Exploiting Answer Set Programming
for Building Explainable Recommendations

Erich Teppan' and Markus Zanker?

! Universitiat Klagenfurt, Austria
2 Free University of Bolzano, Italy

Abstract. Explainability, i.e. the capability of a recommendation sys-
tem to justify its proposals, becomes an ever more important aspect in
light of recent legislation and skeptic users. Answer Set Programming
(ASP) is a logic programming paradigm aiming at expressing complex
problems in a succinct manner. Originating in the area of deductive
databases ASP has settled down as a strong alternative to constraint
programming and other declarative approaches for solving hard combina-
torial problems. Due to its rich set of high level language constructs such
as weak constraints or aggregates it turns out that ASP is also perfectly
suitable for realizing knowledge and/or utility-based recommendation
applications. Hereby, every aspect of such a utility-based recommenda-
tion engine can be specified within ASP including the specification of
user and product attributes, the calculation of utility values as well as
requirements relaxation in case that no recommended product item fully
matches the user needs and explanations. In this paper we give an in-
troduction to the concepts of ASP and how they can be applied in the
domain of recommender systems. Based on a small excerpt of a real life
recommender database we exemplify how utility based recommendation
engines can be implemented with just some few lines of code and show
how meaningful explanations can be derived out of the box.

Keywords: recommender systems - explanations - answer set program-
ming

1 Introduction

The ability of a recommendation system to explain to users why a specific item is
recommended has reached considerable research momentum, supported also by
recent legislation like GDPR 2 that even codifies a right for explanations of the
outcomes of algorithmic decision makers. Although knowledge-based recommen-
dation strategies [9] are a niche topic compared to predominant machine learn-
ing based approaches, they are nevertheless in actual use for high-involvement
product domains like financial services [4] or consumer products where many
variables and aspects are typically considered during decision making processes.
Utility-based recommender systems can be considered to be a specific variant

3 See https://eugdpr.org/ for reference.

2 Erich Teppan and Markus Zanker

of knowledge-based systems, where the matching between user preferences or
needs and item properties or features is realized via utility functions. The re-
cent revived attention for knowledge-based approaches [1] is actually based on
three pillars: the wide availability of structured and unstructured content that
can be exploited for knowledge extraction, the promise of achieving beyond ac-
curacy goals [11] like transparency, validity and explainability as well as the
development of ever more efficient computational mechanisms for processing
declarative knowledge. The answer set programming (ASP) paradigm under the
stable model semantics [7] must be seen in the context of the latter pillar. It
is a successful logic programming (LP) paradigm that has evolved from an aca-
demic discipline rooted in deductive databases to an approach that is practically
applicable in many different domains [6]. It turns out that ASP, due to its rich
set of different language constructs, seems to be perfectly appropriate for also
expressing recommendation problems, particularly those ones that can be natu-
rally modeled based on a knowledge or utility-based recommendation paradigm.
One big advantage of encoding a recommendation engine in ASP is the compact
high level representation that eases maintenance. Another advantage is that ex-
planations for recommendations can be derived quite naturally as a side product
of recommendation calculation based on logic rules.

In this paper, we introduce for the first time how the ASP mechanism can be
used to build the complete logic of a utility-based recommender system. Hereby,
we focus particularly on how to automatically derive meaningful explanations
for recommendations. As a first proof of concept we use an excerpt from a real
world knowledge base from the financial service domain [3] and show how a
corresponding recommendation engine, in particular calculations of item utilities
and explanations, can be expressed in ASP in a succinct way.

2 Related Work

To the best of our knowledge there exist only two papers employing ASP in the
context of recommender systems. In [10] the authors propose dynamic logic pro-
gramming, an extension of ASP, in order to provide a user the means to specify
changes of their user profile in order to support the recommendation engine in
producing better recommendations. Clearly, the focus of this approach is totally
different as it is not concerned with building any aspect of the recommendation
engine itself.

