
epistemic row, is of the form 〈I〉, where I ⊆ 2{a,¬a|a∈χ(t)} is a partial CWI (that
is, a CWI restricted to and defined w.r.t. χ(t))7.

Listing 1 presents algorithm EPRIM. For the ease of presentation, it deals
with nice TDs only, but can be generalized to arbitrary TDs, requiring a more
involved case distinction. Intuitively, since for each leaf node t we have χ(t) = ∅,
bag algorithm EPRIM ensures in Line 1 that τ(t) consists only of the empty
epistemic row. Then, when an atom a appears in bag χ(t) for a node t, but
does not occur in child bags, CWI J , with either a ∈ JP , a ∈ JN , or a ∈ JU , is
computed in Line 3. Further, if the solving program with rules RE

t is not empty,
i.e., t is the unique node responsible for evaluating all the rules in RE

t , the four
conditions of Definition 2 are checked in Line 4. These checks can be performed
by calling a black-box ASP solver a limited number of times for each row in t:

Proposition 1. To compute a row in a table of EPRIM, an ASP solver needs to
be called at most 2 + 2 · |χ(t)| times.

On an abstract level, bag algorithm EPRIM hence provides a method for
solving epistemic logic programs Π by means of plain ASP solvers based on the
structure of the epistemic literals of Π. Whenever an epistemic atom a is removed
in node t, indicating that a does not occur in any ancestor bag of t, information
about the “role” of a in any CWI is not needed anymore. Finally, for join nodes,
Line 7 ensures that the CWIs in χ(t) coincide with the ones that both child bags
have in common. The last step is the evaluation of the root node. If in the root a
non-empty table is computed by EPRIM, then the input ELP Π has a CWV.

Example 2. The epistemic primal graph from Example 1 is a “best case”-scenario
for using our TD-based approach: the TD naturally separates the ELP into

7 This also means that JP , JN , and JU are defined w.r.t. χ(t).
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one part each for the two students, and algorithm EPRIM would evaluate the
two completely separately, which is exactly what intuition would tell us to do.
However, standard ELP solvers seem to struggle in this setting when the number
of students increases; cf. e.g. [2].

From Proposition 1, and the facts that there are only linearly many TD nodes
in the size of the input ELP Π, and that the number of rows per tree node is at
most exponential in the treewidth of EΠ , we obtain the following statement:

Theorem 4. Given an input ELP Π of size n, algorithm DPEPRIM makes at
most O(2k · n) calls to an underlying ASP solver, where k = tw(EΠ).

Correctness of the algorithm presented above can be established along the
same lines as for established TD-based dynamic programming algorithms for ASP
[23, 13]. A more formal correctness argument will be given in the next section.

5 A Full Dynamic Programming Algorithm

In this section, we will extend the EPRIM algorithm in such a way that it no
longer relies on an underlying ASP solver, but solves an ELP completely on its
own, using dynamic programming. This new algorithm, PRIM, will operate on
the primal graph, instead of on the epistemic primal graph, and makes use of
features of the entire ELP structure.

Recall that the primal graph is defined on all atoms of an ELP, instead of
just on the ones appearing in epistemic literals. As a result, we need to define a
different solving program for TD nodes. To this end, for the remainder of the
section, assume we are a given ELP Π = (A,R) to solve. Further, let T = (T, χ)
be a nice TD of the primal graph PΠ of Π, and t a node of T . Then, the bag
rules for t, denoted Rt are defined as the set {r | r ∈ R, at(r) ⊆ χ(t)}, that is, all
the rules of Π that are completely “covered” by χ(t). Further, the bag program
of t is defined as Πt = (A ∩ χ(t),Rt).

In order to define PRIM, we need to define what a row of a table for a TD node
t looks like. Since PRIM, in contrast to EPRIM, now also needs to compute the
answer sets underlying a CWV, we start with the following, preliminary definition.
Let M ⊆ χ(t) be an interpretation and C ⊆ 2χ(t) a set of interpretations w.r.t.
χ(t). Then, we refer to a tuple 〈M, C〉 as an answer set tuple. This construct,
proposed in [13], directly follows the definition of answer sets as in Definition 1,
namely, (1) set M , called a witness, is used for storing (parts of) an answer
set candidate of some ASP program, and (2) set C, called counterwitnesses,
holds a set of (partial) models of the GL-reduct w.r.t. M that are potential
subsets of M , and hence may be counter-examples to M being extendable to
an answer set. An answer set tuple with an empty set of counterwitnesses is
referred to as proving answer set tuple, which, vaguely speaking, proves that
M can be indeed extended to an answer set of some ASP program, which the
tuple was constructed for. Answer set tuples are used by algorithm PRIM in
order to “transport” information—in the form of parts of models restricted to
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Listing 2: Bag algorithm PRIM(t, χt, Πt, 〈τ1, . . .〉) for nice TDs of the primal graph.

