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Classical and flexible job-shop scheduling [9, 1] constitute well-known combinato-
rial optimization domains, on which various local and exact search methods have been
investigated (see [2] for an overview). In contrast to typical benchmark scenarios that
deal with some hundreds to thousands of operations, grouped into sequences called
jobs of modest length (e.g., 20 operations to be performed per job), industrial settings
in semiconductor manufacturing [3, 7] involve hundreds of operations per job, taking
several months to completion by a fab that performs thousands of operations each day.

Given the complexity of operations, realistic semiconductor manufacturing pro-
cesses cannot be planned without uncertainties and stochastic fluctuations, such as vary-
ing process durations, occasional machine disruptions and reworking steps. Hence, sim-
ulation methods [7, 8] modeling the physical production provide indispensable means
to experiment with scheduling strategies and empirically assess their expected average-
case performance. The strategies applied in practice aim to optimize performance in-
dicators, such as makespan or tardiness, locally by applying preconfigured dispatching
rules [5], machine-learned decision making policies [10] or exact optimization methods
for the allocation of particular machines [4]. In our work, we focus on the SMT2020
semiconductor manufacturing simulation scenario [7] and model specific conditions
like machine setups and maintenance in the hybrid framework of ASP modulo difference
logic [6]. While long-term, global optimization of production routes with hundreds of
operations is prohibitive in terms of problem size and the need to adapt to unpredictable
stochastic events, our work lays the basis for the future integration of more informed
exact scheduling techniques with simulation and reactive decision making methods.

Application Scenario: The SMT2020 simulation scenario specifies two kinds of semi-
conductor fab settings, one denoted High-Volume/Low-Mix with two types of products
and the other Low-Volume/High-Mix with ten types of products. Both have in com-
mon that, depending on the product type, the production route of each lot includes
a large number of operations, i.e., between 300 and 600 of them. Formally, a prob-
lem instance consists of a set M = M1 ∪ · · · ∪Mm of machines, belonging to tool
groups M1, . . . ,Mm, and a set J = {j1, . . . , jn} of jobs, where each j ∈ J is a se-
quence 〈o1j , . . . , olj 〉 of operations. Each operation oij is associated to a tool group
Mij ∈ {M1, . . . ,Mm}, a setup sij and a processing time pij . The machines in a tool
group Mi may undergo periodic maintenance procedures, subject to lower and upper
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bounds on the number of processed lots or processing time after which the maintenance
procedure must be repeated and occupies a machine for some period of time.

A schedule allocates each operation to a machine in the associated tool group, deter-
mines an order of performing the operations per machine, and also incorporates any re-
quired maintenance procedures. The resulting processing, setup and maintenance times
along with waiting dependencies on predecessor operations in jobs lead to a comple-
tion time cj for each job j. This yields the makespan max{cj | j ∈ J}, i.e., the latest
completion time over all jobs, and we take its minimization as optimization objective.

Hybrid ASP Approach: As customary in ASP, we represent a problem instance in terms
of specific facts and a general ASP modulo difference logic encoding, taking advantage
of the clingo[DL] language and system [6]. The operations to schedule are represented
by op((L,P,R, S), G, T ) atoms, where the tuple (L,P,R, S) identifies an operation
by its lot L, product P , operation number R and setup S. In addition, G and T provide
the associated tool group as well as the processing time. We adopted two strategies for
machine allocation: 1) a fixed machine assignment based on the lexicographic order of
operations; 2) flexible machine assignment, i.e., operations can be freely assigned to
any machine in their associated tool groups. The following rules with difference logic
constraints are then used to determine the start (and completion) time of each operation:

&diff {0−O} <= −T :− setuptime(O, T ).
&diff {O −O′} <= −T :− later(O,O′, T ).
&diff {O −O′} <= −T −T ′ :− order(O,O′, T ) , pmsetuptime(O′, T ′).
&diff {(L,P,R, S)−makespan} <= −T :− op((L,P,R, S), G, T ) ,

not op((L,P,R+ 1, _), _, _).

The first rule expresses that the required setup time (possibly zero) constitutes the ear-
liest possible start time of an operation O. Waiting dependencies on predecessor oper-
ations in the same job or to be performed before O′ on the same machine are propa-
gated by the second rule. The third rule additionally incorporates the time T ′ for setup
and maintenance procedures required in-between performing O and O′ on the same
machine. Finally, the completion time of the last operation per job is asserted as lower
bound on the value of variable makespan , which can then be minimized by clingo[DL].

Experiments: We performed preliminary experiments on instances extracted from the
SMT2020 simulation scenario. Our eleven test cases incorporate between 10 and 45
operations and from 2 to 6 machines.4 While such instances may appear to be small, we
observed a sharp transition from trivial runs to aborts at 600 seconds when the number
of operations increases. Also in some cases, the higher combinatorics outweigh the
advantages of flexible over fixed machine assignment regarding the feasible makespan.

Future Work: Our preliminary results on the use of ASP modulo difference logic for
scheduling operations in semiconductor manufacturing reflect work in progress. As fu-
ture work, we target the improvement of memory and search efficiency, addition of yet
missing capabilities like batch processing and pipelining of operations, decomposition
techniques making better tradeoffs than either fixed or fully flexible machine assign-
ment, and favorable integration with simulation and reactive decision making methods.

4 Instances are available at: https://github.com/prosysscience/FJSP-SMT2020
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