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Abstract. Deontic logics and normative reasoning keep gaining importance, as
ethical AI and multi-agent systems are becoming increasingly more relevant these
days, and tools that support decision making based on norms and regulations are
needed. Challenges to this are illustrated by well known benchmark examples
(referred to as deontic paradoxes) on which common deontic logics, e.g., Standard
Deontic Logic, fail. In this work we encode a range of famous paradoxes in
Answer Set Programming (ASP) using weak constraints. Their abstraction and
generalization provides a plain methodology for encoding normative systems in
this language. An experimental comparison to the normative supervisor by Neufeld
et al. (CADE 2021) on "ethical" Pacman shows that the ASP encoding leads to
comparable performance but ethically preferable results.

1 Introduction

Norms, which involve concepts such as obligation and prohibition, are an integral part
of human society. They are enormously important in a variety of fields – from law and
ethics to artificial intelligence (AI). In particular, imposing norms – be they ethical, legal
or social – on AI systems is crucial, as these systems have become ubiquitous in our
daily lives. Reasoning with and about them (normative reasoning) requires deontic logic,
the branch of logic that deal with obligation, permission and related concepts. Normative
reasoning comes with a variety of idiosyncratic challenges, which are often exemplified
by benchmark examples (so called paradoxes). One of the challenges is reasoning about
sub-ideal situations, such as contrary-to-duty (CTD) obligations, which are obligations
only triggered by a violation. Other challenges in formalizing normative reasoning are
associated, e.g., with defeasibility issues (norms having different priorities, exceptions,
etc.): norms are indeed inherently violable, so systems of normative reasoning must
be able to reason in the presence of violations. The first deontic system introduced
– Standard Deontic Logic [vW51] – was failing most of the benchmark examples,
(un)deriving formulas which are counterintuitive in a common-sense reading. This
has motivated the introduction of a plethora of deontic logics, see, e.g. the Handbook
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volumes [GHP+13,GHP+21]. These logics have been investigated mainly in connection
with philosophy and legal reasoning, and with the exception of Defeasible Deontic
Logic [GORS13, GR08], they lack defeasibility and efficient provers. Defeasibility and
efficient reasoning methods are instead offered by Answer Set Programming (ASP),
which is one of the most successful paradigms of knowledge representation and reasoning
for declarative problem solving. Indeed in a long and systematic effort of the knowledge
representation community effective tools were developed that are capable of processing
programs in ASP fast [MNT11, BET16]. Defeasibility is also not a problem when using
ASP, due to its default-negation and weak constraints.

In this paper we introduce a method for encoding normative systems in Answer Set
Programming (ASP) using weak constraints. We first encode desired basic properties of
the deontic operators in a common core that will be used in all further encodings. The
desired properties of these operators are then established by analyzing multiple well
known deontic paradoxes (e.g., Chisholm’s Paradox, the Good Samaritan Paradox,. . . ).
Our encoding is capable of handling the deontic paradoxes in a satisfactory manner. By
abstracting and generalising the encodings of the specific paradoxes, we provide a simple
methodology for encoding normative systems in ASP. Our methodology is also tested
and in a case study described in [NBCG21], which involves a reinforcement learning
agent playing a variant of the Pacman video game with additional “ethical” rules. The
resulting encoding is compared with a theorem prover for Defeasible Deontic Logic (the
normative supervisor in [NBCG21]), showing some benefiting behaviour.

This work is a short version of the Master Thesis [Hat22].

2 Preliminaries

We provide a basic overview on Answer Set Programming and Standard Deontic Logic.
We assume familiarity with propositional and first-order classical logic.

2.1 Answer Set Programming

Since its inception, logic programming has found multiple practical uses, e.g., in Expert
Systems [BKI19, chapter 1]. We recall below the definitions in [BKI19, chapter 9],
where further information can be found.

In this work we consider extended logic programs with disjunctions. Extended logic
programs can use both strong negation and default-negation in rules. The latter, also re-
ferred to as negation as failure, allows the representation of non-monotonic assumptions.
The distinction between not-knowing (denoted as default-negation) and definite falsity
(denoted as strong negation) permits a realistic processing of knowledge, which is more
akin to that of human reasoning.

A rule in an extended logic program with disjunction takes the following form:

H1 ∨H2 ∨ . . . Hl ← A1, . . . An, not B1, . . . , not Bm. (1)

where H1, . . . ,Hl, A1, . . . , An, B1, . . . , Bm are literals in a first-order language. Infor-
mally, it can be read as: “If A1, . . . , An hold and none of B1, . . . , Bn are found to be
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true, at least one of H1, . . . ,Hl must be true”. A logic program Π is a (finite) set of
rules.

Informally speaking, such programs model a problem using logic. Answer sets are
then given as solutions to this problem. An answer set of it is a minimal, consistent
and closed set of ground literals S that satisfies all rules (1) s.t. if {A1, . . . , An} ⊆ S
and {B1, . . . , Bm} ∩ S = ∅, then {H1 . . . , Hl} ∩ S 6= ∅. Thus, answer sets contain
no information that is not a fact or deduced using a rule, do not contain conflicting
information, and for all rules if the body of the rule holds a part of the head is in the
answer set. Furthermore S can be reconstructed from Π .

In order to model the defeasibility of obligations we use weak constraints, which are
constraints that are only satisfied if possible. We use the form:

:∼ A1, . . . , An. [w : l]

as in DLV [BFI+20], where A1, . . . , An are literals (that may be weakly negated) and w
and l denote the weight resp. level of the weak constraint.

Weak constraints are used to filter out answer sets. Intuitively the remaining answer
sets are those that have minimal weights of violated weak constraints with higher levels
being more important.

2.2 Standard Deontic Logic and its paradoxes

Standard Deontic Logic (SDL) is the best known system of deontic logic. Introduced by
von Wright in [vW51], SDL builds upon classical propositional logic and is part of the
class of normal modal logics [CZ97]. SDL is a so-called monadic deontic logic, as the
operators O (obligation), P (permission) and F (prohibition) are one-place operators,
meaning they apply only to a single formula. We recall below the main concepts on SDL,
see, e.g. [GHP+13, GHP+21, JC02] for more details.

Syntax of SDL
The following grammar generates its language (AT is the set of atomic propositions):

ϕ := p ∈ AT | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Oϕ | Pϕ | Fϕ

Oϕ, Pϕ and Fϕ are read as “it is obligatory that ϕ”, “it is permissible that ϕ”, and “it is
forbidden thatϕ”, respectively. These operators are inter-definable, e.g.,Pϕ := ¬O(¬ϕ),
and Fϕ := O¬ϕ.

