
An alternative paradigm for Answer Set
Programming

Seemran Mishra1, Jorge Fandinno1, Javier Romero1, Torsten Schaub1, and
Abhaya Nayak2

1 University of Potsdam, Germany
2 Macquarie University, Australia

An alternative logic programming paradigm is proposed in this work. The
main idea is develop a structure for logic programs and use limited answer set
programming language constructs for expressing the logic program.

The syntactical structure of a program in this programming paradigm is a
four-valued tuple consisting of a set of facts, followed by a set of choice rules with
empty bodies, a set definite rules and finally a set of integrity constraints in the
respective order. Since the choice rules are expressed as disjunction of literals in
the rule head, we use an extended version of answer set semantics for programs
as proposed by Lifschitz, Tang and Turner [1]. This extension permits nested
expressions formed from literals arbitrarily using negation as failure, conjunction
and disjunction in the bodies and heads of rules.

Subsequently we try to translate programs made up of various language con-
structs not included in this programming paradigm such as normal rules with
negative literals in the bodies, choice rules with bodies etc. to this program-
ming paradigm to retain the expressiveness. This can be done by extending
the language with auxiliary atoms. Finally, we try to establish various types
of equivalence such as answer-set equivalence and strong equivalence between
the original program and the translated version. For example, we prove that a
normal rule with negative body literals of the form:

a0 ← a1, ..., am, not am+1, ... , not an (1)

can be expressed in this programming paradigm equivalently as:

a0 ← a1, ... , am,ām+1, ... , ān

{ām+1} ... {ān}
← am+1, ām+1 ... ← an, ān

← not am+1, not ām+1 ... ← not an, not ān

where A is a set of ground atoms and ai ∈ A, āi ∈ A , 0 ≤ m ≤ n and 0 ≤
i ≤ n

This programming paradigm lets us express a logic program in a modular
form and will aid module by module computation of the stable models. This
can improve the performance by limiting the search space. Properties of pro-
grams in this programming paradigm can be analyzed, for example, how the
stable models depend on the structure of the program. Also the limited lan-
guage construct used here can be extended to develop a branching mechanism



2 Authors Suppressed Due to Excessive Length

for computation of stable models. This mechanism makes the computation of
stable models mostly deterministic with the non-determinism only arising from
branching due to choice rules.

References

1. Lifschitz, V., Tang, L. R., Turner, H. (1999). Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25(3-4), 369-389.


