
Challenges of Developing an API for
Interactive Configuration using ASP

Richard Comploi-Taupe1 , Susana Hahn2 ,
Torsten Schaub2 , and Gottfried Schenner1

1 Siemens AG Österreich, Vienna, Austria
{richard.taupe,gottfried.schenner}@siemens.com

2 University of Potsdam, Germany, and Potassco Solutions
hahnmartinlu@uni-potsdam.de, torsten@cs.uni-potsdam.de

1 Introduction

Product configuration has been one of the first successful applications of Answer
Set Programming (ASP [8,10]) [11]. Nonetheless, more than 20 years later, using
ASP in a product configurator is still challenging. One open challenge is to allow
interactivity during the configuration process.

Industrial product configuration needs to deal with large problems. For ex-
ample, large infrastructure projects may contain thousands of components and
hundreds of component types. These configurations are typically solved in a
step-wise manner by combining interactive actions with automatic solving of
sub-problems [5]. Such a process requires additional modularity to cope with
different types of users. While domain experts provide the configuration model,
other users, such as engineers and sales people, expect a system that allows them
to guide the configuration process by interacting with the solver.

When using a grounding-based formalism like ASP in this context, the so-
called grounding bottleneck [4] arises due to the large number of required com-
ponents for satisfying all requirements. Furthermore this required domain size
is not known beforehand and can vary significantly. Therefore, we require a way
to dynamically introduce new components during the configuration process.

We developed an API to satisfy basic requirements for interactive configura-
tion [5]. Our implementation is based on OOASP [6], a framework for represent-
ing object-oriented configurations in ASP. Additionally, we exploited multiple
features of the ASP system clingo3 [7] to provide interactive functionalities.

2 Approach

Our API was implemented using python, relaying heavily on multiple features
provided by clingo’s API, as well as the systems clorm4 and clingraph [9]. Clorm
is a python library providing an Object Relational Mapping (ORM) interface to
3 https://potassco.org/clingo/
4 https://github.com/potassco/clorm

https://orcid.org/0000-0001-7639-1616
https://orcid.org/0000-0003-2622-2632
https://orcid.org/0000-0002-7456-041X
https://orcid.org/0000-0003-0096-6780
https://potassco.org/clingo/
https://github.com/potassco/clorm


2 R. Comploi-Taupe et al.

clingo, which we use to map the OOASP predicates defining the knowledge base
an the configuration into python classes. These elements were then visualized as
graphs (resembling UML diagrams) using clingraph. Additionally, we employed
our API to create a prototype UI using ipywidgets.

The basic idea behind our approach is to modularize the encodings so that
the program can be built incrementally as the domain size increases. We use
the multi-shot capabilities of clingo for solving continuously changing logic pro-
grams. This approach avoids re-grounding and benefits from learned constraints
by grounding and solving on demand. More specifically, we defined subprograms
that depend on the identifier of the newly introduced object. Therefore, whenever
the domain size is extended by a new object, all the rules referring to this object
are grounded. In this sense, this approach differs from the previous work [2], in
which subprograms were subject to domain-specific actions.

During the interactive process a user will edit a partial configuration P to
build a complete configuration C. The user is able to edit P by adding and
removing: the type of an existing object, associations between two objects, and
values for attributes. Such editions are done using external atoms in clingo, so
that no re-grounding is required. Thus, grounding is only necessary when the
user extends the configuration with a new object. Then, only the sub-program
for the new object identifier is grounded and added to the ground program.

We identified three reasoning tasks in which solving was necessary. (1) Using
the current objects to generate C from P using choice rules; (2) obtaining the list
of available editions for the user via brave reasoning; (3) checking if P is complete
or if it violates any constraints. These tasks are distinguished within the encoding
via externals. In this case one external atom states that the guessing of the
objects’ types, associations and values is active, while two additional externals
activate the integrity constraints for the constraint violations of partial and total
constraints, respectively.