Not so for the second paper identified. The system described in [8] consists of
two ASP based components. The first component is used for automatic extrac-
tion of relevant information from touristic offers contained in leaflets produced
by tour operators. This information is in turn added to a tourism ontology,
i.e. the second component. The second component is responsible for answering
the question which touristic offers match a certain customer profile that is also
added to the ontology. Thus, the system described in [8] can be seen as a raw
content-based recommender. In contrast to that, the approach discussed herein
is different from several aspects. First, we do not build upon ontologies, but di-

Title Suppressed Due to Excessive Length 3

rectly harness the ASP knowledge representation. Second, beyond making solely
the binary choice, whether an item is matching the user preferences or not, we
calculate fine grained utilities to rank items. Third, we demonstrate meaningful
explanations following the taxonomy of [5], where explanations actually reason
on all three information categories: user preferences, item properties as well as
comparisons with alternatives.

3 Working Example

In order to illustrate the applicability of ASP for knowledge-based recommen-
dation approaches we develop a motivating example. It builds on a utility-based
recommendation scenario, where the domain knowledge is encoded by relating
user needs and item properties via utility values on different dimensions based
on multi-attribute utility theory (MAUT) [2]. Due to the clarity of the depen-
dencies we build on a published example [3] from the domain of financial services
that actually constitutes a small excerpt from a real world recommender system
in use by a European financial services provider.

The core of MAUT specifications are utility dimensions. These dimensions
are abstract concepts which contribute to the overall utility of an item as per-
ceived by a user. In our working example there are two dimensions: profit, i.e.
the financial return of an investment, and availability, i.e. how quickly an in-
vestment can be converted back to cash. Note, that these utility dimensions
are abstract concepts capable to model and map also indirect relationships be-
tween user and/or product attributes. In our example, the simplified user profiles
contain just two attributes (or explicit preferences), namely the duration of an
investment and the personal goal of a user with respect to some investment. For
the investment duration let us assume three distinct values long, medium and
short term. Analogously, for the goal description we again assume three values:
savings for a rainy day, profitable growth and venture. Similarly, properties also
describe product items. Let us assume that financial products can be described
based on the portions of shares a product contains (0%, < 30%, < 60%, < 80%,
> 80%) as well as expected price fluctuation (low, medium and high).

The connection between utility dimensions and attribute values can be given
by so called scoring values (or just scores for short) that specify how much user
preferences and product properties contribute to the utility dimensions. The
higher the score for a dimension based on a given attribute value the more this
attribute contributes to fulfilling this dimension. In this example we use scores
between 0 and 10 where a score of 0 signifies that an attribute value does not
positively contribute to a dimension. Tables 1 and 2 depict the scores for the user
attribute values with respect to these utility dimensions. Tables 3 and 4 depict
the example scores for the product attribute values with respect to the utility
dimensions. For demonstration purposes, we have a small set of four financial
products. Table 5 depicts the attribute values of these products.

Erich Teppan and Markus Zanker

duration|profit|availability
long 10 2
medium 7 6
short 3 10

Table 1. User scores for duration dimension

goal |profit|availability
savings| 2 8
growth | 6 4
venture| 10 2

Table 2. User scores for goal dimension

shares ‘ profit ‘ availability

0%| 2 7
1-30% 4 6
31-60%| 5 5
61 —80%| 8 2
81 —100%| 10 1

Table 3. Product scores for duration dimension

fluctuation|profit|availability
high 7 4
medium 5 6
low 1 8

Table 4. Product scores for goal dimension

Title Suppressed Due to Excessive Length 5

product shares|fluctuation
mutual fund AXP|31-60%| medium
bond BX 0% medium
bond RX 0% high
mutual fund CXP [61-80% high

Table 5. Product attribute values

For a given product, its contribution to a dimension is calculated as the sum
of its attribute value scores on that dimension. Table 6 depicts the computation
for the example products.

