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Abstract. Neurosymbolic Computation aims to unify the two main
branches in AI, namely, neural networks and logic. Answer Set Program-
ming (ASP) is a good candidate for the logic part as it offers a declara-
tive and expressive language. We consider a Visual Question Answering
(VQA) problem, where we want to answer a question using visual input,
for which neural and neurosymbolic approaches achieved good results.
Our interest is here with elaboration of the questions, when new pred-
icates, of increasing sophistication, become available. To this end, we
experimentally compare a neural-based approach against a neurosym-
bolic one over the CLEVR dataset. The results show that the latter
approach is more robust to the new questions, achieving high accuracy,
and also provides the benefit of producing explainable answers. On the
downside, the neurosymbolic approach requires that the semantics of the
questions respective predicates have to be manually coded. Preliminary
work is being done to relieve this by using Inductive Logic Programming
to learn the semantics of the predicates.

Introduction. Visual Question Answering (VQA) is the field of problems where
we want to answer questions, posed in natural language, against an image or
video [1]. To solve this, different capabilities such as language parsing, object
recognition, and reasoning are needed. Different approaches to VQA exist, among
them neural-based approaches, with end-to-end processing of questions by neu-
ral networks [2], as well as neurosymbolic approaches [3] that combine neural
and logic modules in a system [4,5]. CLEVR [6] is a synthetic dataset for VQA
created to diminish the bias introduced by human made questions. In CLEVR,
questions are about geometric objects concerning their color, shape, size, and
matter, as well as position and spatial relationship. State of the art perform-
ers on this dataset are, in the neural-based field, the Memory, Attention, and
Composition (MAC) system [7], and in the neurosymbolic field, NS-VQA [8].
Both systems achieve very high accuracy of 98.9% and 99.8%, respectively. These
frameworks also share architectural similarities, as they both combine a CNN [9]
and LSTM [10].

Experiments. We are interested in the elaboration of the CLEVR scenario,
when new predicates and questions are added, and want to see the effects on the
two approaches, tested on the representative systems. To this end, we introduce
20 new questions templates separated into three groups, namely, the Between,
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Fig. 1: Neurosymbolic VQA with ILP integration.

Equal and Count Between Groups. For example, the Between Group contains
the questions Between projection, Between bbox and Between proper. The first
question asks whether the projection of an object is Between the projection of
two other objects to one dimension (x-axis), the second one expands this with an
additional dimension and the last one uses 3D coordinates to test the predicate.
We use the question generator provided with CLEVR to generate about 500k
new questions using the original images and new templates. We begin by training
the MAC on a combination of the original dataset and the new dataset. This first
experiment shows that the MAC handles the predicates without major issues,
but a following one, where we train the MAC solely on the new question says
otherwise, as most of the predicates were not learnt.

Given that the combination shows good results, we hypothesize that learning
from the original dataset may be transferable to the new ones, as the original
CLEVR also deals with spatial relations, Equality and counting. A zero-shot
experiment (i.e., without further learning) shows no indication of such, as the
results are similar to the ones of the last experiment. We then consider NS-VQA
for solving the task. Its modular architecture allows us to analyze each compo-
nent separately. As we used the original images to generate the new questions,
the CNN module will not change its accuracy. Furthermore, the logical module is
handcoded and should make no mistakes whenever its input is correct. For these
reasons, we only train the LSTM on the new questions, where the experiments
show that it is much faster and more accurate.

Current Work and Conclusion. The neurosymbolic approach was able to
learn the questions and has the benefit of being explainable, as the logic module
is transparent in its execution. To cover the downside of writing semantics for the
logical module, we introduce an intended framework shown in Figure 1, where
we integrate ILP to learn the semantics as rules, which extends transparency
and explainability. Preliminary experiments using ASP and ILASP [11] show
that for some predicates this works, but many are still a challenge to learn.
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