
Characterizations for Simplifying ASP Programs

under Abstraction: Working Abstract

Zeynep G. Saribatur and Stefan Woltran

Institute of Logic and Computation, TU Wien

Simpli�cation of ASP programs while preserving their semantics has always
been of interest, with works on equivalence-based rewriting [5, 12], partial eval-
uation [1, 7], and forgetting (see [8] for a recent survey).

The equivalence of logic programs is considered in the sense of the answer
set semantics: a program P is equivalent to a program Q if AS (P) = AS (Q).
Strong equivalence [9] is a much stricter condition over the two programs: P and
Q are strongly equivalent if, for any set R of rules, the programs P ∪ R and
Q ∪ R are equivalent, shown as AS (P ∪ R) = AS (Q ∪ R). This is the notion
that makes it possible to simplify a part of a logic program without looking
at the rest of it: if a subprogram Q of Π is strongly equivalent to a simpler
program Q′, then the Q is replaced by Q′. The works [11, 17, 4, 12] show ways
of transforming programs by ensuring that the property holds. A more liberal
notion is uniform equivalence [10, 13] where R is restricted to a set of facts.
Then, a subprogram Q in Π can be replaced by a uniformly equivalent program
Q′ and the main structure will not be a�ected [3]. Relativised versions of strong
and uniform equivalence [18] is de�ned for the case of having the newly added
rules or facts, R, in a speci�c language. In all of these studies, P and Q are
considered to be de�ned over the same signature. An interesting question then
becomes what happens if these programs are de�ned over di�erent signatures A
and A′, respectively, where |A′| ⊆ |A| and a mapping is given to relate them
together.

The recently introduced notion of abstraction in ASP [15, 16] considers two
programs P and Q, where Q has a reduced signature according to some mapping
m. There the aim is to construct an abstract program Q from P so that the
answer sets of P are over-approximated in Q, i.e., any answer set in P can
be mapped to some answer set in Q. Two forms of abstraction mappings have
been investigated, one is on the propositional level and omits atoms which can
be seen as forgetting [14], while the other is on the �rst-order level and is on
domain abstraction, which clusters the constants in the Herbrand universe of
the programs. Q is considered to be a faithful abstraction if it does not have
any spurious answer sets. However, we are interested in those Q's which could
replace P while fully preserving its semantics w.r.t. m, especially when there are
newly added rules or facts that need to be considered which also get abstracted.

We are motivated by the following example, which currently cannot be cap-
tured by any of the representations existing in the literature. Consider the well-
known planning problem blocksworld extended with multiple tables, where for
a given initial layout of the blocks, e.g., block b1 is located on top of table t1,
block b2 is located on top of b3 and block b3 on top of table t2, the aim is to

2 Zeynep G. Saribatur and Stefan Woltran

pile them up on a chosen table, say t1. Assume that initially the blocks can be
on any of the tables. Then one could consider a mapping m that clusters those
tables that are di�erent than t1 into one, say t̂, so that all possible initial states
Ii (and the goal state G) would be abstracted to some Î (and Ĝ) containing
t̂. Then the aim would be to �nd a Q that computes abstract plans by taking
into account t1 and the cluster table t̂ instead, so that the computed abstract
plan (described through the answer sets) in Q ∪ Î ∪ Ĝ can be mapped back to
some plan in P ∪ Ii ∪ G, and vice versa, i.e., any of the original plans can be
mapped to some abstract plan. Since Ii's and G are described through sets of
facts, the desired relation hints on a form of uniform equivalence, however there
is the di�erence of P and Q being of di�erent signatures according to some m
and R also getting modi�ed with m.

The research on forgetting [6, 2] is actually towards the direction we are
interested in, since there for a program P the aim is to construct a program
f(P, V) by applying an operator f on P to forget the atoms in V from the
vocabulary, so that the resulting program is over V . Among the many properties
that have been investigated in the forgetting literature, the notion of Strong
Persistence ((SP)) requires the correspondence between answer sets of the result
of forgetting and those of the original program be preserved in the presence of
any additional set of rules not containing the atoms to be forgotten, shown as
AS (f(P, V) ∪ R) = AS (P ∪ R)|V , where the vocabulary of R is restricted to

V . Uniform Persistence ((UP)) notion considers R to be a set of facts. Such
a restriction over the vocabulary of the added set of rules/facts prevents these
notions from truly capturing the forgetting of atoms, since it avoids possible
interferences between the rules in R and the rules in P containing the atoms to
be forgotten.

