
Treewidth-aware Reductions of Normal ASP to
SAT– Is Normal ASP Harder than SAT after

All? (Extended Abstract)?

Markus Hecher1,2

1 TU Wien, Austria hecher@dbai.tuwien.ac.at
2 University of Potsdam, Germany

Introduction

Answer Set Programming (ASP) [5] is an active research area of knowledge
representation and reasoning. ASP provides a declarative modeling language and
problem solving framework [12] for hard computational problems, which has been
widely applied. In ASP questions are encoded into rules and constraints that
form a program (over atoms), whose solutions are called answer sets.

In terms of computational complexity, the consistency problem of deciding
the existence of an answer set is well-studied, i.e., the problem is ΣP

2 -complete [9].
Some fragments of ASP have lower complexity though. A prominent example is
the class of head-cycle-free (HCF) programs, which is a certain generalization
of the class of normal programs and requires the absence of cycles in a certain
graph representation of the program. Deciding whether such a program has an
answer set is NP-complete.

There is also a wide range of more fine-grained studies for ASP, also in
parameterized complexity [7], where certain (combinations of) parameters [11]
are taken into account. In parameterized complexity, the “hardness” of a problem
is classified according to the impact of a parameter for solving the problem. There,
one often distinguishes the runtime dependency of the parameter, e.g., levels of
exponentiality [20] in the parameter, required for problem solving. Concretely,
under the reasonable Exponential Time Hypothesis (ETH) [13], propositional
satisfiability (SAT) is single exponential in the structural parameter treewidth,
wheras evaluating Quantified Boolean formulas of quantifier depth two is [16]
double exponential3 in the treewidth k.

For ASP there is growing research on treewidth [14,3,4]. Algorithms of these
works exploit structural restrictions (in form of treewidth) of a given program, and
often run in polynomial time in the program size, while being exponential only
in the treewidth. Intuitively, treewidth gives rise to a tree decomposition, which
allows solving numerous NP-hard problems in parts, cf., divide-and-conquer,
and indicates the maximum number of variables one has to investigate in such
parts during evaluation. There were also dedicated competitions [8] and notable
progresses in SAT [10,6] and other areas [2].

? This is an extended abstract of a paper that appeared at KR’20.
3 Double exponentiality refers to runtimes of the form 22O(k)

· n.



Naturally, there are numerous reductions of ASP (see, e.g., [15,18]) to SAT.
These reductions have been investigated in the context of resulting formula size
and number of auxiliary variables. However, structural dependency in form of,
e.g., treewidth, has not been considered yet. These existing reductions cause only
sub-quadratic blow-up in the number of variables (auxiliary variables), which is
unavoidable [17] if the answer sets should be preserved (bijectively). However, if
one considers the structural dependency in form of treewidth, existing reductions
could cause quadratic or even unbounded overhead in the treewidth. On the
contrary, we present a novel reduction for HCF programs that increases the
treewidth k at most sub-quadratically (k · log(k)). This is indeed interesting as
there is a close connection [1] between resolution-width and treewidth, resulting
in efficient SAT solver runs on instances of small treewidth. As a result, our
reduction could improve solving approaches by means of SAT solvers, e.g.,
[19]. Then, we establish lower bounds under ETH, for exploiting treewidth for
concistency of normal programs. This renders normal ASP “harder” than SAT.

Methods and Results

First, we present a novel reduction from HCF programs to SAT, which only
requires linearly many auxiliary variables plus a number of auxiliary variables
that is linear in the instance size and slightly superexponential in the treewidth
of the SAT instance. This is achieved by guiding the whole reduction along a
tree decomposition of the program. Inspired by the idea of level mappings [15],
we use (local) level mappings for each tree decomposition node. These local level
mappings come at the price of losing bijectivity, i.e., there might be duplicate
models of the resulting SAT formula for each answer set of the HCF program.
However, the reduction only slightly increases the treewidth, i.e., the treewidth of
the resulting SAT formula is slightly larger than the treewidth of the program.

Then, we show that certainly we cannot avoid this increase in the treewidth.
This is achieved by reducing from a problem that is known to be slightly superex-
ponential [20] to normal ASP and taking care that the treewidth is increased at
most linearly. As a result, we establish that under the widely believed ETH, one
cannot decide ASP in time 2o(k·log(k)) · n, with treewidth k and program size n.
This is in contrast to the runtime for deciding SAT: 2O(k) · n with treewidth k
and size n of the formula. As a result, this establishes that the consistency
of normal ASP programs is already harder than SAT using treewidth. Note
that this is surprising as both problems are of similar hardness according to
classical complexity (NP-complete). In the light of a known result [1] on the
correspondence of treewidth and the resolution width applied in SAT solving,
this reveals that ASP consistency might be indeed harder than solving SAT.
Further, compared to known results restricting to, e.g., modular reductions [15],
or involving the need of auxiliary variables [17], this shows that under ETH
the increase of treewidth is indeed unavoidable when considering consistency.
Therefore this work discusses the complexity of ASP from a different angle and
hopefully provides new insights into the hardness of ASP.
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