
Determining Action Reversibility in STRIPS
Using Answer Set and Epistemic Logic

Programming⋆

Lukáš Chrpa1[0000−0001−9713−7748], Wolfgang Faber2[0000−0002−0330−5868],
Daniel Fišer1[0000−0003−2383−9477], and Michael Morak2[0000−0002−2077−7672]

1 Czech Technical University in Prague, Czechia
{chrpaluk,fiserdan}@fel.cvut.cz
2 University of Klagenfurt, Austria

{wolfgang.faber,michael.morak}@aau.at

Abstract. In planning and reasoning about action and change, reversibil-
ity of actions is the problem of deciding whether the effects of an action
can be reverted by applying other actions in order to return to the orig-
inal state. While this problem has been studied for some time, recently
there as been renewed interest in the context of the language PDDL.
After reviewing the concepts, in this paper we propose solutions by lever-
aging an existing translation from PDDL to Answer Set Programming
(ASP), which we then use to solve the problem via ASP and Epistemic
Logic Programming (ELP). This work provides sound and complete sys-
tems for determining reversibility of PDDL actions (restricted to the
STRIPS fragment), while also providing insight into the performance of
a state-of-the-art ELP solver and how it compares to ASP solving.

Keywords: Planning · Answer Set Programming · Reasoning about
Action and Change · Epistemic Logic Programming.

1 Introduction

Traditionally, the field of Automated Planning [21, 22] deals with the problem of
generating a sequence of actions—a plan—that transforms an initial state of the
environment to some goal state. Actions, in plain words, stand for modifiers of
the environment. One interesting question is whether the effects of an action are
reversible (by other actions), or in other words, whether the action effects can
be undone. Notions of reversibility have previously been investigated; cf. e.g.,
works by Eiter et al. [14] or by Daum et al. [11].

Studying action reversibility is important for several reasons. Intuitively, ac-
tions whose effects cannot be reversed might lead to dead-end states from which
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the goal state is no longer reachable. Early detection of a dead-end state is benefi-
cial in a plan generation process [24]. Reasoning in more complex structures such
as Agent Planning Programs [12] which represent networks of planning tasks
where a goal state of one task is an initial state of another is even more prone to
dead-ends [8]. Concerning non-deterministic planning, for instance Fully Observ-
able Non-Deterministic (FOND) Planning, where actions have non-deterministic
effects, determining reversibility or irreversibility of each set of effects of the ac-
tion can contribute to early dead-end detection, or to generalizing recovery from
undesirable action effects which is important for efficient computation of strong
(cyclic) plans [6]. Concerning online planning, we can observe that applying re-
versible actions is safe and hence we might not need to explicitly provide the
information about safe states of the environment [10]. Another, although not
very obvious, benefit of action reversibility is in plan optimization. If the effects
of an action are later reversed by a sequence of other actions in a plan, these
actions might be removed from the plan, potentially shortening it significantly.
It has been shown that under such circumstances, pairs of inverse actions, which
are a special case of action reversibility, can be removed from plans [9].

In [25] we introduced a general framework for action reversibility that offers
a broad definition of the term, and generalizes many of the already proposed
notions of reversibility, like “undoability” proposed in [11], or the concept of
“reverse plans” as introduced in [14]. The concept of reversibility in [25] directly
incorporates the set of states in which a given action should be reversible. We
call these notions S-reversibility and φ-reversibility, where the set S contains
states, and the formula φ describes a set of states in terms of propositional
logic. These notions are then further refined to universal reversibility (referring
to the set of all states) and to reversibility in some planning task Π (referring to
the set of all reachable states w.r.t. the initial state specified in Π). These last
two versions match the ones proposed in [11]. Furthermore, our notions can be
further restricted to require that some action is reversible by a single “reverse
plan” that is not dependent of the state for which the action is reversible. For
single actions, this matches the concept of the same name proposed in [14].