Axioms of SDL
A Hilbert system for SDL is obtained by adding the following axioms and rules to any
axiomatization of classical propositional logic, where ϕ and ψ are arbitrary formulas:

If ϕ is a theorem, Oϕ is a theorem (RND)
O(ϕ→ ψ)→ (Oϕ→ Oψ) (KD)
Oϕ→ ¬O¬ϕ (DD)
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“Standard” Semantics of SDL
The semantics of SDL is based on the well-known Kripke Semantics of modal logic, in
which sentences can be interpreted with regard to possible worlds, see, e.g. [CZ97].

For this purpose a possible worlds model M = 〈W,R, I〉 consists of:

– A universe of possible situations/worlds W , which would correspond to the nodes
in a Kripke frame.

– A binary relation R on W , which is understood as a relation of deontic alternative-
ness, i.e., sRt denotes that t is an “ideal” successor to s, as it complies with the
obligations which are active at s.

– An interpretation function I , which assigns to each propositional atom p the largest
subset W ′ ⊆W such that p is deemed true at all u ∈W ′.

The truth (satisfaction) of a formula p under M at a possible world/situation u ∈ W ,
written as M,u |= p (the situation u in the model M satisfies p). M,u |= p is defined
recursively as follows:

– If p is a propositional atom, then M,u |= p holds if u ∈ I(p).
– If p is of the form p1 ∧ p2, then M,u |= p holds if M,u |= p1 and M,u |= p2.
– If p is of the form p1 ∨ p2, then M,u |= p holds if M,u |= p1 or M,u |= p2.
– If p is of the form p1 → p2, then M,u |= p holds if M,u 6|= p1 or M,u |= p2.

The truth conditions of the deontic operators O and P are formulated analogously to the
truth conditions of the modal operators 2 and 3:

– u |= Op holds if v |= p holds for all v such that uRv.
– u |= Pp holds if v |= p holds for some v such that uRv.

M must fulfill seriality, as else the axiom (DD) would be violated:

For every u ∈W, uRv for some v ∈W.

We note the following rules and formulas that hold in SDL, which we shall use in the
sequel:

If p→ q is a theorem, then Op→ Oq is a theorem (RMD)
¬O⊥ (OD)

Deontic Paradoxes and Their Classification
As a basis for our work, we recall below different deontic paradoxes and their classifica-
tion. Deontic paradoxes play an important role in deontic logic and normative reasoning,
and are usually in the form of (un)derivable formulas which are counter-intuitive in a
common-sense reading. They serve as sanity checks for deontic logics and as driving
force for defining new deontic systems. Although referred to in the literature as para-
doxes, many of the considered problems are not paradoxes per se, but rather puzzles
or dilemmas. They are examples for which SDL is unable to capture the nuances of
normative reasoning expected in these scenarios.

There are many such paradoxes. We categorised them below according to the reason
for their failure (see e.g. [JC02, GHP+13]) and analyze one example for each class:
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1. Paradoxes centering around RMD
– Ross’s Paradox
– Good Samaritan Paradox
– Åqvist’s Paradox of Epistemic Obligation

2. Puzzles centering around DD and OD
– Sartre’s Dilemma
– Plato’s Dilemma

3. Puzzles centering around deontic conditionals
– Broome’s Counterexample
– Chisholm’s Contrary-to-Duty Paradox
– Forrester’s Paradox
– Considerate Assassin Paradox
– Asparagus Paradox
– Fence Paradox
– Alternative Service Paradox

Note that we added few paradoxes to the classification that were previously not con-
sidered: Broome’s Counterexample [Bro13], the Considerate Assassin Paradox [PS96],
Asparagus Paradox [vdT94, Hor97], Fence Paradox [PS96], Alternative Service Para-
dox [Hor94].

Deontic conditionals refer to obligations that arise situationally. Those conditionals
(sometimes written as O(A/B) (meaning “it is obligatory that A if B”) have been
introduced to cope with contrary-to-duty obligations, which are obligations arising due
to another obligation not being fulfilled.

Paradoxes centering around RMD
In general, these paradoxes show that SDL is too strong as they derive obligations, which
might be seen as nonsensical using common sense reasoning.

As an example for paradoxes of this class we present Ross’s Paradox. This paradox
consists of the following two sentences:

It is obligatory that the letter is mailed. (R1)
It is obligatory that the letter is mailed or burned. (R2)

that can be formalised as:

O(m) (R1)
O(m ∨ b) (R2)

Since m→ (m ∨ b) is a theorem, the second obligation follows from the first via RMD.
A key property of obligations is the possibility of not being satisfied. This will later be
seen in the contrary-to-duty obligations. It seems counter-intuitive that one can derive
an obligation that is satisfied by burning the letter, when failing to mail the letter. Some
might actually consider the burning of the letter to be worse than simply failing to satisfy
the obligation to mail the letter [JC02].
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Puzzles centering around DD and OD
Paradoxes that arise from DD and OD are centered around obligations which are un-
obeyable. As an example we discuss Plato’s Dilemma:

It is obligatory that I meet my friend for dinner. (P1)
It is obligatory that I rush my child to the hospital. (P2)

In this scenario, a medical emergency has arisen, which necessitates immediate inter-
vention. Clearly, it is not possible to satisfy both obligations at the same time. SDL is
incapable of handling this concept. Using common sense reasoning, most people would
arrive at the conclusion that the second obligation invalidates the first obligation, as it is
of higher importance.

Puzzles centering around deontic conditionals
These paradoxes center around obligations that hold only under certain circumstances.
As an example for paradoxes from this class we present an interesting paradox that
combines two different weaknesses of SDL, the so-called Fence Paradox [PS96]:

There must be no fence. (F1)
If there is a fence then it must be a white fence. (F2)
If the cottage is by the sea, there may be a fence. (F3)

Here (F2) serves as a contrary-to-duty obligation that is active when the obligation (F1)
is violated. (F3) serves instead as an exception to the obligation generated by (F1). Note
that with this interpretation, it does not necessitate a fence being white if the cottage is
by the sea. Due to SDL having no means for expressing defeasibility, (F3) cannot be
formalised. The contrary-to-duty obligation (F2) cannot be formalised as having a white
fence implies having a fence, thereby deriving the obligation to have a fence. This would
contradict (F1), something that cannot be handled by SDL.

3 Encoding Paradoxes

We now encode the presented paradoxes. All encodings share the same common core,
shown in Figure 1, that encodes properties of SDL. The following predicates are used in
the encoding:

– O(X) denotes X being obligatory.
– F (X) denotes X being forbidden.
– act(X) denotes that we want to reason about whether X is obligatory or not. The

name act was chosen for the predicate as we usually reason about actions. There are
some cases where we reason about obligations that do not necessarily constitute as
actions, however we also use this predicate in those cases for the sake of consistency.

– Do(X) denotes that the agent has chosen to take the action X . Note that −Do(X)
denotes that the agent will definitely not take the action X .

