
The return of xorro

Flavio Everardo1[0000−0002−6421−3158]

University of Potsdam, Germany
flavio.everardo@cs.uni-potsdam.de

Parity constraints constitute the foundations of reasoning modes like sampling
or (approximate) model counting [5], as well as circuit verification and cryptogra-
phy [4]. With most of their applications in the neighboring area of Satisfiability
Testing (SAT) [5], almost no attention has so far been paid to their integration
into Answer Set Programming (ASP).

Previous efforts represented parity constraints into ASP in three ways, via
the #count aggregate coupled with a modulo-two operation as used or sampling
in the initial prototype of xorro from 20091, as lists, as shown in harvey [3],
and as the (discontinued) aggregates #even and #odd from gringo series 3 via
meta-encodings. Unlike these approaches, several SAT solvers feature rather
sophisticated treatments of parity constraints. For instance, most popularly
the award-winning solver crypto-minisat [6], which pursues a hybrid approach,
addressing parity constraints separately with Gauss-Jordan Elimination (GJE).

To this end, we present the next generation of xorro, [7] implementing six
alternatives to handle parity constraints into ASP, benefiting from the advanced
interfaces of clingo, and the sophisticated solving techniques developed in SAT.
We propose two types of approaches, eager and lazy. 2 The former relies on ASP
encodings of parity constraints, and the latter uses theory propagators within
clingo’s Python interface [2].

To accommodate parity constraints in the input language, we rely on clingo’s
theory language extension [2] following the common syntax of aggregates [1]:

1 &odd{ 1 : p(1) }.

2 &even{ X : p(X), X>1 }.

That is, xorro extends the input language of clingo by aggregate names &even

and &odd that are followed by a set, whose elements are terms conditioned by
conjunctions of literals separated by commas.3 In the context of a choice rule
{p(1..3)}., the parity constraints shown above amounts to the xor operations:
p(1)⊕⊥ and p(2)⊕p(3)⊕> (where ⊥ and > stand for the Boolean constants true
and false, respectively) yielding the answer sets {p(1)} and {p(1),p(2),p(3)}.

Currently, these constraints are interpreted as directives, filtering answer sets
that do not satisfy the parity constraint in question. 4 Hence, the first constraint
filters out answer sets not containing the atom p(1), while the second requires
that either none or both of the atoms p(2) and p(3) are included.

1 https://sourceforge.net/p/potassco/code/HEAD/tree/branches/xorro
2 Both eager and lazy follows the methodology from Satisfiability modulo theories.
3 In turn, multiple conditional terms within an aggregate are separated by semicolons.
4 For now, parity constraints may not occur in the bodies nor the heads of rules.



2 F. Everardo

Table 1, shows the six implementations to handle parity constraints. The
first three corresponds to the eager, and the last three to the lazy approaches.

Approach Description

count Add count aggregates with a modulo 2 operation
list,tree Translate binary xor operators into rules forming list and tree structures
countp Propagator simply counting truth literals on total assignments
up Propagator implementing unit propagation
gje Propagator implementing (non-incremental) Gauss-Jordan Elimination

Table 1. xorro approaches to handle parity constraints

Finally, we empirically evaluate the different approaches in view of their impact
on solving performance, while varying the number and size of parity constraints
compared against clingo solving time. The experiments show that xorro scales
depending on the combination of the number, density, and preprocessing of the
parity constraints. When increasing the number of high-density constraints as
used in sampling (xors with a size of half the program variables), we start to
see that the solving time increases concerning clingo. Comparing to previous
approaches, the eager counting, and the list (from the previous xorro and harvey),
both stay behind for sampling purposes. Their scalability is subjected to the
density of the parity constraints and preprocessing, and particularly, grounding
becomes the bottleneck for the counting approach with aggregates.

References

1. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
Theory and Practice of Logic Programming 15(4-5), 449–463 (2015)

2. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko,
P.: Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Tech-
nical Communications of the Thirty-second International Conference on Logic
Programming (ICLP’16). vol. 52, pp. 2:1–2:15. Open Access Series in Informatics

3. Greßler, A., Oetsch, J., Tompits, H.: Harvey: A system for random testing in ASP.
In: Balduccini, M., Janhunen, T. (eds.) Proceedings of the Fourteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17).
Lecture Notes in Artificial Intelligence, vol. 10377, pp. 229–235. Springer-Verlag.

4. Laitinen, T.: Extending SAT Solver with Parity Reasoning. Dissertation, Aalto
University (Nov 2014)

5. Meel, K.: Constrained Counting and Sampling: Bridging the Gap between Theory
and Practice. Dissertation, Rice University (Aug 2018)

6. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Proceedings of the Twelfth International Conference
on Theory and Applications of Satisfiability Testing (SAT’09). Lecture Notes in
Computer Science, vol. 5584, pp. 244–257. Springer-Verlag (2009)

7. Everardo, F., Janhunen, T., Kaminski, R., Schaub, T.: The return of xorro. In:
Balduccini M., Lierler Y., and Woltran S. (eds.) Proceedings of the Fifteenth
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’19). Lecture Notes in Artificial Intelligence, vol. 11481, pp. 284–297.
Springer-Verlag (2019)


	The return of xorro