The complexity analyses in [25] indicate that several of these tasks can be
solved by means of Answer Set Programming (ASP), but also using Epistemic
Logic Programming (ELP). The main contribution of this paper is to leverage the
translations implemented in plasp [13] to produce encodings to effectively solve
some reversibility tasks on PDDL domains, restricted, for now, to the STRIPS
[17] fragment. We describe both ASP and ELP encodings in two versions each:
one version exploits a shortcut, while the other is more extendible. While ELP
might at a first glance might appear unsuitable, as it provides more expressivity
than needed, it turns out to permit arguably more natural and extendible en-
codings. We then also perform a preliminary experimental analysis on synthetic
test cases. This analysis shows that the ASP encodings have a clear edge over the
ELP encodings, which can be explained by the well-established nature of ASP
solvers versus the comparatively experimental nature of ELP solvers, though.
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Structure. The remainder of the paper is organized as follows. In Section 2, we
introduce basic concepts; Section 3 then reviews definitions and properties of dif-
ferent versions of reversibility from [25]; in Section 4 we review the plasp format
and provide some ASP and ELP encodings for reversibility tasks; in Section 5
we report on the preliminary experiments before concluding in Section 6.

2 Background

STRIPS Planning. Let F be a set of facts, that is, atomic statements about the
world. Then, a subset s ⊆ F is called a state, which intuitively represents a set
of facts considered to be true. An action is a tuple a = ⟨pre(a), add(a), del(a)⟩,
where pre(a) ⊆ F is the set of preconditions of a, and add(a) ⊆ F and del(a) ⊆ F
are the add and delete effects of a, respectively. W.l.o.g., we assume actions to
be well-formed, that is, add(a) ∩ del(a) = ∅ and pre(a) ∩ add(a) = ∅. An action
a is applicable in a state s iff pre(a) ⊆ s. The result of applying an action a in a
state s, given that a is applicable in s, is the state a[s] = (s \ del(a)) ∪ add(a).
A sequence of actions π = ⟨a1, . . . , an⟩ is applicable in a state s0 iff there is
a sequence of states ⟨s1, . . . , sn⟩ such that, for 0 < i ≤ n, it holds that ai is
applicable in si−1 and ai[si−1] = si. Applying the action sequence π on s0 is
denoted π[s0], with π[s0] = sn. The length of action sequence π is denoted |π|.

A STRIPS planning task Π = ⟨F ,A, s0, G⟩ is a tuple consisting of a set of
facts F = {f1, . . . , fn}, a set of (ground) actions A = {a1, . . . , am}, an initial
state s0 ⊆ F , and a goal specification (or, simply, goal) G ⊆ F . A state s ⊆ F is
a goal state (for Π) iff G ⊆ s. An action sequence π is called a plan iff π[s0] ⊇ G.
We further define several relevant notions w.r.t. a planning task Π. A state s is
reachable from state s′ iff there exists an applicable action sequence π such that
π[s′] = s. A state s ∈ 2F is simply called reachable iff it is reachable from the
initial state s0. The set of all reachable states in Π is denoted by RΠ . An action
a is reachable iff there is some state s ∈ RΠ such that a is applicable in s.

Deciding whether a STRIPS planning task has a plan is known to be PSpace-
complete in general and it is NP-complete if the length of the plan is polynomi-
ally bounded [3].

Answer Set Programming (ASP) and Epistemic Logic Programming (ELP). We
assume the reader is familiar with ASP and ELP and will only give a very brief
overview of the core language(s). For more information on ASP, we refer to
standard literature [2, 18, 23], and, in our case, the ASP-Core-2 input language
format [5]. For more information on ELP, we refer to the original paper proposing
ELPs [19] (therein named Epistemic Specifications), whose semantics we will use
in the present paper.

ASP programs consist of sets of rules of the form

a1 | · · · | an ← b1, . . . , bℓ,¬bℓ+1, . . . ,¬bm.

In these rules, all ai and bi are atoms of the form p(t1, . . . , tn), where p is a
predicate name, and t1, . . . , tn are terms, that is, either variables or constants.
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ELP programs consist of sets of rules of the form

a1 ∨ . . . ∨ an ← ℓ1, . . . , ℓm.