product profit |availability
mutual fund AXP|5+5=10] 5+6=11
bond BX 245=7| 7+6=13
bond RX 247=9| T7+4=11
mutual fund CXP|8+7=15| 2+4=6

Table 6. Product contributions to utility dimensions

Likewise, the weight that is given to a dimension is estimated as the sum
of user attribute value scores on that dimension. For the example user profile
depicted in Table 7 the score calculation is given in Table 8.

profile|/duration| goal
Simon | medium |savings
Table 7. Example user profile

Finally, the overall utility of each product for a specific user is defined by the
sum of weighted dimension contributions. The computations for our toy example
are given in Table 9.

Hence, for this example scenario, the top ranked product for user Simon
would be bondBX followed by mutual fund AXP. These overall utilities can
be utilized already for a very basic justification for each recommendation, such
as 'Ttem X promises the highest overall utility u,’. However, this might not
yet satisfy users, who would like to understand more what happens behind the
scenes. A closer look to the dimensional contributions and weights provides us
means for further argumentation, for instance, "The top ranked bond BX scores
also strongest in terms of awailability, which is also considered most relevant
given your preferences p,’. On the other hand, mutual fund AXP scores second
best on both dimensions, i.e. it can be justified as being a good compromise.
Although mutual fund CXP is the worst overall it shows the best contributions
to profit. For bond RX there is, for instance, a clear negative explanation why

6 Erich Teppan and Markus Zanker

profile| profit |availability
Simon |7+2=9| 6+48=14
Table 8. User weights for utility dimensions

user product utility
Simon|mutual fund AXP|[9*10+14%11=244
bond BX 9*74+14*13=245
bond RX 9*9+14*11=235
mutual fund CXP| 9*15+14*6=219
Table 9. Product utilities for the example user profile

it must not be recommended since it is dominated by mutual fund AXP that
offers the same utility score in terms of availability, but even more in terms of
profit. Thus, there is no rational reason for opting towards bond RX.

These are just some examples of explanations that can be generated based
on utilities. In the next section we show how to express the whole utility and
explanation calculation, i.e. the complete recommendation engine, in ASP.

4 ASP for recommenders

In this section we show how utility based recommendation and explanation can
be expressed based on the answer set programming (ASP) paradigm in form of
first order logic facts and rules. Since it is not possible at this point to give a
complete introduction to ASP, we explain the ASP code snippets on an intuitive
level®.

Listing 1.1 depicts how the scoring and product data in Table 1-5 can be
expressed by logic facts.

user_score (duration ,long, profit ,10).
duration ,medium, profit ,7) .
duration ,short , profit ,3).
duration ,long,availability ,2).
duration ,medium, availability ,6) .
duration ,short ,availability ,10).

user_score
user_score
user_score
user_score
user_score

A~ N N N~

user_score
user_score
user_score

goal ,savings , profit ,2).

goal ,growth , profit ,6) .

goal , venture , profit ,10).

goal ,savings ,availability ,8).
goal ,growth ,availability ,4).
goal , venture , availability ,2).

user_score
user_score

e e T e T N

user_score

product_score (shares ,”0” ,profit ,2).
product_score (shares ,”1-30" ,profit ,4) .

* For an in-depth introduction to ASP please refer to [6].

Title Suppressed Due to Excessive Length 7

shares ,”731-60” ,profit ,5) .

shares ,”761-80" ,profit ,8) .

shares ,”81—-100” ,profit ,10) .
shares ,”70” ;availability ,7).
shares ,”1-30" ;availability ,6) .
shares ,”731—-60" ,availability ,5) .
shares ,761—-80” ,availability ,2).
shares ,”781—-100” ,availability ,1).

product_score
product_score
product_score
product_score
product_score
product_score
product_score
product_score

NN N N N N S

fluctuation ,high , profit ,7).
fluctuation ,medium, profit ,5) .
fluctuation ,low, profit ,1).
fluctuation ,high,availability ,4) .
fluctuation ,medium, availability ,6) .
fluctuation ,low, availability ,8).