In: Node t, bag χt, bag program Πt, 〈τ1, . . .〉 is the seq. of tables for child nodes
〈t1, . . .〉 of t. Out: Table τ(t).

1 if type(t) = leaf then τ(t) = {〈∅, {〈∅, ∅〉}, ∅, ∅〉}
2 else if type(t) = intr, a∈χt introduced, a 6∈ atel(Πt) then
3 τ(t)={〈I,M′,K′,S ′〉 | 〈I,M,K,S〉 ∈ τ1,P=(Πt)

I ,
M′= intTs(a,M,P),K′= intTs(a,K,P),

4 S ′ ∈ succS(a,M′,S,P)}
5 else if type(t) = intr, a∈χt introduced, a ∈ atel(Πt) then
6 τ(t)={〈J,M′,K′ ∪ K′′,S ′ ∪ S ′′〉| 〈I,M,K,S〉 ∈ τ1,P=

(Πt)
J ,M′= intTs(a,M,P),K′= intTs(a,K,P),

7 S ′ ∈ succS(a,M′,S,P), J ∈ {I+a , I+¬a, I},
8 K′′= intTs(a,

⋃
S∈M{S | a ∈ J

P },P ∪ {⊥ ← a})∪
intTs(a,

⋃
S∈M{S | a ∈ J

N},P ∪ {⊥ ← ¬a}),
9 {M ′,M ′′} ⊆ M′,S ′′={M ′,M ′′ | a ∈ JU}=

{M ′,M ′′ | a ∈ JU ,M ′ �P ∪ {⊥ ← a},M ′′ �P ∪ {⊥ ← ¬a}}}
10 else if type(t) = rem, and a 6∈ χt is removed then
11 τ(t)={〈I−a ,M∼a ,K∼a ,S∼a 〉 | 〈I,M,K,S〉 ∈ τ1}
12 else if type(t) = join then
13 τ(t)={〈I,M1 uM2, [K1 u (K2∪M2)] ∪ [K2 u (K1∪M1)],

[S1 u (S2∪M2)] ∪ [S2 u (S1∪M1)]〉 |
〈I,M1,K1,S1〉 ∈ τ1, 〈I,M2,K2,S2〉 ∈ τ2,

14 |S1|=|S1 u (S2∪M2)|, |S2|=|S2 u (S1∪M1)|}

S+
e := S ∪ {e}, S−e := S \ {e,¬e}, S∼e := {〈M−e , {C−e | C ∈ C}〉 | 〈M, C〉 ∈ S},
M1 uM2 := {〈M, (C+M ∩ D) ∪ (C ∩ D+

M )〉 | 〈M, C〉 ∈ M1, 〈M,D〉 ∈ M2}.

the respective bags—of already evaluated rules of the ASP program from the
leaves towards the root during TD traversal.

With this definition in mind, we are now ready to define a row for node t used
in algorithm PRIM. Such a row, called primal row, is of the form 〈I,M,K,S〉,
where I corresponds to a CWI restricted to χ(t) as in EPRIM, and sets M,K,S
consist of answer set tuples. In the root node n of the TD, a specific primal
row u ∈ τ(n) is required in table τ(n) to answer the question of WV existence
of Π positively, and PRIM is designed to maintain primal rows accordingly. The
setM of answer set tuples in u is used for ensuring Condition (1) of Definition 2,
where a proving answer set tuple in M gives rise to an answer set of some ASP
program ΠI′ of some extension I ′ ⊇ I of I. For ensuring Conditions (2) and
(3), the set K in u shall not contain any proving program tuples, i.e., proving
program tuples of K are required to vanish (get “killed”) during the TD traversal,
otherwise Conditions (2) or (3) would be violated. Finally, S in u serves to
establish Condition (4), where no non-proving answer set tuple is allowed, that
is, each answer set tuple needs to “survive”. The discussed properties of such a
primal row u are formalized as follows.

Definition 3. A primal row 〈I,M,K,S〉 is proving if (1) there is a 〈M, ∅〉 ∈ M,
(2) there is no 〈M, C〉 ∈ K with C = ∅, and (3) there is no 〈M, C〉 ∈ S with C 6= ∅.
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Algorithm PRIM is designed to ensure existence of such a proving primal row
in τ(n) of root node n of the TD, iff a WV exists. PRIM uses the following con-
structs, assuming an answer set tuple 〈M, C〉, an atom a ∈ A, and a program P.
For updating an answer set tuple, we let updT(M, C,P) = {〈M, C∩mods(PM )〉 |
M � P}. When some atom a is introduced in an intr-type node, we need to
distinguish between a already being in the interpretation, or not. We define
intT(a,M, C,P) = updT(M+

a ,
⋃
C∈C{M,C,C+

a },P)∪updT(M, C,P), which is
generalized to sets M of answer set tuples: intTs(a,M,P) =

⋃
〈M,C〉∈M intT(a,

M, C,P). Finally, to obtain good runtime bounds later and at the same time
still ensure Condition (4) of Definition 2 using a set S of answer set tuples, we
need to find, for each answer set tuple in S, exactly one “succeeding” answer
set tuple among the set M of answer set tuples. We define succS(a,M, C,P) =
{S ′ | S ′ ⊆M, |S ′|=|S|, for every 〈M, C〉 ∈ S : intT(a, M, C,P) ∩ S ′ 6= ∅}.