Here, all ai are atoms of the form p(t1, . . . , tn), where p is a predicate name,
and t1, . . . , tn are terms, that is, either variables or constants. Each ℓi is either
an objective or subjective literal, where objective literals are of the form a or
¬a (for a an atom), and subjective literals are of the form K l or ¬K l, where
l is an objective literal. Note that often the operator M is also used, which we
will simply treat as a shorthand for ¬K¬. So the difference to ASP rules is that
objective literals are permitted in addition in rule bodies.

The domain of constants in an ASP and ELP program P is given implicitly by
the set of all constants that appear in it. Generally, before evaluating a program,
variables are removed by a process called grounding, that is, for every rule, each
variable is replaced by all possible combinations of constants, and appropriate
ground copies of the rule are added to the resulting program ground(P ). In prac-
tice, several optimizations have been implemented in state-of-the-art grounders
that try to minimize the size of the grounding.

The result of a (ground) ASP program P is calculated as follows [20]. An
interpretation I (i.e., a set of ground atoms appearing in P ) is called a model of
P iff it satisfies all the rules in P in the sense of classical logic. It is further called
an answer set of P iff there is no proper subset I ′ ⊂ I that is a model of the
so-called reduct P I of P w.r.t. I. P I is defined as the set of rules obtained from
P where all negated atoms on the right-hand side of the rules are evaluated over
I and replaced by ⊤ or ⊥ accordingly. The main decision problem for ASP is
deciding whether a program has at least one answer set. This has been shown to
be Σ2

P -complete [15] (for ground programs, or as data complexity for non-ground
programs).

The result of a (ground) ELP program P is calculated as follows [19]. A set
of interpretations I satisfies a subjective literal K l (denoted I ⊨ K l) iff the
objective literal l is satisfied in all interpretations in I. The epistemic reduct P I

of P w.r.t. I is obtained from P by replacing all subjective literals ℓ with either ⊤
in case where I ⊨ ℓ, or with ⊥ otherwise. P I , therefore, is an ASP program, that
is, a program without subjective literals. The solutions to an ELP P are called
world views. A set of interpretations I is a world view of P iff I = AS (P I)
[19], where AS (P I) denotes the set of stable models (or answer sets) of the
logic program P I according to the semantics of answer set programming [20].
Checking whether a world view exists for an ELP is known to be ΣP

3 -complete
in general [26].

3 Reversibility of Actions

In this section, we describe the notion of reversibility of actions. In particular,
we focus on the notion of uniform reversibility, but note that there are other
notions of reversibility which are lied out and explained in detail by Morak et
al. [25]. Intuitively, we call an action reversible if there is a way to undo all the
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effects that this action caused, and we call an action uniformly reversible if its
effects can be undone by a single sequence of actions irrespective of the state
where the action was applied.

While this intuition is fairly straightforward, when formally defining this con-
cept, we also need to take several other factors into account—in particular, the
set of possible states where an action is considered plays an important role [25].

Definition 1. Let F be a set of facts, A be a set of actions, S ⊆ 2F be a set of
states, and a ∈ A be an action. We call a uniformly S-reversible iff there exists
a sequence of actions π = ⟨a1, . . . , an⟩ ∈ An such that for each s ∈ S wherein a
is applicable it holds that π is applicable in a[s] and π[a[s]] = s.

The notion of uniform reversibility in the most general sense does not depend
on a concrete STRIPS planning task, but only on a set of possible actions and
states w.r.t. a set of facts. Note that the set of states S is an explicit part of the
notion of uniform S-reversibility.

Based on this general notion, it is then possible to define several concrete
sets of states S that are useful to consider when considering whether an action
is reversible. For instance, S could be defined via a propositional formula over
the facts in F . Or we can consider a set of all possible states (2F ) which gives
us a notion of uniform reversibility that applies to all possible planning tasks
that share the same set of facts and actions (i.e., the tasks that differ only in
the initial state or goals). Or we can move our attention to a specific STRIPS
instance and ask whether a certain action is uniformly reversible for all states
reachable from the initial state.