product_score
product_score
product_score
product_score
product_score
product_score

e N T e N

"mutual fund CXP” shares ,”61-807).
"mutual fund CXP” ,fluctuation ,high).

product
product

product (" mutual fund AXP” shares ,”31-607).
product (" mutual fund AXP” ,fluctuation ,medium).
product (”bond BX” ;shares ,”07).
product ("bond BX” | fluctuation ,medium) .
product (”bond RX” ,shares ,”07).
product (”bond RX” | fluctuation ,high).

(7

(7

Listing 1.1. Scoring and product data given as logic facts

Analogously, Listing 1.2 shows how the user profile data from Table 7 is
encoded by ASP logic.

profile (”Simon” ,duration ,medium) .
profile (”Simon” ,goal ,savings).

Listing 1.2. User profile given as logic facts

In an interactive recommendation scenario, these profile facts are to be
changed conforming to actual user requirements or query.

contribution (Productname ,Dimension , Total):—
product (Productname, _, _),
product_score (-, _,Dimension, _),
Total=#sum{Score , Attribute:
product (Productname , Attribute , Value) ,
product_score (Attribute , Value , Dimension, Score) }.

Listing 1.3. Calculation of product contributions in ASP

For calculating the contributions of all products for all utility dimensions
only the single ASP rule given in Listing 1.3 is needed. Like also in other logic
programming languages (e.g. Prolog) the :-” operator stands for left implication.
To put it very simple, the left hand side of the rule (i.e. left from *:-’) specifies the
atoms that are to be added to the solution, which in ASP is called answer set,

8 Erich Teppan and Markus Zanker

based on the calculations done on the right hand side. The core of the calculation
is performed by a #sum aggregate that, sums up all scoring values for a product
Productname on a dimension Dimension. Terms beginning with capital letters
like Productname or Dimension stand for logic variables. Consequently, this rule
'fires’ once for each combination of products and dimensions.

The atoms produced by the rule in Listing 1.3 and included in the answer
set are the following:

contribution("mutual fund AXP",profit,10)
contribution("bond BX",profit,7)
contribution("bond RX",profit,9)
contribution("mutual fund CXP",profit,15)
contribution("mutual fund AXP",availability,11)
contribution("bond BX",availability,13)
contribution("bond RX",availability,11)
contribution("mutual fund CXP",availability,6)

weight (Username , Dimension , Total):—
profile (Username,_,_),
user_score (_,_,Dimension, _),
Total=#sum{Score , Attribute:
profile (Username, Attribute , Value) ,
user_score (Attribute , Value , Dimension , Score) }.

Listing 1.4. Calculation of user weights in ASP

Similarly, all user weights based on the profile and scoring facts are calculated
by the ASP rule defined in Listing 1.4. This rule produces the following two
solution atoms:

weight ("Simon",profit,9)
weight ("Simon",availability,14)

utility (Username, Productname , Total):—
profile (Username, _, _),
product (Productname,_,_),
Total=#sum{WxC, Dimension :
weight (Username , Dimension ,W) ,
contribution (Productname , Dimension ,C) }.

Listing 1.5. Utility calculation expressed in ASP

Finally, the rule in Listing 1.5 calculates the resulting utilies based on the
product contributions and user weights. The solution atoms produced by the
rule in Listing 1.5 are:

utility("Simon","mutual fund AXP",244)
utility("Simon","bond BX",245)
utility("Simon","bond RX",235)
utility("Simon","mutual fund CXP",219)

Title Suppressed Due to Excessive Length 9

At this point we want to emphasize that the three rules depicted in Listing
1.3-1.5, which can be seen as a logic representation of the core of a utility-based
recommendation engine, are totally generic and do not have to be changed in
case of extending the set of products, product or user attributes, attribute values
or scoring values.