Due to the interactive requirements we divided constraints into two types;
partial and total constraints. Partial constraints are those that can be corrected
by adding more information in a latter stage of the process, for instance, a lower
bound of an association that has not been reached, or a value that is missing.
On the other hand, total constraints refer to violations that can not longer be
fixed, such as upper bounds of an association or having a value of a wrong type.
Unlike the edition externals, constraint externals are set internally by the system
to differentiate the task at hand within the same program.

Given all these functionalities, finding the smallest C that extends P becomes
trivial. This is done following an incremental approach: P is extended with a new
object and then the solver attempts to find C, the process is repeated until C
is found. By following this process one must prove unsatisfiability many times
before finding the solution, leading to performance issues.

Addressing these performance issues to make the approach scale better is
subject of future work. Furthermore, we intend to explore different means to ex-
tend P, such as scheduling techniques [3] or pre-computing the minimal number
of required objects [1].



Challenges of Developing an API for Interactive Configuration using ASP 3

References

1. Aschinger, M., Drescher, C., Gottlob, G., Vollmer, H.: Loco – A logic for con-
figuration problems. ACM Trans. Comput. Log. 15(3), 20:1–20:25 (2014). https:
//doi.org/10.1145/2629454

2. Comploi-Taupe, R., Francescutto, G., Schenner, G.: Applying incremental answer
set solving to product configuration. In: Proceedings of the 26th ACM Interna-
tional Systems and Software Product Line Conference – Volume B. pp. 150–
155. Association for Computing Machinery, New York, NY, USA (2022). https:
//doi.org/10.1145/3503229.3547069, https://doi.org/10.1145/3503229.3547069

3. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: Towards
effective ASP planning. In: Balduccini, M., Janhunen, T. (eds.) Logic Programming
and Nonmonotonic Reasoning – 14th International Conference, LPNMR 2017, Es-
poo, Finland, July 3-6, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10377, pp. 286–300. Springer (2017). https://doi.org/10.1007/978-3-319-61660-5_
26

4. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2-4), 123–165 (2007). https://doi.org/10.1007/s10472-008-9086-5

5. Falkner, A.A., Haselböck, A., Krames, G., Schenner, G., Schreiner, H., Taupe,
R.: Solver requirements for interactive configuration. J. Univers. Comput. Sci.
26(3), 343–373 (2020), http://www.jucs.org/jucs_26_3/solver_requirements_
for_interactive

6. Falkner, A.A., Ryabokon, A., Schenner, G., Shchekotykhin, K.M.: OOASP: con-
necting object-oriented and logic programming. In: Calimeri, F., Ianni, G.,
Truszczynski, M. (eds.) Logic Programming and Nonmonotonic Reasoning – 13th
International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9345, pp. 332–345.
Springer (2015). https://doi.org/10.1007/978-3-319-23264-5_28

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

8. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, New York, NY, USA (2014)

9. Hahn, S., Sabuncu, O., Schaub, T., Stolzmann, T.: Clingraph: ASP-based visual-
ization. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) Logic Programming and
Nonmonotonic Reasoning – 16th International Conference, LPNMR 2022, Genova,
Italy, September 5-9, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13416, pp. 401–414. Springer (2022). https://doi.org/10.1007/978-3-031-15707-3_
31

10. Lifschitz, V.: Answer Set Programming. Springer (2019). https://doi.org/10.1007/
978-3-030-24658-7

11. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configura-
tion knowledge with weight constraint rules (2001), http://www.cs.nmsu.edu/
%7Etson/ASP2001/20.ps

https://doi.org/10.1145/2629454
https://doi.org/10.1145/2629454
https://doi.org/10.1145/2629454
https://doi.org/10.1145/2629454
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1007/s10472-008-9086-5
http://www.jucs.org/jucs_26_3/solver_requirements_for_interactive
http://www.jucs.org/jucs_26_3/solver_requirements_for_interactive
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
http://www.cs.nmsu.edu/%7Etson/ASP2001/20.ps
http://www.cs.nmsu.edu/%7Etson/ASP2001/20.ps

	Challenges of Developing an API forInteractive Configuration using ASP