To see this, consider again the blocksworld problem with multiple tables,
where the tables are also colored. As the tables can be of di�erent colors, there
are multiple initial states for the planning problem. However, if colors are not
of relevance to the computation of the plan, then one would expect to forget
the details about the table colors and still obtain the same plans. However the
current de�nition of (UP) does not capture this setting, since the R needs to
be restricted to the remaining atoms, while in our setting the given initial state
description given with R might still have to contain the color details. So what
we want to achieve is actually AS(f(P, V) ∪R|V) = AS(P ∪R)|V for all sets of
facts R ∈ C describing the initial states.

In our ongoing work, we aim to provide characterizations for simplifying pro-
grams according to an abstraction mapping over their signature while preserv-
ing their semantics under the abstraction. By respecting the motivation behind
strong/uniform equivalence, we aim to extend these notions to consider programs
over di�erent signatures related with an abstraction mapping and considering
context programs which have their vocabularies also modi�ed with the abstrac-
tion. We begin with focusing on abstraction by omission to relate the notions
to forgetting, then will lift the results for the general abstraction mapping that
clusters the atoms.

Characterizations for Simplifying ASP Programs under Abstraction 3

Acknowledgements

This research is supported by Austrian Science Fund (FWF) project T-1315.

References

1. Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial
evaluation. J. Log. Program. 32(3), 207�228 (1997)

2. Delgrande, J.P.: A knowledge level account of forgetting. Journal of Arti�cial In-
telligence Research 60, 1165�1213 (2017)

3. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable
model semantics. In: International Conference on Logic Programming. pp. 224�
238. Springer (2003)

4. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Logic Program-
ming and Nonmonotonic Reasoning. pp. 87�99. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Proc. ICLP. pp. 190�205 (2008)

6. Gonçalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in answer
set programming. In: Proc. of the 15th International Conference on Principles of
Knowledge Representation and Reasoning (KR). pp. 135�144 (2016)

7. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality
and disjunctions in stable model semantics. ACM TOCL 7(1), 1�37 (Jan 2006)

8. Leite, J.: A bird's-eye view of forgetting in answer-set programming. In: Balduccini,
M., Janhunen, T. (eds.) Proc. LPNMR. LNCS, vol. 10377, pp. 10�22. Springer
(2017)

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526�541 (Oct 2001)

10. Maher, M.J.: Equivalences of logic programs. In: Shapiro, E. (ed.) Third Interna-
tional Conference on Logic Programming. pp. 410�424. Springer Berlin Heidelberg,
Berlin, Heidelberg (1986)

11. Osorio, M., Navarro, J.A., Arrazola, J.: Equivalence in answer set programming.
In: Pettorossi, A. (ed.) Logic Based Program Synthesis and Transformation. pp.
57�75. Springer Berlin Heidelberg (2002)

12. Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen,
B., Lifschitz, V. (eds.) Logic Programming. pp. 210�224 (2004)

13. Sagiv, Y.: Optimizing datalog programs. In: Proceedings of the 6th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. pp. 349�362.
PODS '87, ACM, New York, NY, USA (1987)

14. Saribatur, Z.G., Eiter, T.: A semantic perspective on omission abstraction in ASP.
In: Proc. of KR (2020)

15. Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs.
Theory Pract. Log. Program. 21(2), 145�195 (2021)

16. Saribatur, Z.G., Eiter, T., Schüller, P.: Abstraction for non-ground answer set
programs. Artif. Intell. 300, 103563 (2021)

17. Turner, H.: Strong equivalence made easy: nested expressions and weight con-
straints. Theory and Practice of Logic Programming 3(4�5), 609�622 (2003)

4 Zeynep G. Saribatur and Stefan Woltran

18. Woltran, S.: Characterizations for relativized notions of equivalence in answer set
programming. In: Alferes, J.J., Leite, J.A. (eds.) Logics in Arti�cial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3229, pp. 161�173. Springer
(2004)