Building on such an ASP implementation of a recommendation engine, addi-
tional rules can be easily added in order to produce solution atoms for explana-
tions. For instance, if we want to support the top ranked item by a corresponding
explanation, we can add the rule in Listing 1.6. This rule basically expresses that
a product Productname with a utility U is top ranked if there is no other product
Productnamel with a higher utility Ul.

top-ranked (Username , Productname ,U):—
utility (Username, Productname ,U) ,
#count{Productnamel :
utility (Username, Productnamel ,Ul) ,UI>U}=0.

Listing 1.6. Producing an argument for the top ranked product
The rule in Listing 1.6 produces the following solution atom:

top_ranked("Simon","bond BX",245)

top-in_dimension (Dimension ,P,C):—
contribution (P, Dimension ,C),
#count{P1l: contribution (P1, Dimension,Cl) ,C1>C}=0.

Listing 1.7. Calculating the top item in a dimension

Similarly, we can add a rule for identifying whether a product is best in some
dimension. Listing 1.7 shows such a rule, which produces the following atoms:

top_in_dimension(profit,"mutual fund CXP",15)
top_in_dimension(availability, "bond BX",13)

domination (P,” dominated by” ,P1):—
product (P, _,_) ,product(P1,_,_),
#count{Dimension: contribution (P, Dimension ,C) ,
contribution (P1, Dimension ,C1) ,C>C1}=0,
#count{Dimension: contribution (P, Dimension ,C),
contribution (P1,Dimension ,C1) ,C1>C}>=1.

Listing 1.8. Calculating totally dominated alternatives

We can also produce counter arguments, for example, on totally dominated
product items, i.e. those where there exists an item that is at least equally good
in all dimensions and better in at least one dimension. The rule given in Listing
1.8 achieves these negative explanations and adds the following atom to the
answer set:

domination("bond RX","dominated by","mutual fund AXP")

10 Erich Teppan and Markus Zanker

5 Conclusions

The paper exemplified a first proof-of-concept for employing the ASP paradigm
to develop recommendation applications and lists core predicates and rules. Par-
ticularly noteworthy is the ability to efficiently derive explanations including
negative ones that identify dominated or non Pareto-efficient choice options.

References

1. Anelli, V.W., Basile, P., Bridge, D., Di Noia, T., Lops, P., Musto, C., Narducci,
F., Zanker, M.: Knowledge-aware and conversational recommender systems. In:
Proceedings of the 12th ACM Conference on Recommender Systems. pp. 521-522.
ACM (2018)

2. Dyer, J.S.: Maut multiattribute utility theory. In: Multiple criteria decision anal-
ysis: state of the art surveys, pp. 265-292. Springer (2005)

3. Felfernig, A., Teppan, E., Friedrich, G., Isak, K.: Intelligent debugging and repair of
utility constraint sets in knowledge-based recommender applications. In: Proceed-
ings of the international conference on intelligent user interfaces (IUI). Springer
Berlin Heidelberg

4. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment
for the development of knowledge-based recommender applications. International
Journal of Electronic Commerce 11(2), 11-34 (2006)

5. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender
systems. Al Magazine 32(3), 90-98 (2011)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming (ICLP‘88). pp. 1070 — 1080. MIT Press
(1988)

8. Ielpa, S.M., Tiritano, S., Leone, N., Ricca, F.: An asp-based system for e-tourism.
In: Erdem, E., Lin, F., Schaub, T. (eds.) Logic Programming and Nonmonotonic
Reasoning. pp. 368—-381. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

9. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction. Cambridge University Press (2010)

10. Leite, J., Ili¢, M.: Answer-set programming based dynamic user modeling for rec-
ommender systems. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) Progress in
Artificial Intelligence. pp. 29-42. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007)

11. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In: CHI’06 extended abstracts on Human
factors in computing systems. pp. 1097-1101. ACM (2006)