Definition 2. Let F , A, S, and a be as in Definition 1. We call the action a

1. uniformly φ-reversible iff a is uniformly S-reversible in the set S of models
of the propositional formula φ over F ;

2. uniformly reversible in Π iff a is uniformly RΠ-reversible for some STRIPS
planning task Π; and

3. universally uniformly reversible, or, simply, uniformly reversible, iff a is
uniformly 2F -reversible.

Given the above definitions, we can already observe some interrelationships.
In particular, universal uniform reversibility (that is, uniform reversibility in the
set of all possible states) is obviously the strongest notion, implying all the other,
weaker notions. It may be particularly important when one wants to establish
uniform reversibility irrespective of the concrete STRIPS instance.

The notion of uniform reversibility naturally gives rise to the notion of the
reverse plan. We say that some action a has an (S-)reverse plan π iff a is uni-
formly (S-)reversible using the sequence of actions π. It is interesting to note
that this definition of the reverse plan based on uniform reversibility now coin-
cides with the same notion as defined by [14]. Note, however, that in that paper
the authors use a much more general planning language.
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Even if the length of the reverse plan is polynomially bounded, the problem
of deciding whether an action is uniformly (φ-)reversible is intractable. In par-
ticular, deciding whether an action is universally uniformly reversible (resp. uni-
formly φ-reversible) by a polynomial length reverse plan is NP-complete (resp.
in ΣP

2 ) [25].

4 Reversibility Encodings in ASP and ELP

After reviewing the relevant features of plasp [13] in Section 4.1, we present our
encodings for determining reversibility in Sections 4.2 and 4.3.

4.1 The plasp Format

The system plasp [13] transforms PDDL domains and problems into facts. To-
gether with suitable programs, plans can then be computed by ASP solvers—and
hence also by ELP solvers, since ELPs are a superset of ASP programs. Given
a STRIPS domain with facts F and actions A, the following relevant facts and
rules will be created by plasp:

– variable(variable("f")). for all f ∈ F
– action(action("a")). for all a ∈ A
– precondition(action("a"),variable("f"),value(variable("f"),true))

:- action(action("a")).
for each a ∈ A and f ∈ pre(a)

– postcondition(action("a"),effect(unconditional),variable("f"),
value(variable("f"),true)) :- action(action("a")).

for each a ∈ A and f ∈ add(a)
– postcondition(action("a"),effect(unconditional),variable("f"),

value(variable("f"),false)) :- action(action("a")).
for each a ∈ A and f ∈ del(a)

Example 1. The STRIPS domain with F = {f} and actions del-f = ⟨{f}, ∅, {f}⟩
and add-f = ⟨∅, {f}, ∅⟩ is written in PDDL as follows:

(define (domain example1 )
(:requirements :strips)
(:predicates (f) )
(:action del-f
:precondition (f)
:effect (not (f)))

(:action add-f
:effect (f)))

plasp translates this domain to the following set of rules (plus a few technical
facts and rules):



Determining Action Reversibility in STRIPS Using ASP and ELP 7

variable(variable("f")).
action(action("del-f")).
precondition(action("del-f"), variable("f"),

value(variable("f"), true))
:- action(action("del-f")).

postcondition(action("del-f"), effect(unconditional),
variable("f"), value(variable("f"), false))

:- action(action("del-f")).
action(action("add-f")).
postcondition(action("add-f"), effect(unconditional),

variable("f"), value(variable("f"), true))
:- action(action("add-f")).

4.2 Reversibility Encodings in ASP

In this section, we present our ASP encoding for checking whether, in a given
domain, there is an action that is uniformly reversible. As we have seen in Sec-
tion 4.1, the plasp tool is able to rewrite STRIPS domains into ASP even when
no concrete planning instance for that domain is given. We will present two en-
codings, one for (universal) uniform reversibility, and one that can be used for
uniform φ-reversibility.

Note that universal uniform reversibility is computationally easier than φ-
uniform reversibility (under standard complexity-theoretic assumptions). For a
given action (and polynomial-length reverse plans), the former can be decided in
NP, while the latter is harder [25, Theorem 18 and 20]. We will hence start with
the encoding for the former problem, which follows a standard guess-and-check
pattern.

