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In a seminal paper, Gelfond and Lifschitz [1] introduced simple disjunctive logic
programs, where in rule heads the disjunction operator “|” is used to express incomplete
information, and defined the answer set semantics (called GL-semantics for short) based
on a program transformation (called GL-reduct) and the minimal model requirement.
Our observations reveal that the requirement of the GL-semantics, i.e., an answer set
should be a minimal model of rules of the GL-reduct, may sometimes be too strong and
exclude some answer sets that would be reasonably acceptable.

For example, the following simple disjunctive program:

Π : a (1)
a | b (2)
b← ¬b (3)

has no answer set under the GL-semantics. Rule (2) models incomplete information
concerning the truth values of a and b, namely that it is insufficient to establish whether
a is true or b is true, but nonetheless sufficient to establish that at least one of the two
is true. That is, rule (2) presents two alternatives and infers either a or b. Rule (1)
establishes the truth of a. So rules (1) and (2) together either infer a (when rule (2)
infers a) or a∧ b (when rule (2) infers b), which yields two potential answer sets for Π:
I1 = {a} and I2 = {a, b}. Rule (3) is a constraint stating that there is no answer set that
does not contain b; this excludes I1. As a result, applying the three rules yields the only
candidate answer set I2 for Π . As I2 is minimal in the sense that no proper subset J of
I2 is a candidate answer set for Π , we expect I2 to be an answer set of Π .

To address this, we present a more permissive answer set semantics, and make the
following main contributions:

(1) We present a general answer set semantics for disjunctive programs, called deter-
mining inference semantics (DI-semantics for short), which interprets the operator | in
rule heads differently from the classical connective ∨, and does not require that answer
sets should be minimal models. Specifically, we introduce a head selection function
sel to formalize the rule head operator |, i.e., for every interpretation I and every rule
head H1 | · · · | Hk, sel(H1 | · · · | Hk, I) nondeterministically selects one alternative Hi

satisfied by I. Then we define answer sets as follows: (i) Given an interpretation I and
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a selection function sel, we transform a disjunctive program Π into a normal program
Π I

sel, called a disjunctive program reduct, such that for every rule head(r)← body(r) in
Π , sel(head(r), I)← body(r) is in Π I

sel if I satisfies body(r); (ii) given a base answer set
semantics X for normal programs, we define I to be a candidate answer set of Π w.r.t.
X if I is an answer set of Π I

sel under X; and (iii) we define I to be an DI-answer set of
Π w.r.t. X, if I is a minimal candidate answer set.
(2) By replacing the base semantics X in the above general semantics with the GLnlp-
semantics [2], we induce a DI-semantics for simple disjunctive programs. We show that
an answer set under the GL-semantics is an answer set under the DI-semantics, but not
vice versa; the main reason is that the GL-semantics for | in rule heads amounts to the
classical connective ∨ for such programs and further requires that answer sets must
be minimal models; this may exclude some desired answer sets. To see the essential
difference between the DI- and the GL-semantics, we characterize the latter using a
disjunctive program reduct Π I

sel. This allows us to resolve the open problem in [3] about
characterizing split normal derivatives of a simple disjunctive program Π .
(3) By replacing the base semantics X with the well-justified semantics defined by
[4], we further induce a DI-semantics for general disjunctive programs consisting of
rules of the form H1 | · · · | Hk ← B, where B and every Hi are arbitrary first-order
formulas. This settles the issue of extending the well-justified semantics from general
normal programs with rules of the form H1 ← B to general disjunctive programs.
(4) In disjunctive programs, every rule head H1 | · · · | Hk can be viewed as a set
{H1, · · · ,Hk} of alternatives. Other set related constructs in the ASP literature are choice
constructs and set introduction rules. Choice constructs seem most closely related to
disjunctive rule heads as both of them are used to express a set of alternatives in rule
heads; we clarify the difference between them. In particular, we use a generalization
of the well-known strategic companies problem to show that because the information
expressed by a disjunctive rule head a1 | · · · | am is incomplete, we cannot use a choice
construct 1{a1, · · · , am}u to replace the rule head, where the ai’s are ground atoms.
(5) Finally, we consider the complexity of deciding answer set existence and of brave/-
cautious reasoning under DI-semantics in the propsitional case. The problems are NP-
complete and Σ p

2 -/Π p
2 -complete, respectively, for simple disjunctive programs and one

level higher up in the polynomial hierarchy in the general case.
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