
Distributed Answer Set Coloring: Stable Models
Computation via Graph Coloring

Marco De Bortoli mbortoli@ist.tugraz.at

1 Institute for Software Technology, Graz University of Technology, Graz, Austria
2 Dept DMIF, University of Udine, Udine, Italy

3 Dept CS, New Mexico State University, Las Cruces, NM, USA

Abstract. In this paper we present a distributed solver for ASP, based
on the well-known Graph Coloring algorithm, implemented via the Boost
and MPI libraries for C++.

1 Introduction and Problem Description

The Answer Set Programming (ASP) language has become very popular in the
last years thanks to the availability of more and more efficient solvers (e.g.,
Clingo [5] and DLV [1]). As described, e.g., in [3], ASP has some important
weakness when dealing with real-world complex problems, like planning [4, 8],
which generates huge ground programs exceeding the resources of a single ma-
chine. Lazy grounding is an attempt to address this problem [2, 9], but it is not
effective for every domain.
Our contribution consists into a distributed ASP solver, called Distributed An-
swer Set Coloring (DASC), which automatically splits a ground program over a
network, using the resources of a single computational node to process only a
portion of the original program. To accomplish this, we use the Graph Coloring
algorithm [7], which represents the program as a graph, and its stable models as
different colorings of its vertices.
DASC is not the first attempt of this sort: it was born with the purpose of
lowering the implementation level of the mASPreduce solver, a tool developed
by Federico Igne for his Master thesis [6], in order to address its performance.
mASPreduce is indeed developed with the distribution framework Apache Spark,
which, although it is a very powerful and expressive framework for distributed
programming, gives to the user very low control over the communication flow,
and it is the real performance killer during such kind of distributed computa-
tions, as can be seen from the experimental results.
We handled this communication control problem by developing DASC with
C++, using the MPI library for messages handling and the Parallel Boost Graph
Library to represent the distributed graph to color.



2 Rule Dependency Graph and Graph Coloring
Algorithm

DASC is a distributed implementation of the Graph Coloring Algorithm for solv-
ing, obtained by splitting over a set of computational nodes the Rule Dependecy
Graph (RDG) of the ground program, in order to let each node to work in its
partition of the graph, with its own resources, without duplicating any data.

r1 p .
r2 q .
r3 r :− p , not q .
r4 s :− not r .

Answer Set = {p,q,s};

r1 r2

r3 r4

Above, the reader can see a simple ground program together with its RDG.
Executing the Graph Coloring algorithm on that, we obtain (if any) the stable
models in terms of colorings, namely maps from the set of rules to the set {⊕,	}.
Given a total coloring, we deduce the corresponding stable model by taking the
heads of all ⊕ colored rules, as shown above.

Theorem 1 (Operational answer set characterization). Let Γ RDG and C
total coloring of Γ , with P,V propagation operators, D as the non-deterministic
guess operator and ∗ the fix-point operator (see [7] for more details about the
operators). C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n
such that:

– C0 = (PV)∗Γ ((∅, ∅));
– Ci+1 = (PV)∗Γ (D◦

Γ (Ci)) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
– Cn = C.

From Cn a stable model is deduced.

Table 1. Comparison between mASPreduce and DASC on a Toy Example. Times in
seconds.

1 cp unit 2 cp units 3 cp units 4 cp units 5 cp units

inst mASPr DASC mASPr DASC mASPr DASC mASPr DASC mASPr DASC

2 56.330 0.003 42.190 0.010 40.160 0.011 41.177 0.013 35.405 0.014

3 95.697 0.048 64.315 0.14 61.767 0.151 62.845 0.16 54.144 0.172

4 150.82 0.36 88.043 1.11 89.145 1.393 89.695 1.115 78.178 1.232

5 error 1.83 error 6.118 error 6.18 error 6.226 error 5.256

6 stopped 7.03 stopped 22.513 stopped 20.765 stopped 20.881 stopped 18.511

7 stopped 21.99 stopped 71.07 stopped 81.55 stopped 66.43 stopped 65.83

8 stopped 58.90 stopped 185.46 stopped 185.45 stopped 182.33 stopped 191.27)



3 Conclusion and Future Work

DASC represents a step forward in building a tool capable of exploiting dis-
tributed system resources in order to manage huge-size programs. Yet, we are
still far from achieving the goal of handling large problems, and a lot of work
has to be done to make our tool competitive with state-of-the-art solvers.
Moreover, the performance difference between our tool and mASPreduce is
pretty huge, so lowering the level of implementation paid off, together with the
development of a different propagation technique, the so-called notify change
approach.
To confirm C++ boost improvement with respect to Spark, in the instances
in which Clingo exceeds 10ms, the minimum machine time, DASC is about
500 times slower; STRASP [10] instead, the distributed grounder developed by
Pietro Totis in his thesis using Spark, capable of solving stratified programs
(non-definite programs solvable without non-determinism in polynomial time),
is about 2000 times slower than Clingo [5].

Finally, we present below the roadmap for DASC:

– improving the initial distribution or changing the redistribution algorithm
with a more sophisticated one;

– implementing local multithreading;
– implementing heuristics, like the strong techniques used by Clingo, namely

clause learning and backjumping.

References

1. Weronika T. Adrian, Mario Alviano, Francesco Calimeri, Bernardo Cuteri,
Carmine Dodaro, Wolfgang Faber, Davide Fuscà, Nicola Leone, Marco Manna,
Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari. The
ASP system DLV: advancements and applications. KI, 32(2-3):177–179, 2018.

2. Jori Bomanson, Tomi Janhunen, and Antonius Weinzierl. Enhancing lazy ground-
ing with lazy normalization in answer-set programming. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019., pages 2694–2702. AAAI Press, 2019.

3. Alessandro Dal Palù , Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi.
GASP: answer set programming with lazy grounding. Fundam. Inform., 96(3):297–
322, 2009.

4. Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An empirical study of
constraint logic programming and answer set programming solutions of combina-
torial problems. JETAI, 21(2):79–121, 2009.

5. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo = ASP + control: Preliminary report. CoRR, abs/1405.3694, 2014.

6. Federico Igne. Analysis and development of a distributed asp solver using mapre-
duce. Master’s thesis, University of Udine, 2017.



7. Kathrin Konczak, Thomas Linke, and Torsten Schaub. Graphs and colorings for
answer set programming. TPLP, 6(1-2):61–106, 2006.

8. Tran Cao Son and Enrico Pontelli. Planning for biochemical pathways: A case
study of answer set planning in large planning problem instances. In Marina De
Vos and Torsten Schaub, editors, Proceedings of the First International SEA’07
Workshop, Tempe, Arizona, USA, volume 281 of CEUR Workshop Proceedings,
pages 116–130, 01 2007.

9. Richard Taupe, Antonius Weinzierl, and Gerhard Friedrich. Degrees of laziness in
grounding - effects of lazy-grounding strategies on ASP solving. In Marcello Bal-
duccini, Yuliya Lierler, and Stefan Woltran, editors, Logic Programming and Non-
monotonic Reasoning - 15th International Conference, LPNMR 2019, Philadel-
phia, PA, USA, June 3-7, 2019, Proceedings, volume 11481 of Lecture Notes in
Computer Science, pages 298–311. Springer, 2019.

10. Pietro Totis. A distributed asp solver for stratified programs. Master’s thesis,
University of Udine, 2018.