Universal Uniform Reversibility. As a “database” the encoding takes the output
of plasp’s translate action [13]. The problem can be solved in NP due to the
following Observation (*): in any (universal) reverse plan for some action a, it
is sufficient to consider only the set of facts that appear in the precondition of
a. If any action in a candidate reverse plan π for a (resp. a itself) contains any
other fact than those in pre(a), then π cannot be a reverse plan for a (resp. a is
not uniformly reversible) [25, Theorem 18]. With this observation in mind, we
can now describe the (core parts of) our encoding3.

The encoding makes use of the following main predicates (in addition to
several auxiliary predicates, as well as those imported from plasp):

– chosen/1 holds the action to be tested for reversibility.
– holds/3 encodes that some fact (or variable, as they are called in plasp

parlance) is set to a certain value at a given time step.
– occurs/2 encodes the candidate reverse plan, saying which action occurs at

which time step.
3 The full encoding is available here: https://seafile.aau.at/d/e0aedc92b4c546d5bf9a/.
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With the intuitive meaning of the predicates defined, firstly, we chose an
action from the available actions and set the initial state as the facts in the
precondition of the chosen action. We also say, in line with the Observation (*)
above, that only those variables in the precondition are relevant to check for a
reverse plan.

1 {chosen(A) : action(action(A))} 1.
holds(V, Val, 0) :-

chosen(A),
precondition(action(A), variable(V), value(variable(V), Val)).

relevant(V) :- holds(V, _, 0).

These rules set the stage for the inherent planning problem to be solved to
find a reverse plan. In fact, from the initial state defined above, we need to find
a plan π that starts with action a (the chosen action), such that after executing
π we end up in the initial state again. Such a plan is a (universal) reverse plan.
This idea is encoded in the following:

time(0..horizon+1).

occurs(A, 1) :- chosen(A).
1 {occurs(A, T) : action(action(A))} 1 :- time(T), T > 1.

caused(V, Val, T) :-
occurs(A, T),
postcondition(action(A), _, variable(V), value(variable(V), Val)),
holds(V2, Val2, T - 1) :
precondition(action(A), variable(V2), value(variable(V2), Val2)).

modified(V, T) :- caused(V, _, T).

holds(V, Val, T) :- caused(V, Val, T).
holds(V, Val, T) :- holds(V, Val, T - 1), not modified(V, T), time(T).

The above rules guess a potential plan π as described above, and then execute
the plan on the initial state (changing facts if this is caused by the application
of a rule, and keeping the same facts if they were not modified). The notation
in the rule body for caused is an abbreviation for requiring holds for each
precondition. Finally, we simply need to check that the plan is (a) executable,
and (b) leads from the initial state back to the initial state. This can be done
with the following constraints:

:- occurs(A, T),
precondition(action(A), variable(V), value(variable(V), Val)),
not holds(V, Val, T - 1).

:- occurs(A, T),
precondition(action(A), variable(V), _),
not relevant(V).

:- occurs(A, T),
postcondition(action(A), _, variable(V), _),
not relevant(V).
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:- holds(V, Val, 0), not holds(V, Val, horizon+1).
:- holds(V, Val, horizon+1), not holds(V, Val, 0).

The first rule checks that rules in the candidate plan are actually applicable.
The next two check that the rules do not contain any facts other than those that
are relevant (cf. Observation (*) above). Finally, the last two rules make sure that
at the maximum time point (i.e., the one given by the externally defined constant
“horizon”) the initial state and the resulting state of plan π are the same. It is
not difficult to verify that any answer set of the above program (combined with
the plasp translation of a STRIPS problem domain) will yield a plan π (encoded
by the occurs predicate) that contains the sequence a, a1, . . . , an of actions,
where a1, . . . , an is a (universal) reverse plan for the action a. Note that our
encoding yields reverse plans of length exactly as long as set in the “horizon”
constant. This completes our encoding for the problem of deciding universal
uniform reversibility.

