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Abstract. While answer-set programming (ASP) is a successful approach
to declarative problem solving, optimisation can still be a challenge for it.
Large-neighbourhood search (LNS) is a metaheuristic technique where
parts of a solution are alternately destroyed and reconstructed, which
has high but untapped potential for ASP solving. We present the sys-
tem ALASPO which implements Adaptive LNS for ASP Optimisation.
ALASPO currently supports the ASP solver clingo, as well as its exten-
sions clingo-dl and clingcon for difference and full integer constraints.
Neighbourhoods can be defined in code or declaratively as part of the
ASP encoding. Furthermore, ALASPO incorporates portfolios for the
LNS operators along with self-adaptive selection strategies. This improves
usability considerably at no loss of solution quality, but on the contrary
often yields benefits. To demonstrate this, we evaluate ALASPO on
different optimisation benchmarks.

Introduction. This extended abstract encompasses two recent publications [4,3].
In [4], we have introduced a framework for ASP optimisation that leverages
large-neighbourhood search (LNS) [8,7], a powerful meta-heuristic where parts of
a solution are destroyed and reconstructed in an attempt to improve an overall
objective. In [3], relying on this framework, we have developed a system for ASP
optimisation which utilises adaptive LNS [5,6] based on general and tailored
destruction and reconstruction operators as well as different learning strategies.

The system is available at https://gitlab.tuwien.ac.at/kbs/BAI/alaspo.

Architecture & Functionality. ALASPO is a system for ASP optimisation
with support for different ASP solvers, search configurations, and neighbourhood
definitions. Figure 1 gives an overview of its components and their interaction.

At the heart of ALASPO lies an LNS loop, where an incumbent solution is
repeatedly relaxed and reconstructed by an ASP solver to continuously obtain
better objective values for the optimisation problem at hand.

https://gitlab.tuwien.ac.at/kbs/BAI/alaspo
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{
   "strategy": "uniform-roulette-wheel",
   "relaxOperators": [
       {  
           "type": "declarative",
           "rates": [ 0.2, 0.4, 0.6, 0.8 ], 
       } ],
   "searchOperators": [
       {   
           "type": "default",
           "timeouts": [ 5, 15, 30 ],
           "solverArguments": "" 
       } ]
}

player(1..g*p). group(1..g). week(1..w).

{ plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
{ plays(P,W,G) : player(P) } = p :- week(W), group(G).
meets(P1,P2,W):- plays(P1,W,G),
                             plays(P2,W,G), P1<P2.
:~ #count { W : meets(P1,P2,W) } > 1, player(P1), 
           player(P2), P1 < P2. [1,P1]
#show plays/3.

_lns_select(W) :- week(W).
_lns_fix(plays(P,W,G),W) :- _lns_select(W), plays(P,W,G).
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Fig. 1. Adaptive LNS for ASP in the system ALASPO.

An initial solution is generated by the ASP solver. Alternatively, it can be
obtained by a custom procedure using a construction heuristic, which, however,
is problem specific and must be provided via a Python 3 implementation.

In each iteration of the LNS loop, the currently best solution I is relaxed
using a neighbourhood operator N , which is a procedure to select a subset of
the atoms in I. For instance, N could pick 20% of the visible atoms at random.
Then, the resulting partial solution is reconstructed using the ASP solver with a
constraint to obtain a better objective value than I. This reconstruction depends
on a search configuration S which defines solver options and a time limit. If a
better solution is found within the time limit, it becomes the new incumbent,
otherwise, I remains the best known solution. Which operators are chosen at each
iteration, is based on a—potentially self-adaptive—strategy. ALASPO includes a
simple learning strategy from the literature [5] as well as a novel strategy that
attempts to escape a stuck search by varying relaxation rates and time limits.

The optimisation problem is formulated in ASP and stored in one or multiple
input files. The currently supported ASP solvers are clingo, clingo-dl, and clingcon
from the Potassco family.4

Evaluation & Conclusion. In the AAAI paper [4], experiments showed that the
LNS framework with carefully selected neighborhoods and parameters, improves
upon plain ASP optimisation on several benchmark problems like Social Golfer,
Travelling Salesman, generating smallest sets of clues for Sudoku, an optimisation
variant of the Strategic Companies problem, Shift Design [1] and a parallel
machine scheduling problem [2].

In the KR paper [3], we have further demonstrated that ALASPO using
adaptive strategies with reasonable portfolios achieves results that are competitive
with the more tailored LNS approach used in previous work [4].

(Adaptive) LNS, and in particular ALASPO, has thus indeed the potential
to enhance ASP optimisation in many applications; for some, this has already
been demonstrated, others are planned for future work.

4 https://potassco.org/.

https://potassco.org/
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