– Diamond(X) is an auxiliary predicate used to denote that an action X is possible.
The naming is a reference to modal logics, where the diamond operator represents
possibility. Note that −Diamond(X) can either mean that the agent cannot take
the action or that the agent has chosen not to take the action.
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Fig. 1: The common core of our encodings

O(X) ∨ −O(X) :− act(X). (1)

F (X) ∨ −F (X) :− act(X). (2)

:−O(X),−Diamond(X). (3)

−Diamond(X) :−−Do(X), act(X). (4)

:−O(X), F (X). (5)

Do(X) ∨ −Do(X) :− act(X). (6)

:−F (X), Do(X). (7)

Happens(X) :−Do(X). (8)

:−Do(X),−Diamond(X). (9)

:∼ O(X).[1 : 1] (10)

:∼ F (X).[1 : 1] (11)

– Happens(X) is an auxiliary predicate that denotes an event X happening. It is
sometimes used in encodings to denote events happening which are usually outside
the agents control.

Intuitively, the common core guesses whether something is obligatory (1), forbidden (2)
and whether the agent takes the action (6). The remaining rules then encode connections
between predicates and exclude answer sets that we deem inconsistent, e.g., something
being obligatory and forbidden or something being obligatory and an action not taking
the action. The weak constraints (10) and (11) are used to exclude answer sets that
derive obligations/prohibitions that have no reason for existing.

Soundness of the rules (1) to (9) is achieved, as inconsistent answer sets are excluded.
(DD) for example is encoded through rule (5) that forbids an action from being both
forbidden and obligatory. Similarly other rules prevent all other possible inconsistencies.
Completeness on the other hand is given, as all answer sets that are considered consistent
for an action are generated.

Note that an answer set represents an optimal way to handle given norms. Therefore
actions are only determined as obligatory if they can and should be taken.

Ross’s Paradox
We first encode Ross’s Paradox. (R2) would be derived in SDL, but not using common
sense reasoning. To show that such an obligation is not derived in DLV, we encode it by
adding the following rules and facts to the core:

:∼ −O(mail).[1 : 2] (12)

act(mail). (13)

act(burn). (14)
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Note that a disjunction over obligations is represented by two different answer sets that
each contain one possible way to satisfy the obligation over the disjunction.

First, the obligation (R1) is created using the weak constraint (12). The final two facts
(13) and (14) declare mail and burn as actions to reason about.

Since mail is specified as an action, the logic program must guess it as obligatory or
not obligatory, by the core encoding. The weak constraint penalises the system at the
highest level if the program does not specify mailing the letter as obligatory. Since the
program minimises the constraints violated at the highest level, all answer sets deduce
the obligation to mail the letter, should such an answer set exist.

This logic program yields two answer sets that both do not derive the obligation to
burn the letter. The only difference between the answer sets is whether the agent chooses
to burn the letter or not. This is valid as it is not forbidden to burn the letter and it is not
specified that it is not possible to both burn and mail the letter.

Plato’s Dilemma
Since in general conflicting obligations may not be in direct but in indirect conflict, it may
be necessary to add a rule specifying that it is not possible to take both actions. This can
be nicely seen in the encoding of Plato’s Dilemma, in which due to a medical emergency
an obligation of higher priority arises. Due to time constraints it is not possible for the
agent to satisfy both of the obligations.

The desired outcome of Plato’s Dilemma would be for the agent to take her child to
the hospital, thereby violating the obligation of meeting the agent’s friend for dinner.

The two interesting aspects of this encoding are the prioritisation of the obligations
and the impossibility of taking both actions. This can be encoded as follows:

:∼ −O(help), Happens(emergency).[1 : 3] (20)

:∼ −O(meet).[1 : 2] (21)

act(meet). (22)

act(help). (23)

:−Do(help), Do(meet). (24)

Happens(emergency). (25)

The encoding starts with a weak constraint (20) at level 3 (the highest level in this
encoding), which penalises answer sets in which emergency is true but the obligation
to help is not derived. In other words, it derives the obligation (P1) to help the child
in case of an emergency, as here emergency is an auxiliary predicate that denotes an
emergency currently occurring. The weak constraint (21) simply encodes the obligation
(P2) to meet the friend for dinner. As the first weak constraint is at a higher level than
the second, the program always ensures that the former is satisfied before the latter.

The constraint (24) encodes that it is not possible to both help the child and meet the
friend. The remaining assertions simply state that an emergency is currently occurring
and which actions to reason about. As desired only a single answer set is computed, as
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the program prioritises the obligation to help the child.

Fence Paradox
The Fence Paradox is an interesting paradox as it combines a CTD obligation with an
exception to it. One might think that a contrary-to-duty obligation could be handled like
an exception to an obligation. While one could formulate the contrary-to-duty obligation
as “There may be a fence if it is white”, it would not have the same meaning as in
the paradox. Handling a contrary-to-duty obligation as an exception leads to losing the
original obligation to a certain degree. A contrary-to-duty obligation could in this case
be seen as the least thing to do to set things right. Although the fence being white betters
the situation, the fence itself should still not be there [PS96]. A similar example would
be if one were to forget to wish a friend a happy birthday. In such a case, one should still
congratulate the friend a few days later, although congratulating on the actual birthday
would have been better.
The important fact to consider is that should the cottage be by the sea, then (as obliga-
tion (F1) is not active due to the exception in (F3)) the fence does not necessarily need
to be white. This will be encoded by adding the following rules to the common core:

:∼ −F (have_fence), not Location(sea). [1 : 2] (30)

:∼ Do(have_fence), −O(have_white_fence), not Location(sea). [1 : 2] (31)

act(have_fence). (32)

act(have_white_fence). (33)

An interesting part of this encoding is that the exception (F3) is also part of the
contrary-to-duty obligation (F2). This needs to be done as the fence has to be white
only when the cottage is not by the sea. Otherwise the obligation for the fence to be
white would also be derived if the cottage was by the sea.

In order to check whether the obligation for the fence to be white is deduced when the
cottage is by the sea, the following facts are added to the common core:

Location(sea).

Do(have_fence).

These facts specify that the cottage is by the sea, and furthermore that there is a fence.
Then the resulting two answer sets both do not derive the obligation for the fence to be
white. When testing other cases, the answer sets also represent the expected results.

4 Generalisation and Methodology

We start by classifying the obligations that appeared in the paradoxes excluding obli-
gations without any special properties, e.g., the obligation to mail the letter in Ross’s
Paradox. The classes of obligations are:
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– Conditional obligations
– Obligations over disjunctions
– Conjunctions of obligations that all need to be satisfied
– Obligations with exceptions
– Contrary-to-duty obligations

Note that prohibitions are counted as regular obligations, as they can be understood as
an obligation not to do something.