Other Forms of Uniform Reversibility. Using a similar guess-and-check idea
as in the previous encoding, we can also check for uniform reversibility for a
specified set of states (that is, uniform S-reversibility). Generally, the set S of
relevant states is encoded in some compact form, and our encoding therefore,
intentionally, does not assume anything about this representation, but leaves the
precise checking of the set S open for implementations of a concrete use case.
The predicates used in this more advanced encoding are similar to the ones used
in the previous for the universal case above, and hence we will not list them here
again. However, in order to encode the for-all-states check (i.e., the check that
the candidate reverse plan works in all states inside the set S), we now need
an advanced ASP encoding technique called saturation [15]. The saturation part
occurs only towards the end.

The encoding starts off much like the previous one:

1 {chosen(A) : action(action(A))} 1.
holds(V, Val, 0) :-

chosen(A),
precondition(action(A), variable(V), value(variable(V), Val)).

affected(A, V) :- postcondition(action(A), _, variable(V), _).

Note that we no longer need to keep track of any set of “relevant” facts,
since we now need to consider all the facts that appear inside the actions and
in the set S of states. However, we need to keep track of those facts that are
affected (i.e., potentially changed) by the application of an action. We assume
that a predicate opposites/2 exists that holds, in both possible orders, the
values “true” and “false”. This will later be used to find the opposite value of
some fact at a particular time step.

Next, we again guess and execute a plan, keeping track of whether the actions
were able to be applied at each particular time step:

occurs(A, 1) :- chosen(A).
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1 {occurs(A, T) : action(action(A))} 1 :- time(T), T > 1.

applied(0). % no action needs to be applied at time step 0
applicable(A, T) :-

occurs(A, T),
applied(T - 1),
holds(V, Val, T - 1) :

precondition(action(A), variable(V), value(variable(V), Val)).
applied(T) :- applicable(_, T).
holds(V, Val, T) :-

applicable(A, T),
postcondition(action(A), _, variable(V), value(variable(V), Val)).

holds(V, Val, T) :-
holds(V, Val, T - 1), occurs(A, T), applied(T), not affected(A, V).

Again, the rules above choose a candidate reverse plan π, starting with the
action-to-be-checked a, as before. Furthermore, we set up the goal conditions: π
should be applicable (i.e., at each time step, the relevant action must have been
applied), and furthermore, the state at the beginning must be equal to the state
at the end.

same(V) :- holds(V, Val, 0), holds(V, Val, horizon + 1).
samestate :- same(V) : variable(variable(V)).

planvalid :- applied(horizon + 1).

reversePlan :- samestate, planvalid.

Finally, we need to specify that for all the states specified in the set S the
candidate reverse plan must work. This is done as follows:

holds(V, Val1, 0) | holds(V, Val2, 0) :-
variable(variable(V)),
opposites(Val1, Val2), Val1 < Val2.

holds(V, Val, T) :-
reversePlan,
contains(variable(V), value(variable(V), Val)),
time(T).

:- not reversePlan.

As stated above, this is done using the technique of saturation [15]. We
encourage the reader to refer to the relevant publication for more details on
the “inner workings” of this encoding technique. In our case, intuitively, the
rules state the following:

The first rule above specifies that some initial state should be guessed where
the candidate reverse plan π is to be checked. The second and third rule together
say that, for each such possible guess (i.e., for each possible initial state), the
atom reversePlan must be derived for that particular guess. If it does, the
second rule derives all possible holds atoms (it saturates the answer set on
the predicate holds). If there should be a guess (initial state) that does not
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derive reversePlan (so the plan is not reversing for that initial state), then
this saturation does not happen. In that case, the resulting answer set is a
subset of all the saturated ones, and so it will form an answer set not containing
reversePlan, violating the third rule. The third rule is therefore only satisfied
if no such unsaturated case exists, and that means that the plan provides a
uniform reversal.

This concludes the main part of our encoding. In its current form, the encod-
ing given above produces exactly the same results as the first encoding given in
this section; that is, it checks for universal uniform reversibility. However, the
second encoding can be easily modified in order to check uniform S-reversibility.
Simply add a rule of the following form to it:

reversePlan :- < check guess against set S >

This rule should derive the atom reversePlan precisely when the current
guess (that is, the currently considered starting state) does not belong to the
set S. This can of course be generalized easily. For example, if set S is given as
a formula φ, then the rule should check whether the current guess conforms to
formula φ (i.e., encodes a model of φ). Other compact representations of S can
be similarly checked at this point. Hence, we have a flexible encoding for uniform
S-reversibility that is easy to extend with various forms of representations of set
S4. This concludes the description of our encodings.

