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Abstract. Recently, the notions of subjective constraint monotonicity, epistemic splitting,
and foundedness have been introduced for epistemic logic programs, with the aim to use
them as main criteria respectively intuitions to compare different answer set semantics
proposed in the literature on how they comply with these intuitions. In this note, we
consider these three notions and demonstrate on some examples that they may be too
strong in general and may exclude some desired answer sets respectively world views. In
conclusion, these properties should not be regarded as mandatory properties that every
answer set semantics must satisfy in general.

1 Introduction

In a seminal paper, Gelfond [8] introduced the notion of epistemic specifications which are dis-
junctive logic programs extended with two epistemic modal operators K and M. Informally, for
a formula F and a collection A of interpretations, KF is true in A if F is true in every I ∈ A,
and MF is true in A if F is true in some I ∈ A. An epistemic specification/program Π consists
of rules of the form

L1 | · · · | Lm ← G1 ∧ · · · ∧Gn (1)

where each L is an object literal that is either an atom A or its strong negation ∼A, and each
G is an object literal, a default negated literal of the form ¬L,3 or a modal literal of the form
KL, ¬KL, ML or ¬ML. A rule (1) is called a constraint if its head is ⊥, and called a subjective
constraint if additionally each G is a modal literal. Π is a non-epistemic program (or an answer-set
program) if it contains no modal literals.

Gelfond defined then the first answer set semantics for an epistemic program Π as follows [8].
Given a collection A of interpretations as an assumption, Π is transformed into a modal reduct
ΠA w.r.t. A by first removing all rules with a modal literal G that is not true in A, then removing
the remaining modal literals. The assumption A is defined to be a world view of Π if it coincides
with the collection of answer sets of ΠA under the GL-semantics defined in [7].

It turned out that the above semantics for epistemic programs has both the problem of un-
intended world views with recursion through K and the problem due to recursion through M [9,
12]. For the first problem, an illustrative example is Π = {p← Kp}; under the above semantics

? This paper is presented at TAASP 2020: Workshop on Trends and Applications of Answer Set Pro-
gramming.

3 We use here ¬ for weak negation (alias default negation), as in early papers on logic programming.
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Π has two world views A1 = {∅} and A2 = {{p}}, where as commented in [9], A2 is undesired.
For the second problem, a typical example is Π = {p←Mp}; by the above semantics Π has two
world views A1 = {∅} and A2 = {{p}}, where as commented in [12], A1 may be undesired.

To address the two problems, several approaches have been proposed [12, 11, 4, 18]. In partic-
ular, Shen and Eiter[18] presented an approach that significantly differs from the others in the
following three aspects.

(i) They introduced the modal operator not to directly express epistemic negation, where
notF expresses that there is no evidence proving that F is true. Modal formulas KF and
MF are viewed as shorthands for ¬notF and not¬F , respectively.

(ii) Due to having the modal operator not to express epistemic negation, they further proposed
to apply epistemic negation to minimize the knowledge in world views, a novel principle
they named knowledge minimization with epistemic negation. It is based on the principle
of knowledge minimization with epistemic negation that they presented a completely new
definition of world views, which are free of both the problem with recursion through K and
the problem through M.

(iii) Their approach is generic in the sense that it can be used to extend any of the existing
answer set semantics for non-epistemic programs, such as those defined in [16, 17, 23, 5, 6, 20,
19], but also novel ones so they may be extended to an answer set semantics for epistemic
programs.

Very recently, some researchers [10, 2, 3] introduced the notions of subjective constraint mono-
tonicity, epistemic splitting, and foundedness for epistemic programs, aiming to use them as main
criteria/intuitions to compare different answer set semantics proposed in the literature on how
they comply with these intuitions. Specifically, they criticized the semantics defined in [12, 11, 4,
18], saying that these semantics do not satisfy the three properties.

In this note, we clarify the matter by demonstrating on some example programs that these
three properties may be too strong and may exclude some desired answer sets/world views. Our
conclusion is that for this reason these properties should not be used as mandatory properties
that every answer set semantics must satisfy in general.