In all encoded paradoxes, obligations of the same class were encoded in the same way.
All obligations were encoded using weak constraints, in order to model their defeasibility.
An obligation (to take an action a) that always holds is encoded in the following way:

:∼ −O(a). [w : l]

Here w and l are the weight respectively level of the weak constraint. Note that the
weight and level of the weak constraint depend on the importance of the obligation and
conflicting obligations. In most cases the weight is 1 and only the level is used to encode
priorities among obligations. Conflicts between obligations are determined and more
important obligations are then generated through weak constraints at a higher level. A
more thorough explanation can be found in the Appendix in Section A.

By generalising the encodings of all considered paradoxes (shown in Section 2.2), we
develop the following more general method of encoding normative systems in ASP using
weak constraints:

1. For each of the norms determine what kind of obligation they represent, e.g., obliga-
tion with an exception or contrary-to-duty obligation.

2. Determine which actions are incompatible at the same time. (Knowing which
actions are conflicting makes it easier to determine the importance of the specific
obligations.)

3. Encode the different kinds of obligations and their importance. Here weights as
priorities play an important role. The methods for encoding different kinds of
obligations can be seen in the Appendix in Section A.

4. Encode the exclusion of combinations of actions found incompatible.
5. Encode additional information, e.g., dependencies between actions, such as one

action requiring another action, or what actions to reason about.

To test this methodology, we use as a showcase the Fence Paradox. A further, more
complex case study can be found in the Appendix (see Section B).

Step 1: We start by determining the types of obligations.

– “There must be no fence.” is an obligation with an exception (the exception is if the
the cottage is by the sea).

– “If there is a fence, then it must be white.” is a CTD obligation.

The considered actions are:

– having a fence.
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– having a white fence.

(For being strictly an action, we may view “having” as “upholding”.)
Step 2: In this case there are no incompatible actions, therefore we can skip this step.

Step 3: We can now encode the two obligations and their importance. As the CTD
obligation and the obligation with exception are not in contradiction (as the CTD
obligation is only active when the first obligation would be violated anyways), the two
obligations can be placed at the same level. Encoding the two obligations we get:

:∼ −F (have_fence), not Location(sea). [1 : 2]

:∼ Do(have_fence), −O(have_white_fence), not Location(sea). [1 : 2]

Step 4: This step can once again be skipped.
Step 5: We now encode additional information:

act(have_fence).
act(have_white_fence).

One can additionally add the information specifying that having a white fence implies
having a fence in the following way:

Do(have_fence) :−Do(have_white_fence)

Notably, our methodology led to the encoding from above.

5 A Case Study: Pacman

Neufeld et al. [NBCG21] combined formal tools for normative reasoning with rein-
forcement learning (RL), with the aim of designing norm-sensitive autonomous agents.
The authors developed a logic-based normative supervisor module which informs the
reinforcement learning agent of compliant actions it could take. The agent then chooses
an action complying with the norms in force in a given situation, and a least evil action
in case there is no such action. Their approach allows to deal with complex normative
systems, conflicting obligations or situations where no compliance is possible. Norms
and the current state of the agent’s environment are encoded in defeasible deontic
logic [GORS13,GR08], which is a deontic logic with defeasible rules that specify typical
correlations, such as that birds usually fly, and the SPINdle theorem prover is used to
check norms compliance. Exceptions are encoded through so-called defeaters, e.g., if
the bird is a penguin.

Neufeld et al. tested their framework on a reinforcement learning agent trained to play
“ethical versions” of the Pacman game. This game, which simulates a closed environment
with clearly defined (and simple) game mechanics, was already used as case study
in [NBM+19]. The starting point of the Pacman game can be seen in Figure 2. The aim
for Pacman is to eat all the pellets placed on the maze. There are two ghosts (orange and
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Fig. 2: Pacman

blue) on the map which upon touching Pacman kill him. Usually Pacman and the ghosts
move one step at a time. Should Pacman eat one of the larger pellets on the map, the
ghosts enter a scared state allowing Pacman to eat the ghosts as well. In this scared state,
ghosts only move half a step at a time. A scared ghost is eaten by Pacman, as soon as
they overlap on the image. In other words, if the distance between the ghost and Pacman
is less than 1 (so either 0.5 or 0) on both axes. Points in the game are given for pellets and
ghosts eaten by Pacman before eating all pellets, with points being deducted depending
on how long the game has lasted (the longer the more). Should Pacman collect all the
pellets, he wins. Finishing the game quicker is beneficial as less points are deducted.

Two norm bases for this game, “Vegan” and “Vegetarian”, were analyzed in [NBCG21]
(the vegan version already in [NBM+19], using RL alone). Vegan Pacman is not allowed
to eat any ghost, while Vegetarian Pacman can eat the orange ghost (like it would be
tofu, while the blue ghost is chicken). These norm bases consisting of simple “ethical
constraints” are enforced upon Pacman implemented as an RL agent, using the theorem
prover SPINdle for defeasible deontic logic.

We consider here an alternative realization of the normative supervisor, based on our
norms encoding from above and using the DLV reasoner in the provided framework.

Vegan Pacman: The vegan normbase prohibits Pacman from eating any ghost. This can
be written in the following way:

O(¬eat(ghost)) respectively F (eat(ghost)),

using the operator F for prohibition.

Vegetarian Pacman: The vegetarian normbase only prohibits Pacman from eating the
blue ghost. (Pacman is allowed to eat the orange ghost.) This can once again be written
in the following way:

O(¬eat(blue_ghost)) respectively F (eat(blue_ghost)).

Note that the DLV encoding of these norms is not trivial, as it is not clear which actions
lead to Pacman eating a ghost.
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We encode the norm bases by forbidding the Pacman agent to move in a direction if the
ghosts are frightened and moving into that direction could lead to a ghost being eaten.
Furthermore, we forbid Pacman from stopping if this could lead to the ghost moving
into Pacman (thereby leading to Pacman eating the ghost). Note that the encodings of
the vegan and vegetarian normbase only differ in the way that the vegetarian normbase
implements the weak constraints for the blue ghost, whereas the vegan version will
implement the weak constraints for both ghosts.

It is still possible for Pacman to eat a ghost. This could be the case if both a ghost
and Pacman move towards a larger pellet from perpendicular directions. In that case
Pacman will eat the pellet and immediately afterwards eat the ghost. As this could
happen in [NBCG21], this will also be possible in this work. Furthermore, Pacman could
be cornered between two frightened ghosts leaving the agent no choice but to eat one of
the ghosts in the vegan norm base.

The scenarios that can precede Pacman eating a ghost are the same for both norm bases.
Since both the ghost and Pacman can move at most one field at a time, we can deduce
that the Manhattan distance between Pacman and a frightened ghost can be at most two
and at least one in the step preceding Pacman eating the ghost (as the location of the
characters is given through integers). This gives us the three possibilities for their relative
locations. We encoded the norms by taking into account the locations of the ghosts
relative to Pacman and then forbidding Pacman from making movements that could
lead to Pacman eating the ghost. The full DLV encoding of the Pacman agent is given
in [Hat22], and further information about it is given in the Appendix (see Section C).

