
Lifting Symmetry Breaking Constraints with
Inductive Logic Programming (Extended Abstract)

Alice Tarzariol1, Martin Gebser1,2, and Konstantin Schekotihin1

1 University of Klagenfurt, Austria
2 Graz University of Technology, Austria

1 Introduction

Although many combinatorial problems are relatively easy to model with the current
programming paradigms, when the size of input instances starts to grow, they become
intractable because of the number of possible solution candidates [7]. In order to deal
with large problem instances, the ability to encode symmetry breaking constraints in a
program becomes an essential skill for the programmers. However, the identification of
symmetric solutions and the formulation of constraints that remove only them is a tedious
and time-consuming task. As a result, various tools emerged that exploit properties of
permutation groups to automatically compute a set of Symmetry Breaking Constraints
(SBCs) [13, 12]. For certain combinatorial problems, finding a solution of the original
program requires much more time than using an instance-specific symmetry breaking
approach, which grounds the original program, computes ground SBCs, composes a new
extended program, and solves it [8].

Unfortunately, these observations do not hold for advanced programs, where instance-
specific symmetry breaking often requires as much time as it takes to solve the original
problem. Moreover, whenever an encoding must be changed, for instance, when a
customer provides new requirements to a configuration problem, a programmer might
need to write all SBCs from scratch. Finally, the instance-specific approach:

– is not transferable, since the knowledge obtained is limited to a single instance;
– might add many redundant ground constraints to the input program, thus, degrading

the solving performance;
– uses the computation of permutation group generators, which is itself a combinatorial

problem; and
– generates ground SBCs that are often hard to interpret and comprehend.

Our work aims to generalize the process of discarding redundant solution candi-
dates for instances of a target domain. The goal is to lift the SBCs of small problem
instances and to obtain a set of interpretable first-order constraints. Such constraints
cut the search space while preserving the satisfiability of a problem for the considered
instance distribution, which improves the solving performance, especially in the case of
unsatisfiability.



2 Alice Tarzariol, Martin Gebser, and Konstantin Schekotihin

2 Approach

We deal with Answer Set Programming (ASP) [3] programs and assume that the instances
of a considered problem follow a specific distribution. Our approach relies on the system
SBASS [8] to compute the SBCs of a problem instance, and then we encode this
information as an Inductive Logic Programming (ILP) task, so that ILASP [9, 1] – an
ILP learning system for ASP – will learn a set of (possibly non-ground) SBCs for the
initial program.

Given a (small) problem instance, SBASS computes SBCs by determining permuta-
tion groups on a graph built over the input program. It reduces symmetry detection to a
graph automorphism problem and makes use of the system SAUCY [2, 4], returning a set
of group generators that identify equivalence classes in the assignments of ground atoms.
In our approach, we exploit SBASS to identify such generators for one (or possibly more)
small problem instance(s). We apply the LEX-leader scheme, following the alphabetical
order of atoms, to compute non-dominated assignments and to identify the answer sets
matching these assignments.

Dominated answer sets that violate the SBCs computed by SBASS are taken as
negative examples for ILASP, while the others are positive examples. Following the
syntax of ILASP, we define the inclusions and exclusions according to the atoms of
group generators that are entailed or falsified by an answer set, respectively. To define
an ILP task, in addition to the positive and negative examples, we need to specify the
background knowledge and the language bias [11, 5]. The former consists of the input
program along with predicates providing the lexicographic order for terms occurring
as arguments of atoms. In turn, the language bias defines the search space of the ILP
task, consisting of constraints (only) over predicates from the background knowledge,
including those giving the lexicographic order for terms.

To guarantee that the learned constraints generalize for the considered instance
distribution, for each satisfiable instance, we provide a general positive example, given by
empty inclusions and exclusions of atoms, thus requiring the preservation of satisfiability.
In case the learned constraints discard all answer sets of a new (satisfiable) problem
instance, we backtrack by forgetting the constraints and adding the instance along with a
general positive example.

As a first experiment, we applied our approach to the pigeonhole problem. Using only
one instance with three pigeon and four holes, we can learn the following constraints:

:- maxpigeon(V1), lessthan(V1,V2), assign(V3,V2).
% Leave holes with a greater label than maxpigeon empty

:- lessthan(V2,V1), lessthan(V1,V3), assign(V1,V3).
% For all but the first pigeon:
% Don’t assign the pigeon to a hole with greater label

Currently, our framework needs to be guided in the selection of problem instances
and language bias. However, in the future, we aim to automate this process in a smarter
way, so that learned constraints evolve incrementally [10]. Moreover, we aim to tackle
more advanced configuration problems, such as the pigeonhole problem enriched with
coloring constraints, the partner units and house configuration problems, as well as
encodings of hierarchical problem versions, e.g., pigeonhole over pigeonhole problem.



Lifting Symmetry Breaking Constraints with ILP 3

Lastly, we plan to compare our results with other systems that implement SBCs for ASP,
like for instance [6].

References

1. The ILASP system for learning answer set programs. www.ilasp.com, accessed: 01-10-
2020

2. Saucy. http://vlsicad.eecs.umich.edu/BK/SAUCY/, accessed: 01-10-2020
3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-

tions of the ACM 54(12), 92–103 (2011)
4. Codenotti, P., Katebi, H., Sakallah, K., Markov, I.: Conflict analysis and branching heuristics

in the search for graph automorphisms. In: IEEE 25th International Conference on Tools with
Artificial Intelligence (2013)

5. Cropper, A., Dumančić, S., Muggleton, S.: Turning 30: New ideas in inductive logic pro-
gramming. In: Proceedings of the International Joint Conference on Artificial Intelligence
(2020)

6. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: On local domain symmetry for
model expansion. Theory and Practice of Logic Programming 16(5-6), 636–652 (2016)

7. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Shchekotykhin, K.: Combin-
ing answer set programming and domain heuristics for solving hard industrial problems
(application paper). Theory and Practice of Logic Programming (2016)

8. Drescher, C., Tifrea, O., Walsh, T.: Symmetry-breaking answer set solving. AI Communica-
tions (2011)

9. Law, M., Russo, A., Broda, K.: The ILASP system for inductive learning of answer set
programs. The Association for Logic Programming Newsletter (2020)

10. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., Muggleton, S.: Bias reformulation for one-shot
function induction. In: Proceedings of the European Conference on Artificial Intelligence
(2014)

11. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal
of Logic Programming (1994)

12. Sakallah, K.: Symmetry and satisfiability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T.
(eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
chap. 10, pp. 289–338. IOS Press (2009)

13. Walsh, T.: Symmetry breaking constraints: Recent results. Proceedings of Twenty-Sixth
Conference on Artificial Intelligence (2012)


