
plingo: A system for probabilistic reasoning in clingo
based on lpmln

Susana Hahn1[0000−0003−2622−2632], Tomi Janhunen2[0000−0002−2029−7708], Roland
Kaminski1[0000−0002−1361−6045], Javier Romero1[0000−0001−5546−9939], Nicolas

Rühling1[0000−0001−5157−6788], and Torsten Schaub1[0000−0002−7456−041X]

1 University of Potsdam, Germany
2 University of Tampere, Finland

1 Introduction

Answer Set Programming (ASP; [7]) offers a rich knowledge representation language
along with powerful solving technology. In the last years, several probabilisitic extensions
of ASP have been proposed, among them LPMLN [5], ProbLog [9], and P-log [1].

In this work, we present an extension of the ASP system clingo, called plingo,
that features various probabilistic reasoning modes. Plingo is centered on LPMLN , a
probabilistic extension of ASP based upon a weight scheme from Markov Logic [10].
We rely on translations from ProbLog and P-log to LPMLN [5, 6], respectively, to
capture these approaches as well. In fact, LPMLN has already been implemented in
the system lpmln2asp [4] by mapping LPMLN -based reasoning into reasoning modes
in clingo (viz. optimization and enumeration of stable models). As such, plingo can
be seen as a re-implementation of lpmln2asp that is well integrated with clingo by
using its multi-shot and theory reasoning functionalities. plingo offers three alternative
frontends, for LPMLN , P-log, and ProbLog, featuring dedicated language constructs
that are in turn translated into the format described above. As regards solving, plingo
follows the approach of lpmln2asp of reducing probabilistic reasoning to clingo’s regular
optimization and enumeration modes. In addition, plingo features an approximation
method that calculates probabilities using only the most probable k stable models for
an input parameter k. This is accomplished by an improved implementation of answer
set enumeration in the order of optimality [8]. We have empirically evaluated plingo’s
performance by contrasting it to original implementations of LPMLN , ProbLog and
P-log. 3

2 The language of plingo

The main idea of the system is to keep the input language of clingo, and re-interpret
weak constraints at priority level 0 as soft integrity constraints. These constraints are not
considered to determine the optimal stable models, but instead are used to determine
the weights of those models, from which their probabilities are calculated. We define a
plingo program Π as a logic program in the language of clingo, and we let OSM pl(Π)

3The full version of this paper is available at https://arxiv.org/abs/2206.11515.



denote the optimal models of Π without considering weak constraints at level 0, and
CostΠ(X, 0) denote the cost of the interpretation X at priority level 0, according to the
definitions of [2]. Then, the weight WΠ(X) of an interpretation X and its probability
PΠ(X) are defined as:

WΠ(X) =

{
TW (Π) if X ∈ OSM pl(Π)

0 otherwise
and PΠ(X) =

WΠ(X)∑
Y ∈OSM pl (Π)

WΠ(Y )
,

where TW (Π) = exp(CostΠ(X, 0)).

3 The system plingo

The implementation of plingo is based on clingo and its Python API (v5.5, [3]). The
system architecture is described in Figure 1. The input is a logic program written in
some probabilistic language: plingo, LPMLN , ProbLog or P-log. For plingo, the input
language (orange element of Figure 1) is the same as the input language of clingo, except
for the fact that the weights of the weak constraints can be strings representing real
numbers. For the other languages, the system uses the corresponding frontends, that
translate the input logic programs (yellow elements of Figure 1) to the input language
of plingo using the translations from [5, 6]. Plingo can be used to solve two reasoning
tasks: finding the most probable stable model and marginal inference.

plingo

LPMLN

ProbLog

P-log

Transformer

Solver

Probability
ModuleTransforms

theory directives

Computes
stable models of
a plingo program

ASEO

Optimal weight

Exact probability

Approximate probability

All models

Some models

Optimal model

Fig. 1. System architecture of plingo. Inputs are yellow for the different frontends provided.
Modules of the system are gray boxes. The green flow corresponds to MAP inference, the blue to
Exact Marginal Inference, and the purple to Approximate Marginal Inference.

We evaluate our system plingo and compare it to native implementations of LPMLN ,
ProbLog and P-log.4 While lpmln2asp and plog also use clingo as backend, problog is
based on the well-founded semantics and has a algorithm for marginal inference using
knowledge compilation. Our results show that for the task of marginal inference the
former systems have comparable runtimes, while problog clearly outperforms them.
However, the approximation algorithm of plingo gives us good results with a fast runtime.

4Available, respectively, at https://github.com/azreasoners/lpmln,
https://github.com/ML-KULeuven/problog, and https://github.com/
iensen/plog2.0.



References

1. Baral, C., Gelfond, M., Rushton, J.: Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming 9(1), 57–144 (2009)

2. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/ASPStandardization (2012)

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Technical Communications of
the Thirty-second International Conference on Logic Programming (ICLP’16). OpenAccess
Series in Informatics (OASIcs), vol. 52, pp. 2:1–2:15. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2016)

4. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers. Theory and
Practice of Logic Programming 17(5-6), 942–960 (2017)

5. Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: C. Baral, J. Delgrande,
F.W. (ed.) Proceedings of the Fifteenth International Conference on Principles of Knowledge
Representation and Reasoning. pp. 145–154. AAAI/MIT Press (2016)

6. Lee, J., Yang, Z.: LPMLN, weak constraints and P-log. In: Proceedings of the 31st AAAI
Conference on Artificial Intelligence. pp. 1170–1177 (2017)

7. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),
39–54 (2002)

8. Pajunen, J., Janhunen, T.: Solution enumeration by optimality in answer set programming.
Theory and Practice of Logic Programming 21(1), 750–767 (2021)

9. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its applications
in link discovery. In: Proceedings of the Twenty-second National Conference on Artificial
Intelligence (AAAI’07). pp. 2468–2473. AAAI Press (2007)

10. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136
(2006)