Benchmark Results
For the comparison of our encoding to Neufeld et al.’s in [NBCG21], we used the
same setting. The reinforcement learning agent was trained on 250 games and then the
normative supervisor was tested using 1000 test games, where each of them was starting
in the same state (see Figure 2).

The results reported by Neufeld et al. (using SPINdle for defeasible deontic logic)
in [NBCG21] were:

Normbase % Games won Game score (Avg[Max]) Avg ghosts eaten (blue/orange)
Vegan 90.7 1209.86[1708] 0.023/0.02
Vegetarian 94 1413.8[1742] 0.01/0.79

Using our encodings for the norm bases, we got the following results:

Normbase % Games won Game score (Avg[Max]) Avg ghosts eaten (blue/orange)
Vegan 91.2 1217[1538] 0.013/0.018
Vegetarian 90.6 1366[1751] 0.001/0.788

We used our methodology to encode the norm bases from [NBCG21]. It outperformed
the original supervisors when considering ghosts eaten for both norm bases. For the
vegan norm base, our encoding even led to a higher percentage of games won as well as
a higher average score (which likely corresponds to the higher number of games won as
a lost game is worth 0 points). The higher maximum score seen in Neufeld et al.’s result
is most likely due to a game where both ghosts were eaten in their tests. In the vegetarian
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norm base, the reason for the lower rate of wins and hence lower average score is most
likely that under our encoding Pacman prefers losing a game over eating a ghost.

6 Related Work

Multiple approaches to handle normative systems have been proposed in the litera-
ture. Some of those related to the multi-agent systems community can be found, e.g.,
in [ADL18a]. We will discuss below the approaches most similar to our work.

One of the earliest works on encoding normative systems is [SSK+86]. There Sergot
et al. encoded the British Nationality Act using logic programming. Their goal was to
show that logic programming was capable of representing the complexities of statutory
law. As [SSK+86] does not reason about obligations it does not aim to find optimal ways
to act under given norms, but rather aims to determine whether the British nationality
act applies to certain individuals.

[SBD+00] introduces syntax and semantics for reasoning about obligations and
prohibitions among agents. Although the authors refer to deontic logic, the proposed
way of dealing with conflicting obligations is to satisfy a maximal subset of obligations,
without considering possible preferences among obligations (as e.g., in Plato’s dilemma).

Kowalski and Satoh [KS18] utilised abductive logic programs to encode the notion of
obligation and many paradoxes. Rather than trying to derive all optimal ways of fulfilling
given obligations, they focused on finding a best model that satisfies given goals (that
must be satisfied). Furthermore, they only encoded a subset of the paradoxes we consider,
and it remains to be seen whether their approach would work for the whole set.

Using a combination of input-output logic and game theoretic methods, van der Torre
and Boella encoded the behaviour of agents in a multi agent system under a normative
system [BvdT04]. In their work, agents are capable of a more human kind of reasoning,
e.g., to decide whether violating an obligation should the worth the penalty.

A type of logic, often seen when reasoning about norms, is Temporal Logic. An
advantage given by Temporal Logic approaches is that they are good at enforcing norms
that indirectly prohibit certain actions [ABDL15, BDK13], and there are sophisticated
tools (for Linear Temporal Logic, e.g., [ABE+18]) that effectively combine them with
reinforcement learning. However, temporal logic cannot handle all the intricacies of
normative reasoning, see the discussion in [ADL18b, NBC22].

A different ASP approach is given by deontic logic programs, as can be seen in [GA12].
The authors allow atoms in rules to take the form of complex SDL formulas and have
found some application. They require an understanding of the embedded logic, whereas
our presented methodology can be used without a deeper understanding of deontic logics.

7 Conclusion

Starting with the analysis of well known deontic paradoxes, we introduced a methodology
to encode normative systems in ASP, using DLV as the system of choice. The selection
of paradoxes proved to be very important, as omitting certain paradoxes leads to not
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addressing important features of normative systems. As an example, the analysis of the
Fence Paradox allowed us to distinguish between Contrary-to-duty (CTD) obligations
and exceptions, a well-known problem pointed out in [PS96] (CTD-obligations should
not be active when an exception to the obligation is given).

The main advantages of our approach are the availability of optimized tools (ASP
solvers) and the simplicity of the encoding. There is a clear cut common core that
is supplemented with defined ways for encoding different kinds of obligations. The
approach, described for DLV in this work, is also easily transferable to other ASP
solvers, e.g. to clasp [BDRS15].

The main weakness of our method is that encoding complex normative systems can lead
to extremely large programs (although this may be inevitable). Furthermore, maintenance
obligations that require the agent to maintain certain conditions might be complicated to
encode for complex examples. In such cases taking particular actions might indirectly
lead to failure of maintenance. As an example for a maintenance obligation, consider:
“See to it that the child stays dry.” For such an obligation it does not suffice to not
wet the child, but one must also take actions to prevent the child from getting wet by
other means. As such, it may require stopping the child from leaving the house if it is
about to rain. For such normative systems, the use of approaches extending ASP with
temporal logics (e.g., [GMD13]) may be preferable. Encoding these normative systems
also requires knowledge about the underlying domain, as conflicts between actions (e.g.,
non-concurrency) need to be encoded as well.

Another weakness of our approach is that all encoded obligations are comparable
by their associated weights and priorities. While we did not run into problems with
our methodology due to this, there may be cases where optimal answer sets encoding
solutions to paradoxes should be incomparable. Future work could look into other ASP
solvers with more sophisticated methods for filtering out answer sets to model normative
reasoning. The clasp extension asprin [BDRS15] or the DLV2 system that uses the
WASP solver [ADMR20], could be used as examples.

All in all our approach lends itself to encode normative systems when the aim is
to determine optimal ways to handle scenarios using agreed upon prioritization and
weights of the obligations. Our approach could also be used in combination with other
software which determines how to satisfy the given obligations, e.g. clingo [GKKS19]
or dlvhex [EGI+18]. In the case of Pacman, such a software might have to interpret how
the obligation to not eat a ghost could be fulfilled. Another direction for future work is
to look into encoding other Deontic Logics, e.g., with dyadic deontic operators.

Acknowledgment We thank the reviewers for their comments to improve the presenta-
tion of this paper.
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A Appendix: Encoding Different Obligations

We start by presenting how to encode different kinds of obligations.

A.1 Conditional Obligations

These obligations arise due to a condition being met. This condition could for example
be an event taking place. Such obligations can be seen in one version of Broome’s
Counterexample. Assuming that the event that leads to the obligation is outside the
control of the agent it can be formulated in the following way:

:∼ Happens(event),−O(obl). [1 : 2]

The event being outside of the agent’s control is encoded through the predicateHappens.
Events that are in the agent’s control (such as the agent taking an action) would be
encoded using the predicate Do (as an example Do(event)). Note that event and obl
are placeholders denoting the event and the obligation, respectively.

