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1 Introduction

Answer Set Programming (ASP; [18]) is a declarative framework that is well-suited
for problems in KR, AI, and other areas as well as plenty of practical applications,
in both academia and industry. 5 While modern ASP solvers not only compute one
solution (answer set), but actually support different reasoning modes, the problem of
counting answer sets has not been subject to intense studies yet. This is in contrast to the
neighboring area of propositional satisfiability (SAT), where several applications and
problems related to quantitative reasoning trace back to model counting. However, due
to high computational complexity and depending on the actual application, approximate
counting might be sufficient. Indeed, there are plenty of applications, where approximate
counting for SAT is well-suited. This extended abstract presents the work published
in [6] by introducing the first approximate counter for ASP. This is done by lifting ideas
from SAT to ASP by adapting the algorithms and approaches from [2] into an extension
of the clingo-based system xorro [7].

Recently, there has been growing interest in counting solutions to problems. Indeed,
counting solutions is a well-known task not only in mathematics and computer science,
but also in other areas [4,13]. Examples of these cover also applications in machine learn-
ing and probabilistic inference [3]. In terms of computational complexity, counting has
been well-studied since the late 70s [15,21]. There are also results for counting involving
projection, where one wants to count only with respect to a given set of projected atoms,
which has been established for logic [8,17,14,19], reliability estimation [5] as well as in
ASP [11,9].

Given that in general counting answer sets is hard, namely # · coNP-complete [10],
which further increases to # ·ΣP

2 -completeness [9] if counting with respect to a projec-
tion, a different approach than exact counting seems to be required in practice. Indeed,
such approaches were successful for propositional logic (SAT), which is # · P-complete
and where reasoning modes like sampling (near-uniform generation) or (approximate)
model counting [12,1,2,19] were studied. For this purpose, so-called parity (XOR) con-
straints are used specifically to partition the search space in parts that preferably are of
roughly the same size.
? Accepted at the NMR’20 workshop [6].
5 An incomplete list of ASP applications:

https://www.dropbox.com/s/pe261e4qi6bcyyh/aspAppTable.pdf
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Parity constraints have been recently accommodated in ASP as the fundamental
part of the clingo-based system xorro [7]. With different solving approaches over parity
constraints in xorro, these constraints amount to the classical XOR operator following the
aggregates-like syntax using theory atoms. These constraints are interpreted as directives,
solved on top of an ASP program acting as answer set filters that do not satisfy the parity
constraints in question.

2 Approximate Counting by Partitioning the Search Space

The algorithm from our approximate count takes the notions from [2], where the main
idea is to use parity constraints to partition the search space as the ones used in xorro.
On each iteration, a new parity constraint is added to reduce the search space roughly by
half. We use 3-wise independent hashing (XOR) functions to partition the set of models
of an input formula into “small” cells. These small cells with high probability will carry
the same number of answer sets after each partition. The algorithm uses two input values,
a tolerance ε(0 < ε ≤ 1) and a confidence δ (0 < δ ≤ 1) value to calculate how small
a cell must be, and the number of iterations of the algorithm. So, for each iteration
calculated from δ, the algoritm will perform the following:

– Add a new parity constraint and solve.
– If the number of remaining answer sets is less or equal the pivot value, then we

count all the remaining answer sets and store them in a list C.
– Otherwise, we repeat the first two steps.
– This is done until one of two cases happen, either we have a small cell to count, or

the cell is empty (UNSAT) and this iteration is discarded.

Lastly, the approximate count is the mean of C.
To test our ASP approximate counter, we performed a series of benchmarks with

different ASP problem classes with random-generated instances. Our setup involves
the use of different tolerance and confidence values under a modest resources laptop.
For now, we focus only on the quality of the counting, leaving the scalability and
performance for further work. To track the quality of our counting, we only used “easy
to solve” instances for clingo, meaning that clingo must be able to enumerate all answer
sets within 600 seconds timeout (without printing).

While our preliminary results are promising and show that indeed approximate
counting works for ASP, there is still potential for future works. On the one hand,
we highly recommend studying and showing proper guarantees that prove our results
are guaranteed to be accurate with high probability and do not deviate far from the
actual result. Further, we highly encourage additional tuning and improvements to our
preliminary implementation concerning several aspects such as the XOR constraints
solving, scalability, and the abolition of linear combinations. Talking about scalability,
we need to perform more experiments and algorithm revisions in order to perform better
than clingo’s (clasp’s) enumeration. We hope that this work fosters applications and
further research on quantitative reasoning like e.g., [16,20], for ASP.
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