For the remainder of this note, we assume that the reader is familiar with non-monotonic
logic programs in general and with answer set semantics for such programs in particular. We
refrain here from providing formal definitions of answer sets and of world views of epistemic logic
programs; for our concerns, it is sufficient to assume that the programs are formulated over a set
V of propositional atoms together with the special atoms > (truth) and ⊥ (falsity). An answer set
of an answer-set program Π is an interpretation I ⊆ V that satisfies respective conditions, where
the standard definition is GL-semantics [7]. Similarly, a world view is a non-empty collection
A ⊆ 2V of interpretations that must satisfy respective conditions such as those in [8], which yield
the G91-semantics for epistemic logic programs. Numerous further proposals for semantics have
been made, cf. [9, 24, 12, 11, 4, 18, 10, 2, 3, 21, 15, 22].

2 Subjective constraint monotonicity is too strong, while the
requirement of epistemic splitting is even more restrictive

A semantics for epistemic logic programs is said to satisfy subjective constraint monotonicity if
for any epistemic program Π and subjective constraint C, a world view of Π ∪ {C} is also a
world view of Π; in other words, adding any constraint C to Π would never introduce new world
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views. The epistemic splitting property is even more restrictive in the sense that every semantics
satisfying epistemic splitting also satisfies subjective constraint monotonicity, as has been shown
in [2].

As a typical example, let Π = {p | q}, which has a unique world view {{p}, {q}}. Then
subjective constraint monotonicity requires that for any subjective constraint C, Π ∪{C} should
either have a unique world view {{p}, {q}} or have no world view. For example, under subjective
constraint monotonicity the following program

Π1 : p | q (r1)

⊥ ← ¬Kp (C)

has no world view, as the only world view {{p}, {q}} of Π = {p | q} is not a model of Π1.
Note that under the semantics of [12, 11, 4, 18], Π1 has a world view A = {{p}}. It is argued in
[10, 2, 21] that {{p}} should not be a world view of Π1 because it violates subjective constraint
monotonicity.

We comment that the requirement of constraint monotonicity (resp. epistemic splitting), i.e.,
adding constraints to a logic program should not introduce new answer sets/world views, may be
too strong in general and may exclude some desired answer sets/world views, as demonstrated
in the following examples.

1. For a non-epistemic program Π, the GL-semantics [7] satisfies the constraint monotonicity
property that adding a constraint ⊥ ← body(r) to Π may rule out some answer sets of Π, but
would never introduce new answer sets [14]. However, very recent research [19] reveals that
the GL-semantics may miss some desired answer sets that violate constraint monotonicity
(see Section 4.1 in [19]). As an example, consider the following non-epistemic program:

Π2 : a | b (r1)

a← b (r2)

⊥ ← ¬b (C)

where C is a constraint. Intuitively, the rule r1 presents two alternatives for answer set
construction, namely a or b, and the rule r2 infers a if b has already been derived. We
distinguish between the following two cases.

First, suppose that we choose a from r1. As b is not inferred from r1, the rule r2 is not
applicable; so rules r1 and r2 together infer a possible answer set I1 = {a}. As I1 does not
satisfy the constraint C, it is not a candidate answer set for Π2.

Alternatively, suppose that we choose b from r1; then by r2 we obtain a possible answer
set I2 = {a, b}. I2 satisfies the constraint C, so it is a candidate answer set for Π2.

As I2 = {a, b} is the only model of Π2, it is the only candidate answer set and thus we
expect I2 to be an answer set of Π2. However, as Π2 \ {C} has only one answer set {a}, this
desired answer set I2 for Π2 violates the constraint monotonicity property.

2. For epistemic programs, the requirement of subjective constraint monotonicity (resp. epis-
temic splitting) may also exclude some world views that are reasonably acceptable. As an
example, consider the above program Π1 again. As the rule r1 = p | q offers two alternatives
for answer set construction, namely p or q, we can generate from r1 two possible answer sets:
{p} and {q}. Then we can construct from the two possible answer sets three possible world
views: A1 = {{p}}, A2 = {{q}} and A3 = {{p}, {q}}. As A2 and A3 do not satisfy the
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constraint ⊥ ← ¬Kp, A1 is the only candidate world view and thus we expect it to be a
world view of Π1. However, this desired world view will be excluded if we enforce subjective
constraint monotonicity.