A.2 Obligations Over Disjunctions

Obligations over disjunctions are obligations which are satisfied by satisfying any of the
actions in a disjunction. The alternate service paradox showcases such an obligation.
Assume obl1, . . . , obln are the actions in the disjunction. This can be simply encoded in
the following way:

:∼ −O(obl1),−O(obl2), . . . ,−O(obln). [1 : 2]

A.3 Conjunctions of Obligations That All Need To Be Satisfied

These obligations are only satisfied when all parts of the obligation are satisfied. For this
type of obligations satisfying only part of a conjunction is not preferable to satisfying
none. An example for such an obligation can be seen in the rephrasing of Broome’s
Counterexample. Two possible ways of encoding these obligations were presented. The
shorter way involves an auxiliary predicate. Assume the latter isConj and obl1, . . . , obln
are the actions in the conjunction. The encoding could then take the following form:

:∼ not Conj. [1 : 2]

Conj :−O(obl1), . . . , O(obln).

Here Conj is the auxiliary predicate. Note that if satisfying parts of the conjunction can
be seen as preferable over not satisfying any part, the individual obligations are encoded
separately.
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A.4 Obligations With Exceptions

Often obligations do not hold in certain circumstances. A common example of such an
obligation that is often encountered is an exception to a no-parking zone during certain
times. The Asparagus Paradox shows an exception to an obligation under social norms.
Exceptions can be modeled using auxiliary predicates. Using such an auxiliary predicate,
called Exception in the next example, such an obligation can be encoded in the following
way:

:∼ −O(obl), not Exception. [1 : 2]

A.5 Contrary-to-Duty Obligations

Contrary-to-duty obligations arise due to another obligation not being fulfilled. An
example of such obligations can be seen, e.g., in Chisholm’s Contrary-to-Duty Paradox.
Note that these obligations can be considered as a special case of conditional obligations.
In the encodings, they are handled in the following way:

:∼ −O(obl1). [1 : 2]

:∼ −Do(obl1),−O(obl2). [1 : 2]

Note that obl1 and obl2 refer to obligatory actions. The second weak constraint is only
of relevance, should the agent not take the obligatory action (or choose not to).
In case of the violated obligation having an exception, the latter must be encoded as part
of the contrary-to-duty obligation. This could take the following form, where e is an
auxiliary predicate that is active when the exception is given:

:∼ −O(obl1), not e. [1 : 2]

:∼ −Do(obl1),−O(obl2), not e. [1 : 2]

A.6 Conflicting Obligations and Prioritization Among Those

It is often the case that we are subject to various obligations that are not satisfiable at
the same time. There are multiple ways of handling such situations. Most important
obligations are either weighted more heavily or generated at a higher level. Suppose
O(obl1) to be the more important obligation and O(obl2) the less important one. This
can be formulated in the following way:

:∼ −O(obl1). [1 : 3]

:∼ −O(obl2). [1 : 2]

:−Do(obl1), Do(obl2).

or alternatively:

:∼ −O(obl1). [2 : 2]

:∼ −O(obl2). [1 : 2]

:−Do(obl1), Do(obl2).
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Depending on the system one is trying to encode either approach may be preferable.
For the second approach the weights need to be well chosen. Consider three obligations
obl1, obl2 and obl3 such that obl3 is the most important and incompatible with either
of the two. When simply choosing weights in ascending order this can be modeled by
adding the following code to the common core:

:∼ −O(obl3). [3 : 2]

:∼ −O(obl2). [2 : 2]

:∼ −O(obl1). [1 : 2]

:−Do(obl1), Do(obl3).
:−Do(obl2), Do(obl3).

If one runs this code there would be two possible combinations of obligations given.
Either obl3 is obligatory or obl1 and obl2 are obligatory, due to the weights of the violated
weak constraints being the same in this case. Depending on the normative system that is
being encoded this may be undesirable. So choosing the method for encoding conflicting
obligations depends on whether there is a directly preferable obligation or fulfilling
multiple obligations may be equally or more preferable.
Note that in our methodology all encoded obligations are comparable. Therefore, our
methodology is limited to encoding only normative systems for which answer sets
are always comparable. As mentioned earlier, [BDRS15] allows for encodings where
obligations respectively answer sets may be incomparable.

B Appendix: An Additional Case Study

A topic that is currently of great interest is self-driving cars. Inspired by this topic is the
following normative system that presents obligations that hold while driving:

O1 It is obligatory to stop if the traffic light is red.
O2 It is obligatory to not impede the traffic flow (by stopping), unless to let a car merge.
O3 It is obligatory to move out of the way when an ambulance approaches.
O4 If you drive during winter it is obligatory to either have winter or all-season tires.
O5 It is obligatory to not cause any damage.
O6 It is obligatory to have your drivers license and vehicle registration with you, unless

it was stolen and you have proof (of theft). (Only having one is punished the same
as having none, as the police has to do the same administrative work.)

O7 If one causes damage, it is obligatory to drive directly to the next police station to
make a damage report.

O8 It is obligatory to give first-aid, when seeing a medical emergency.

We encode the above normative system using our method. We will go through the
methodology step by step.

Step 1: We start by categorising the obligations.
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– O1 is a derived obligation: the obligation to stop is derived when the traffic light is
red. Likewise, O3 and O8 are derived obligations.

– O2 is an obligation with an exception which is to let a car merge. Note that a car
wanting to merge does not necessitate the car stopping, but it does allow the car to
stop should the agent want to.

– O4 is both a derived and a disjunctive obligation. Should the antecedent be fulfilled,
one part of the obligation must be satisfied. Note that not both parts of the obligation
can be fulfilled, as one cannot have simultaneously winter tires and all-season tires.

– O5 is a regular obligation, with no additional properties.
– O6 consists of a conjunction of obligations with an exception, and thus belongs like

O4 to multiple categories.
– O7 is a CTD obligation that is active when violating O5.

Step 2: Next, we look at pairs of obligations that can’t be fulfilled simultaneously.

– O1 and O2 cannot be fulfilled at the same time, as a red traffic light would com-
mit one to stopping although it is not to let a car merge. We can see O2 as non-
contradictory by arguing that one does not impede the flow of traffic by stopping
when the traffic light is red. However, for our encoding we will consider the two
actions contradictory. We want the agent to derive the obligation to stop.

– O1 and O3 are incompatible, as moving out of the way requires movement that is
obviously contradictory to stopping. Here the agent should move out of the way as
letting the ambulance pass is of utmost importance.

– O2 and O8 are incompatible, as giving first aid requires stopping the car. Here the
obligation to give first aid should be prioritised.

– For the same reason O3 and O8 are incompatible. In this case moving out of the
way should be prioritised as the ambulance is more qualified to help in a medical
emergency (as they have trained personnel and medical equipment).