4.3 Reversibility Encodings using ELP
In this section, we present ELP encodings, similar in spirit to the ASP encodings
in Section 4.2. While the saturation encoding is arguably not easy to understand
and also not easy to extend, we believe that the corresponding ELP encoding is
better in both respects.

Universal Uniform Reversibility. The first encoding is very similar to the first
encoding in Section 4.2, we just describe the differences5. Essentially, instead of
multiple answer sets, we switch to multiple world views. For this, we change the
choice rules to an “epistemic guess,” here we show it for occurs, we do something
similar for chosen.

occurs(A, T) :- action(action(A)),time(T), T > 1, not &k{-occurs(A, T)}.
-occurs(A, T) :- action(action(A)),time(T), T > 1, not &k{occurs(A, T)}.
:- occurs(A,T), occurs(B,T), A!=B.
oneoccurs(T) :- occurs(A,T), time(T), T > 0.
:- time(T), T>0, not oneoccurs(T).

Eventually, we check reversability by means of a subjective literal as well.
noreversal :- holds(V, Val, 0), not holds(V, Val, H+1), horizon(H).
noreversal :- holds(V, Val, H+1), not holds(V, Val, 0), horizon(H).
:- not &k{ ~ noreversal}.
4 The full encoding can be found at https://seafile.aau.at/d/e0aedc92b4c546d5bf9a/.
5 The full encoding is available here: https://seafile.aau.at/d/373cd25718dc4377afec/.
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Other Forms of Uniform Reversibility. Using ELP, we can avoid the need for
the saturation technique that we employed in Section 4.2.

After an unique epistemic guess for chosen and making sure that the pre-
condition of the chosen action is met in the initial state, we create the initial
states by means of a non-epistemic guess:

holds(V,Val,0) | -holds(V,Val,0) :-
variable(variable(V)), contains(variable(V),value(variable(V),Val)).

oneholds(V,0) :- holds(V,Val,0).
:- variable(variable(V)), not oneholds(V,0).
:- holds(V,Val,0), holds(V,Val1,0), Val != Val1.

The reverse plan is guessed as before, applicability is checked by disallowing
the possibility of inapplicability.

inapplicable :-
occurs(A, T),
precondition(action(A), variable(V), value(variable(V), Val)),
not holds(V, Val, T - 1).

:- not &k{ ~ inapplicable}.

Reversibility is checked as in the previous encoding.
For checking uniform S-reversibility, one can simply add a constraint:

:- < check guessed state against set S >

5 Experiments

We have conducted preliminary experiments with artificially constructed do-
mains. The domains are as follows:

(define (domain rev-i)
(:requirements :strips)
(:predicates (f0) ... (fi))

(:action del-all
:precondition (and (f0) ... (fi) )
:effect (and (not (f0)) ... (not (fi))))

(:action add-f0
:effect (f0))

...

(:action add-fi
:precondition (fi-1)
:effect (fi)))
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The action del-all has a universal uniform reverse plan ⟨ add-f0, …, add-fi
⟩. We have generated instances from i = 1 to i = 6 and from i = 10 to i
= 200 with step 10. We have analyzed runtime and memory consumption of
two problems: (a) finding the reverse plan of size i (by setting the constant
horizon to i) and proving that no other reverse plan exists, and (b) showing
that no reverse plan of length i-1 exists (by setting the constant horizon to
i-1). We compare the encodings described in Sections 4.2 and 4.3, we refer
to the respective first ones as simple encodings and the second ones as general
encodings.