3. The above defined constraint monotonicity, which requires world views of Π ∪ {C} to be
world views of Π satisfying C, amounts in essence to interpreting the constraint C as a query
in the tradition of logic programming; that is, in order to answer a goal query Q against a
logic program P , we add the clause ⊥ ← Q and then seek to derive Q. In the context of
epistemic logic programs, where multiple world views are possible in general, we may view
this as follows. Let S be the collection of world views of Π. A query C to Π is to find in S
all world views that satisfy C. Note that query C is not involved in the computation of any
world view. This essentially differs from adding a constraint C to Π, which aims to play a
governing role in building the collection of world views of Π ∪ {C}; due to that C is directly
involved in the computation of every world view, a world view of Π ∪ {C} is not necessarily
a world view of Π.

3 The foundedness requirement is also too strong

The foundedness property is defined in [3], where a proposal for generalizing the notion of found-
edness introduced in [13] for non-epistemic programs to epistemic programs has been made. The
GL-semantics [7] for non-epistemic programs also has the foundedness property. We use examples
to demonstrate that the foundedness requirement is too strong and may exclude some desired
answer sets/world views. For simplicity, we do not reproduce the definition of foundedness here;
the reader is referred to [3].

1. Consider again the non-epistemic program Π2 from above. Note that for the construction of
an answer set, the rule r1 provides two alternatives, a or b, for us to choose. Let b be selected
from r1. Then once b is established in r1, a is well-supported and thus derived from r2. This
leads to a possible answer set I = {a, b}. As I satisfies the constraint C, it is a candidate
answer set for Π2. As I is the only model of Π2, it is the only candidate answer set for Π2 and
thus is a desired answer set of Π2. However, this desired answer set violates the foundedness
property. (It is easy to check that 〈{b}, I〉 is an unfounded set.)

2. Consider the following epistemic program:

Π3 : p | q (r1)

p← Kq (r2)

q ← Kp (r3)

⊥ ← ¬Kp (C)

As p | q offers two alternatives for answer set construction, namely p or q, we can gener-
ate from r1 two possible answer sets: {p, · · · } and {q, · · · }, where “· · · ” stands for possible
atoms that would be derived from the rules r2 and r3. Then we can construct from the
two possible answer sets three possible world views: A1 = {{p, · · · }}, A2 = {{q, · · · }}, and
A3 = {{p, · · · }, {q, · · · }} = {{p}, {q}}. Note that the two answer sets in A3 must be different
and no one is a proper subset of the other. We distinguish among the following three cases.

First, suppose that we choose A1 = {{p, · · · }}. Note that p in A1 is established in r1.
Then, as A1 satisfies Kp, q is well-supported in r3 and thus A1 = {{p, q}}. A1 also satisfies
r2 and C, so it is a candidate world view for Π3.
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Second, suppose that we choose A2 = {{q, · · · }}. Note that q in A2 is established in r1.
Then, as A2 satisfies Kq, p is well-supported in r2 and thus A2 = {{p, q}}. A2 satisfies r3
and C, so it is further shown that {{p, q}} is a candidate world view for Π3.

Finally, suppose that we choose A3 = {{p}, {q}}. A3 does not satisfy C, so it is not a
candidate world view for Π3.

Consequently, {{p, q}} is the only candidate world view for Π3, so we may expect it to
be a world view of Π3. However, this desired world view violates the foundedness property.
(It is easy to check that [〈{p}, {p, q}〉, 〈{q}, {p, q}〉] is an unfounded set.)

4 Conclusions

The above examples demonstrate that the properties of subjective constraint monotonicity, epis-
temic splitting and foundedness are too strong and may exclude some desired answer sets/world
views. It was specifically emphasized in [9, 12, 18] that the focus of research on answer set seman-
tics for epistemic programs is how to handle the two basic problems:

1. The problem of unintended world views caused by recursion through K;
2. The problem of unintended world views caused due to recursion through M.

In fact, by introducing the epistemic negation operator not and applying the principle of knowl-
edge minimization with epistemic negation, Shen and Eiter [18] has presented a principled way
to handle the two problems. For example, the desired answer sets respectively world views of the
above programs Π1−Π3 can all be obtained by applying the general semantics of Definition 8 in
[18], where the base answer set semantics X for a non-epistemic program is the one according to
Definition 10 in [19]. This is not to say, however, that the Shen-Eiter approach in [18] is superior
to the others. Similar as for the extension of answer-set program with aggregates (cf. [1] for a brief
survey), there is a spectrum of possibilities with a range of properties and features. We believe
that like for that extension, understanding the landscape of diverse approaches for answer set
semantics of epistemic logic programs is a valuable goal, and that properties of universal validity
may need comprehensive examinations.
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