– O7 and O8 are contradictory, as one cannot drive directly to the next police station
and at the same time stop and give first aid. Once again, stopping to give first aid
should be deduced by the agent.

Incompatible combinations of more than two obligations include here always one of
the pairs above (in general, the latter may not be always warranted).

Summarizing the statements above, we obtain the following preferences, where Oi �
Oj means that Oi is preferred over Oj :

O1 � O2, O3 � O1, O8 � O2, O3 � O8, O8 � O7.

Step 3: Using the above conflicts and priorities, we can derive the following weights
and levels for the weak constraints corresponding to the obligations:

O1 O2 O3 O4 O5 O6 O7 O8
[1:3] [1:2] [1:4] [1:2] [1:2] [1:2] [1:2] [1:3]

Note that an obligation is always placed on the lowest level if it cannot be in conflict
with another obligation.
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Now we look at the predicates used in the encoding of the above system. In addition to
the predicates in the common core, we use the following predicates:

– Redlight means that a red traffic light is active in front of the agent.
– Winter means the season being winter.
– Theft means that the agent is in possession of proof of theft of his drivers license

and/or registration.
– Licenses is an auxiliary predicate for formulation of O6, as described in Section A.3.

Furthermore, the following constants are used in the encoding:

– merge, emergency_vehicle, and medical_emergency are events that can happen.
Specifically,
• Happens(merge) means a car tries to merge into the lane that the agent is on.
• Happens(emergency_vehicle) means an ambulance (with active emergency

lights) approaches the car.
• Happens(medical) means a medical emergency happens close to the agent.

– stop, move, equip_winter, damage, carry_license, carry_registration, drive_police,
give_first_aid are actions to be reasoned about. Specifically,
• Do(stop) means the car is stopped.
• Do(move) means the car needs to move out of the way.
• Do(equip_winter) resp. Do(equip_allseason) means the car is equipped with

winter tires resp. all-season tires. While arguably tire equipment is more of a
state than an action, we will use the action view for this example.

• Do(damage) means the agent causes damage.
• Do(carry_license) means the agent has his driver’s license with him.
• Do(carry_registration) means the agent has the car’s registration with him.
• Do(drive_police) means the agent drives straight to the next police station.
• Do(give_first_aid) means the agent gives first aid.

Finally, we can encode our example. We do this by adding the following lines to
the common core. First, we encode the obligations themselves as shown in Figure 3a,
following our methodology. However, recall that two obligations are combinations of
different kinds of obligations:

First, O4 is a combination of a derived obligation and a disjunctive obligation. As such,
we are able to encode it in the following way:

:∼Winter,−O(equip_allseason),−O(equip_winter). [1 : 2]

This weak constraint can only be violated if Winter is true. For answer sets where Winter
is true, it is violated by the same answer sets that violate the following weak constraint:

:∼ −O(equip_allseason),−O(equip_winter). [1 : 2]

This is the common way of encoding disjunctive obligations. Therefore, the weak
constraint can be understood as deriving the disjunctive obligation only when winter is
true, thereby encoding the combination of a derived obligation with disjunction.
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Fig. 3: Encoding for the driving scenario

:∼ Redlight,−O(stop). [1 : 3]

:∼ not Happens(merge),−F (stop). [1 : 2]

:∼ Happens(emergency_vehicle),−O(move). [1 : 4]

:∼Winter,−O(equip_allseason),−O(equip_winter). [1 : 2]

:∼ −F (damage). [1 : 2]

Licenses :−O(carry_license), O(carry_registration).

:∼ not Licenses, not Theft. [1 : 2]

:∼ Happens(damage),−O(drive_police). [1 : 2]

:∼ Happens(medical_emergency),−O(give_first_aid). [1 : 3]

(a) obligations

:−Do(stop), Do(move).

:−Do(drive_police), Do(give_first_aid).

(b) conflicting actions

:−Theft,Do(carry_license), Do(carry_registration).

Do(stop) :−Do(give_first_aid).

:−Do(first_aid), not Happens(medical_emergency).

act(stop).

act(move).

act(damage).

act(equip_allseason).

act(equip_winter).

act(carry_license).

act(carry_registration).

act(drive_police).

act(give_first_aid).

(c) action constraints and declarations
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Second, O6 is a combination of an obligation over a conjunction of actions and an
obligation with an exception. We once again use an auxiliary predicate to encode the
conjunction of predicates and an exception on top as usual:

Licenses :−O(carry_license), O(carry_registration).
:∼ not Licenses, not Theft. [1 : 2]

This captures that we either want the exception to be in the answer set or the obligations
to have the license and the registration.

Step 4: Having encoded the obligations themselves, next the conflicting actions from
Step 2 are encoded, shown in Figure 3b.

Step 5: Finally, the rules and facts about actions in Figure 3c are added. The first
constraint excludes a proof of theft if the agent has both the license and the registration
(if one or more are stolen he cannot be in possession of both). It is also clarified that
giving first aid implies stopping the car. Furthermore, a constraint prohibits the agent
from giving first aid without a medical emergency happening (as this is not possible).
Finally, all actions to be reasoned about are declared as acts.

We now consider some examples of obligations which are derived in such cases.

Example 1 Assume that an agent is driving during winter after having its driver’s license
and registration stolen (and having the corresponding confirmation with him). The
agent’s car is not equipped with all-season tires. Upon driving, the agent comes upon a
red light. This information will be denoted in an additional file in the following way:

Winter.

Theft.

−Do(equip_allseason).
Redlight.

Two answer sets are generated for this. The difference between the two answer sets is
simply whether the agent chooses to directly drive to the police station (as this is not
forbidden). Both answer sets derive the same obligations. Note that only the derived
obligations will be listed due to the large size of the answer sets:

F (damage), O(stop), O(equip_winter)

The same two obligations and one prohibition are derived that would also be derived using
common sense reasoning. The obligation to stop (due to the red light), the prohibition on
damaging cars (that is always active) and the obligation to equip winter tires as the agent
is not in possession of all-season tires.

Example 2 Assume that an agent is driving when witnessing a medical emergency.
Furthermore, an ambulance is approaching with active emergency lighting and a vehicle
is trying to merge. This case can be encoded in an additional file in the following way:
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Happens(medical_emergency).
Happens(emergency_vehicle).
Happens(merge).

Multiple answer sets are derived which differ on unimportant details such as whether the
agent chooses to equip winter or all-season tires.

All answer sets however derive the same obligations:

F (damage), O(move), O(carry_license), O(carry_registration)

The obligation to move is derived as letting the ambulance pass is of higher importance
than treating the medical emergency. The other obligations are obviously active as the
exceptions are not given.

Example 3 Assume that an agent is driving when witnessing a medical emergency after
having damaged another car. This test case is encoded in the following way:

Happens(medical_emergency).
Happens(damage).

