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Abstract. In temporal extensions of Answer Set Programming (ASP)
based on linear-time, the behavior of dynamic systems is captured by
sequences of states. While this representation reflects their relative order,
it abstracts away the specific times associated with each state. In many
applications, however, time constraints are important, for instance, when
planning and scheduling go hand in hand. We address this by devel-
oping a metric extension of linear-time Dynamic Equilibrium Logic, in
which dynamic operators are constrained by intervals over integers. The
resulting Metric Dynamic Equilibrium Logic provides the foundation
of an ASP-based approach for specifying qualitative and quantitative
dynamic constraints. As such, it constitutes the most general among a
whole spectrum of temporal extensions of Equilibrium Logic.
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Reasoning about action and change, or more generally reasoning about dynamic
systems, often requires both qualitative and quantitative dynamic constraints.
Whereas with qualitative dynamic constraints the order of events can be specified,
quantitative dynamic constraints are crucial in case effects of actions need to
meet deadlines.

An important first step to address qualitative dynamic constraints in an ASP
setting was the combination of Linear Temporal Logic (LTL [16]), with the base
logic of Answer Set Programming (ASP [14]), namely, the logic of Here-and-There
(HT [12]) and its non-monotonic extension, called Equilibrium Logic [15]. This
combination gave birth to a temporal extension of Equilibrium Logic called
Temporal Equilibrium Logic (TEL [8, 2, 7, 1]) which serves as the semantics of
the temporal ASP system telingo [6, 3] extending the ASP system clingo [10].
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In temporal logic, we can use the formula �(use → ♦clean) to express the
qualitative dynamic constraint that a machine has to be eventually cleaned after
being used.

In preceding work, we explored extending the LTL syntax in two different
directions. On the one hand, we studied the use of path expressions from Dynamic
Logic [11], adopting the syntax and principles of Linear Dynamic Logic (LDL) [9].
This lead to the extensions called Dynamic HT (DHT) and Dynamic Equilibrium
Logic (DEL) that, despite allowing a richer syntax and expressiveness, used the
same semantic structures as LTL, since a temporal stable model is just a (finite
or infinite) trace.

A commonality of dynamic and temporal logics is that they abstract from
specific time points when capturing temporal relationships. Consequently, nothing
can be said about the delay between using and cleaning the machine. To address
this lack of expressivity we studied in a somehow orthogonal way the incorporation
of metric information in Temporal Here-and-There (THT), by extending modal
operators with time intervals as in Metric Temporal Logic (MTL) [13], leading
to Metric HT (MHT) and Metric Equilibrium Logic (MEL) [5]. We continued
to maintain the same linear-time semantics, embodied by sequences of states,
when elaborating upon a first “light-weight” metric temporal extension of HT [4].
The “light-weightiness” is due to treating time as a state counter by identifying
the next timepoint with the next state. For instance, this allows us to refine our
example by stating that, if the machine is used, it has to be cleaned within the
next 3 states, viz. �(use → ♦(1..3)clean). Although this permits the restriction of
temporal operators to subsequences of states, no fine-grained timing constraints
are expressible.

In [5], we filled this gap in the context of temporal logic by associating
each state with its time, as done in Metric Temporal Logic (MTL [13]). This
resulted in a metric temporal extension of HT, referred to as MEL. It allows us
to measure time differences between events. For instance, in our example, we
may thus express that whenever the machine is used, it has to be cleaned within
60 to 120 time units, by writing �(use → ♦(60..120)clean). Unlike the non-metric
version, this stipulates that once use is true in a state, clean must be true in
some future state whose associated time is at least 60 and at most 120 time
units after the time of use. The choice of time domain is crucial, and might even
lead to undecidability in the continuous case (that is, using real numbers). We
rather adopt a discrete approach that offers a sequence of snapshots of a dynamic
system.

In our work, we combine the aforementioned temporal, dynamic, and (time-
based) metric extensions of the logic of Here-and-There and its non-monotonic
extension Equilibrium logic within a single logical setting by extending the
dynamic variants with time-based metrics. This results in the Metric Dynamic
logic of Here-and-There (MDHT) and its non-monotonic extension of Metric
Dynamic Equilibrium Logic (MDEL). As in the classical case, we may formulate
temporal, metric, as well as Boolean operators in terms of metric dynamic ones.
This already hints at the great expressive power of MDHTand MDEL.
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