We have used plasp 3.1.1 (https://potassco.org/labs/plasp/), clingo 5.4.0
(https://potassco.org/clingo/), and eclingo 0.2.0 (https://github.com/potassco/eclingo)
[4] on a computer with a 2.3 GHz AMD EPYC 7601 CPU with 32 cores and
500 GB RAM running CentOS 8. We have set a timeout of 10 minutes and a
memory limit of 4GB.
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Fig. 1. Calculating the single reverse plan (plan length equals number of facts)

The results for problem (a) are plotted in Figure 1. It is clear that the simple
encodings perform much better than the general ones (which was expected),
but it is also clear that the ELP encodings perform worse than the ASP ones.
This was expected for the simple encoding, as the ELP variant (unnecessarily)
uses world views instead of answer sets to encode the same thing. However, the
discrepancy in runtime is quite significant (to a lesser degree also for memory
consumption). We hoped that the general encoding would show less difference in
runtime, however, also in that case the ELP encoding performs clearly worse. The
general ELP encoding exceeded the time limit already at the problem with six
facts, while the general ASP encoding can solve up to 50 facts. The simple ASP
encoding could solve all tested problems in under 20 seconds, while the simple
ELP encoding could solve all problems with up to 120 facts within the time limit.
The memory consumption increased with i for both encodings, proportional to
the computation time.

The results for problem (b) are plotted in Figure 2.
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Fig. 2. Determining nonexistence of a reverse plan (plan length equals number of facts
minus one)

While the simple ASP encoding shows very similar behavior to problem (a),
the general ASP encoding took longer and had a time-out already at i = 40.
Memory consumption appears to be similar to (a) for the ASP encodings.

Interestingly, compared to (a), both the general and the simple ELP encod-
ings ran noticably faster, in contrast to the ASP encodings. While the general
ELP encoding still hit the time limit for six facts, the simple encoding was able
to solve all the instances up to i = 200, but at the expense of increasing memory
usage.

The general ELP encoding scales worse, as expected, since the ELP solver
needs to evaluate all answer sets inside each possible world view. However, for
the simple encoding, especially the task of testing for non-reversibility performed
surprisingly well.

From these results, however, we can see that ELP solving is still severely
behind ASP solving, in terms of performance.

6 Conclusions

In this paper, we have given a review of several notions of action reversibility
in STRIPS planning, as originally presented in [25]. We then proceeded, on the
basis of the PDDL-to-ASP translation tool plasp [13], to present two ASP and
two ELP encodings to solve the task of universal uniform reversibility of STRIPS
actions, given a corresponding planning domain.

The encodings use two different approaches. The first makes use of a shortcut
that allows it to focus only on those facts that appear in the precondition of
the action to check for reversibility [25], this is very similar for ASP and ELP.
The second encoding uses a saturation technique for ASP, and the power of
world views (as “groupings” of answer sets), which allows for the expression of
universal quantifiers via theK operator, for ELP. The latter encodes the original
definition of uniform reversibility: for an action to be uniformly reversible, a plan
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must exist, and this plan must revert that action in all possible starting states
(where it is applicable). This second encoding is more flexible insofar as it also
allows for the checking of non-universal uniform reversibility (e.g. to check for
uniform φ-reversibility, where the starting states are given via some formula φ).

In order to compare the encodings, we performed some benchmarks on arti-
ficially generated instances by checking whether there is an action that is uni-
versally uniformly reversible. It does not come as a surprise that the general
encodings were performing much more poorly than the simple encodings. For
such encodings to become practical, both ASP and ELP solvers need to be
further optimized. However, the simple encodings showed promise, especially
for plain ASP. The ELP encodings performed somewhat worse, but of course
the ELP solver used is experimental, while the ASP solver is highly optimized.
Some behaviors of the ELP solver are interesting, for example it showed better
performance for the problem without solution (which was unexpected), but it
also required more memory with increasing problem sizes, compared to the ASP
encoding.

For future work, we intend to optimize our encodings further, and test them
with other established ASP and ELP solvers, notably DLV26 [1]. t would also
be interesting to see how they perform when compared to a procedural imple-
mentation of the algorithms proposed for reversibility checking by Morak et al.
[25]. We would also like to compare our approach to existing tools RevPlan7

(implementing techniques of [14]) and undoability (implementing techniques of
[11]).
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