Once again multiple answer sets with minor differences are derived, as in the previous
case. However, as expected all answer sets contain the same obligations:

F (damage), O(carry_license), O(carry_registration), O(give_first_aid)

As expected the agent is obligated to give first aid rather than driving directly to the
police station.

C Appendix: Encoding the normbases for Pacman

Let (x1, y1) be Pacman’s coordinates and (x2, y2) the coordinates of a frightened ghost
right before it is eaten. We start by looking at the three possible states that could precede
Pacman eating a ghost:

1. Pacman and the frightened ghost are on the same path or offset by 0.5 on only on
axis (meaning x1 = x2 ± 0.5 or y1 = y2 ± 0.5) and the distance between them is at
most 1 on the other axis (meaning |x1 − x2| ≤ 1 or |y1 − y2| ≤ 1). An example of
this case can be seen in Figure 4a.
There are multiple options that can lead to the ghost being eaten in this situation.
Either Pacman stops and the ghost moves into Pacman’s direction or the ghost stops
and Pacman moves into the ghosts direction or both move towards each other. In
this case, forcing Pacman to move into a direction that is not the direction the ghost
is in, suffices to ensure that Pacman cannot eat the ghost. This can be reformulated
as stating that Pacman is prohibited from stopping or moving towards the ghost.
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Fig. 4: Pacman scenarios

(a) an example for case 1

(b) an example for case 2

(c) an example for case 3

2. Pacman and the frightened ghost are on the same path or offset by 0.5 on one axis
(meaning x1 = x2 ± 0.5 or y1 = y2 ± 0.5) and the distance between them is at
most 2 on the other axis (meaning |x1 − x2| ≤ 2 or |y1 − y2| ≤ 2). An example of
this case can be seen in Figure 4b. In this case, the ghost could be eaten if the ghost
and Pacman both move towards each other. That ghost cannot be eaten in such a
situation if Pacman does not move in the direction of the frightened ghost. (Stopping
is a valid option in this case as long as the distance is more than 1, else the first case
would hold.)

3. Pacman and the ghost have a Manhattan distance of at most 2 and Pacman and
the ghost are moving towards the same corner (in other words |x1 − x2| ≤ 1 and
|y1 − y2| ≤ 1). An example of this case can be seen in Figure 4c.
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In this case, the ghost could be eaten if the ghost and Pacman both move towards the
same space. Therefore, prohibiting Pacman from moving towards the ghost would
stop Pacman from eating the ghost in this situation.

Due to an error in the current implementation of JDLV some functionalities that are
available in DLV did not work when using JDLV. We will only explain how the norms
would be encoded if those functionalities worked.
DLV is capable of handling basic arithmetic, using for example the predicates +,−, ∗.
The predicate used in the theoretical encoding is−.−(X,Y, Z) holds true if Z = X−Y .
Furthermore, positive integers can be compared using the common comparison operators
<,<=,==, >,>= [BFI+20].

The code gets updated after every move of the agent and gets passed the following
predicates by the game:

– diamond(X), where X is a direction (north, east, south or west). This predicate
denotes that it is possible for Pacman to move into this direction. (Meaning there is
no wall blocking him from moving in that direction.)

– pacman(X,Y ), where X and Y denote the location of pacman on the x-axis
respectively the y-axis.

– blueGhost(X,Y, Z), where X and Y denote the location of the blue ghost on the
x-axis respectively the y-axis. Z is a boolean that denotes that the ghost is scared if
Z = 1.

– orangeGhost(X,Y, Z), where X,Y, Z have the same meanings as for blueGhost.
– F (direction) will be added when it is impossible for Pacman to move into that

direction (as could be the case when there is a wall in that direction). Note that
F is the predicate we use for prohibition. In the code this could be F (east) as an
example.

Using these predicates we use weak constraints to encode the norms forbidding Pacman
from taking the given actions. We do this by encoding a weak constraint for each of the
cases mentioned earlier. Note that DLV is only capable of working with positive integer
values. Therefore, we double the value of each coordinate. Then, Pacman always moves
two coordinates and a scared ghost will move only one coordinate. In the following
cases we will only show a weak constraint for one direction as an example, as the weak
constraint is almost the same when the relative positions between Pacman and the ghost
change.

1. In the first possible case, the distance between Pacman and the frightened ghost is at
most 1 on one axis and at most 0.5 on the other. We therefore want to forbid Pacman
from moving towards the ghost or stopping. (As the ghost could move into Pacman
if Pacman stops.) We encode this by adding the following four weak constraints (for
each direction the ghost could be in relative to Pacman and for each possible shift in
the other axis). As an example, we show the case where the scared ghost is to the
right of Pacman:
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:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(D,B,G), G ≤ 1,−F (east). [1 : 4]

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(D,B,G), G ≤ 1,−F (stop). [1 : 2]

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(B,D,G), G ≤ 1,−F (east). [1 : 4]

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(B,D,G), G ≤ 1,−F (stop). [1 : 2]

In the case of the vegan normbase, the same rules need to be added for the orange
ghost. The weight of the upper weak constraint is higher as moving towards the
ghost is worse than stopping. The weights of the weak constraints are important as
we do not want Pacman to not have any possible moves.

2. In the second case, Pacman and the frightened ghost are on the same path (meaning
one of their coordinates are identical) and their distance is 2. We encode this by
adding the following weak constraint (for each direction the ghost could be relative
to Pacman). As an example, we show the case where the scared ghost is to the right
of Pacman:

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 4,−(D,B,G), G ≤ 1,−F (east). [1 : 3]

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 4,−(B,D,G), G ≤ 1,−F (east). [1 : 3]

In the case of the vegan normbase, the same rule needs to be added for the orange
ghost. The weights of the weak constraints are chosen as stopping is preferred over
moving towards the direction of the ghost when both options are not optimal.

3. In the third and final case, Pacman and the ghost have a Manhattan distance of 2 but
Pacman and the ghost are not on the same path. (Intuitively, Pacman is around the
corner of the ghost.) We encode this by adding the following two weak constraints
(for each direction the ghost could be in relative to Pacman). As an example, we
show the case where the scared ghost is above and to the right of Pacman:

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(D,B,G), G ≤ 2,−F (east). [1 : 3]

:∼ pacman(A,B), blueGhost(C,D, 1),−(C,A,E), E ≤ 2,−(D,B,G), G ≤ 2,−F (north). [1 : 3]

In the case of the vegan normbase, the same rule needs to be added for the orange
ghost. The weights of the weak constraints are chosen as stopping is preferred over
moving towards the direction of the ghost when both options are not optimal.

Finally, we also want to ensure that Pacman always has at least one valid move
(stopping does count as a move), so we add the following rule:

:−F (north), F (east), F (south), F (west), F (stop).

Note that this is not a weak constraint, as it is not possible for Pacman to choose none of
these options.

By abstracting the above information the vegan and vegetarian norm base can be
encoded. The encodings can be found in [Hat22].
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