
Train Scheduling with Hybrid ASP

Dirk Abels2, Julian Jordi2, Max Ostrowski1, Torsten Schaub1,3?, Ambra Toletti2, and
Philipp Wanko1,3

1 Potassco Solutions, Germany
2 SBB, Switzerland

3 University of Potsdam, Germany

Densely-populated railway networks transport millions of people and carry millions
of tons of freight daily; and this traffic is expected to increase even further. Hence, for
using a railway network to capacity, it is important to schedule trains in a flexible and
global way. This is however far from easy since the generation of railway timetables is
already known to be intractable for a single track [2]. Hundreds of trains on a densely
connected railway network lead to complex inter-dependencies due to connections
between trains and resource conflicts.

The train scheduling problem can essentially be divided into three distinct tasks:
routing, conflict resolution and scheduling. First, trains are routed through a railway
network. Second, parts of the network are assigned resources representing, for example,
the physical tracks or junctions that can only be passed by a single train at once. Whenever
several trains are routed through the same resource, they have to be serialized in order to
avoid collisions. Finally, a schedule has to be created reflecting when the train arrives at
certain points in its path. A valid schedule has to respect a variety of timing constraints,
ranging from earliest and latest arrival times, traveling and waiting times, resource
conflicts between trains, to connections between trains. After obtaining a valid routing
and scheduling, the solution is evaluated regarding the delay of the trains and the quality
of the paths they have taken.

We take up this challenge and show how to address real-world train scheduling
with hybrid Answer Set Programming (ASP [5]). More specifically, we implement our
approach with the hybrid ASP system clingo[DL] [4], an extension of clingo [3] with
difference constraints. Our hybrid approach allows us to specifically account for the
different types of constraints induced by routing, scheduling, and optimization. While
we address routing and resource conflicts with regular ASP, we use difference constraints
(over integers) to capture fine timings. Difference constraints are of the form x− y ≤ k,
where x and y are integer variables and k an integer constant, and constitute a subset of
Integer Linear Programming that is solvable in polynomial time. Furthermore, encoding
timing constraints for scheduling as difference constraints gives us the obvious advantage
that integer variables are not subject to grounding.

Our hybrid ASP-based encoding for solving the train scheduling problem relies
heavily on dedicated preprocessing techniques to reduce the problem size as well as
additional constraints and domain-specific heuristics to reduce the search space and
improve solving performance. This constitutes a significant improvement over the previ-
ous approach [1] that, while similar in principle, does not scale to the largest instances

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.



2 Authors Suppressed Due to Excessive Length

available. The preprocessing techniques mainly exploit redundancy in the resource dis-
tribution in the railway network. That is, we remove resources that pose constraints
which are subsumed by other resources, and identify large areas for which a single
decision suffices to serialize trains which are in conflict. We furthermore reduce the
amount of integer variables and timing constraints by using a compressed representation
of the railway network. The additional constraints restrict the search space in the hope of
improving solving performance. We hereby rely on the fact that clingo[DL] consists of a
Boolean search engine (clingo) and a dedicated difference logic propagator. While some
atoms are purely Boolean, others have a semantics in terms of difference constraints. We
transfer some knowledge represented in these difference constraints back to the logic
program, thereby improving the search in the ASP part of the problem and leveraging
clingo’s effective propagation techniques. Finally, a domain-specific heuristic is used
that prefers sequences of trains in a way that reduces likelihood of conflicts.

We evaluate our train scheduling solution on 25 real-world instances crafted by
domain experts from Swiss Federal Railways (SBB). The instances capture parts of
the railway network between three Swiss cities, namely Zurich, Chur and Luzern, and
vary in number of trains, size and depths of railway network and timing constraints.
The biggest instances contain the whole railway network and up to 467 trains taken
from long distance, regional, suburban and freight traffic between those three cities.
Thus, we tackle instances with approximately six hours of the full train schedule on a
railway network covering approximately 200 km. We show the vital importance of a
deep understanding of the problem to enable effective preprocessing techniques and
simplifications in the problem encoding. For instance, for those 25 instances, we were
able to reduce the amount of resources by 34%, the number of decisions to serialize the
trains by 92%, and the number of integer variables by 25% on average. This enables us
to solve all available instances within minutes. Furthermore, the train schedules created
were of high quality. Our approach found a train schedule without delay for all instances
were this was possible, and otherwise, the quality of the results was sanctioned by SBB.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with
hybrid ASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Proceedings of the Fifteenth
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19).
Lecture Notes in Artificial Intelligence, vol. 11481, pp. 3–17. Springer-Verlag (2019)

2. Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the train timetabling problem.
Operations Research 50, 851–861 (10 2002)

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory and Practice of Logic Programming 19(1), 27–82 (2019), http://arxiv.org/
abs/1705.09811

4. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo goes
linear constraints over reals and integers. Theory and Practice of Logic Programming 17(5-6),
872–888 (2017)

5. Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proceedings of the International
Conference on Logic Programming (ICLP’99). pp. 23–37. MIT Press (1999)