Bag algorithm PRIM, as presented in Listing 2, again distinguishes between
different types of tree nodes during the post-order traversal of T . For leafs,
Line 1 returns the primal row consisting of the empty CWI, where the second
component M contains only the proving answer set tuple 〈∅, ∅〉 (since ∅ is the
smallest model of the empty program), and K,S are both empty as there is no
need to remove or create answer set tuples, respectively. If an atom a 6∈ atel(Π)
is introduced, Line 3 updatesM and K. Line 4 ensures that each answer set tuple
in S has at least one succeeding answer set tuple in every primal row of table τ(t).
If an atom a ∈ atel(Π) is introduced, the setsM, K, and S are similarly updated
in Line 6, but the three cases (true, false, and unknown) need to be considered
when adding a to I. Conditions (2) and (3) are handled in Line 8, where answer
set tuples in M that violate these two conditions (for a ∈ JP , and a ∈ JN ,
respectively) are added to K. For Condition (4), Line 9 ensures that if a ∈ JN ,
there is both a succeeding answer set tuple where a is set to true, and one where
it is false. If an atom a is removed, a is removed from the primal rows in Line 11,
since we have processed every part of Π where a occurs. Finally, for join nodes,
we combine only “compatible” primal rows in Line 13. In particular, Line 14
ensures that no answer set tuple is lost in S1 or S2 of the child primal rows.

Theorem 5 (Correctness). Let Π be an ELP Π, and T = (T, χ) a TD of PΠ .
Then there is a proving row in table τ(n) obtained by DPPRIM for root n of T
Proof (Idea). Soundness follows by showing an invariant I for each row in τ(t),
assuming I holds for each table row of the children of t. Completeness holds by
establishing all primal rows fulfilling invariant I are in child tables of t, assuming
all primal rows fulfilling I are in table τ(t).

Then, correctness of DPEPRIM, cf., Sec. 4, is a special case.

Corollary 1 (Correctness of DPEPRIM). Let Π be an ELP Π and T = (T, χ)
a TD of EΠ . Then there is a row in table τ(n) for root n obtained by DPEPRIM

iff there is a WV for Π.

Proof (Idea). T can be turned into a TD T ′ of PΠ by adding to each χ(t) the
set A, where (ΠE

t ) = (A, ·). DPEPRIM on T is, therefore, just a simplification of
DPPRIM on T ′.
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Next, we briefly discuss running time results of DPPRIM.

Theorem 6 (Runtime). DPPRIM runs in time 222
O(k)

· |A| for epistemic pro-
gram Π = (A,R), and treewidth k of PΠ .

Proof (Idea). We compute [4] TD T of width k in 2O(k3). Each table τ(t) has at

most 2(3
k·22

k
·22

k
·22

k
) rows, and the size of ΠE

t is in O(2k!).

Indeed, under reasonable assumptions in computational complexity, that is, the
exponential time hypothesis (ETH) [22], one cannot significantly improve DPPRIM.

Proposition 2 (cf. [11], Theorem 19). Let Π = (A, ·) be an epistemic logic
program with PΠ of treewidth k. Then, unless ETH fails, WV existence for Π

cannot be decided in time 22
2o(k)

· 2o(|A|).

6 Conclusions

This work provides the first parameterized complexity analysis of ELP solving
w.r.t. treewidth. Tree decompositions have been successfully used in the selp
ELP solver [2], but for a different purpose, namely that ELPs are rewritten
into non-ground ASP programs with long rules, which are then split up using
rule decomposition [1]. Our approach partitions an ELP according to a tree
decomposition, and then solves the ELP by evaluating these parts in turn. This
is different from ELP splitting [6], which extends splitting theorem for ASP [26].

For future work, we aim to extend our DP algorithm to the formula evaluation
problem, which, viz. Theorem 3, should work in a similar fashion to our existing
algorithms, given a suitable graph representation. Furthermore, we would like to
apply our approach to other ELP semantics; cf. [17, 18, 24]. Looking at our MSO
encoding and DP algorithms, we do not anticipate large obstacles there, since
the semantics are sufficiently similar.
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