
Witnesses for Answer Sets of Logic Programs
(Extended Abstract)?

Yisong Wang1[0000−0003−2126−7006], Thomas Eiter2[0000−0001−6003−6345],
Yuanlin Zhang3, and Fangzhen Lin4[0000−0002−3141−8675]

1 Guizhou University, Guiyang, Guizhou, China yswang@gzu.edu.cn
2 Technische Universität Wien, Vienna, Austria eiter@kr.tuwien.ac.at

3 Texas Tech University, Lubbock, Texas, USA y.zhang@ttu.edu
4 Hong Kong University of Science and Technology, HK flin@cs.ust.hk

Abstract. In this paper, we propose a notion of reduct for logic pro-
grams and show that each atom in an answer set has a resolution proof
from the reduct with respect to the answer set. Such a resolution proof
provides an explanation of “why a set of atoms is an answer set”. We
then further consider (minimal) sets of rules that will be sufficient to
provide resolution proofs for sets of atoms. Such sets of rules will be
called witnesses and are in the focus of this paper. We study complexity
issues of computing various witnesses and provide algorithms for com-
puting them. In particular, we show that the problem is intractable in
general. Experiments on many well-known ASP and SAT benchmarks
show that computing a minimal witness for an atom of an answer set is
often feasible. In most cases, a resolution proof for an atom is easy to
construct from its witness.
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1 Motivation

Explainability and explanation play an important role in increasing transparency
in automated-decision systems [8, 4]. Answer set programming (ASP) has been
deployed to decision making [2] and provides due to its rule-based language and
declarative semantics a promising base for achieving this capability. However, to
explain atoms in answer sets of an ASP program in a well-justified manner [3,
5, 1] is challenging and has, to our best knowledge, not been widely addressed.

To address this challenge, we consider logical (resolution) proofs as solid
explanations and propose a new reduct MR(Π,M) of a logic program Π w.r.t.
an answer set M that keeps all rules whose bodies are satisfied and removes
all literals on atoms false in M . For example, Π = {r1 : a ∨ b ← not c; r2 :
a ← b; r3 : b ← a} has the unique answer set M = {a, b}. Then MR(Π,M) =
{a∨ b; a← b; b← a}, from which both a and b can be logically derived viewing
‘←’ as material implication.
? This is an extended abstract of an article in ACM Trans. Computational Logic [9].
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2 Basic Notions of Witness and Results

Assuming a propositional language L over a signature A, a logic program Π is
a finite set of rules r of the form

p1 ∨ · · · ∨ pk ← pk+1, · · · , pm,not pm+1, · · · ,not pn (1)

where each pi is from A. Recall that a set M ⊆ A is an answer set of Π if M is
a (⊆)-minimal model of the GL-reduct ΠM = {p1 ∨ · · · ∨ pk ← pk+1, · · · , pm |
r of form (1) ∈ Π, {pm+1, . . . , pn} ∩M = ∅} [6, 7].

Definition 1. The reduct of a logic program Π w.r.t.M ⊆ A, denoted MR(Π,M),
contains for each r of form (1) in Π such that {pm+1, . . . , pn} ∩M = ∅ the rule

q1 ∨ · · · ∨ qs ← pk+1, . . . , pm (i.e., clause q1 ∨ · · · ∨ qs ∨ ¬pk+1 ∨ · · · ∨ ¬pm )

with {q1, . . . , qs} = {p1, . . . , pk} ∩M , {pk+1, . . . , pm} ⊆M .

Theorem 1. Let Π be a logic program and M ⊆ A. Then M is an answer set
of Π iff M is the least (i.e., unique minimal) model of MR(Π,M).

Our notions of witnesses are as follows.

Definition 2. Let M ⊆A, and B,S ⊆ M be disjoint. A logic program Π is a
(minimal) witness of B under S w.r.t.M , if MR(Π,M)∪S (minimally) logically
entails B, i.e., ‘minimal’ means that for none of its proper subset this holds.

Definition 3. Let Π be a logic program and M 6= ∅ be an answer set of Π.
Furthermore, let B,S ⊆M be disjoint. Then, an α?-witness of B under Π and
S w.r.t. M is a DAG G = ({(Si, Πi) | 1 ≤ i ≤ n}, E) where {Si | 1 ≤ i ≤ n} is
a partitioning of B and, for every i, 1 ≤ i ≤ n,

(i) Πi ⊆ Π is a witness of Si under S ∪Xi w.r.t. M , and
(ii) Πi is not a witness of Sj under S ∪Xi w.r.t. M , for every 1 ≤ j 6= i ≤ n,

Xk =
⋃
{S′ | (S′, Π ′) ∈ DG((Sk, Πk))}, 1 ≤ k ≤ n,

where DG(v) is the set of nodes of G from which v is reachable.

If G induces a total order (S1, Π1) < (S2, Π2) < · · · < (Sn, Πn), we call it an
α-witness of B under Π and S w.r.t. M and write G = [(S1, Π1), . . . , (Sn, Πn)].
We call G minimal, if every Πi is minimal and G is compact, if in addition to
minimality Πi ∩Πj = ∅ for all 1 ≤ i < j ≤ n. If B = M and S = ∅, we call G
an (minimal, compact) α?-witness resp. α-witness of M w.r.t. Π.

If each Si is a singleton, the (minimal, compact) α?- resp. α-witness is a (mini-
mal, compact) β?- resp. β-witness. Intuitively, a (minimal) α witness splits B into
subparts Si that can be modularly derived with (non-redundant) rules relative to
asserted atoms S and the previously derived atoms; β means each part Si is an
atom and ? that modules are merely partially ordered, while compactness forbids
reusing rules across modules. E.g., the answer set M of Π from above has two
compact β-witnesses G1 = [(a, {r1, r2}), (b, {r3})], G2 = [(b, {r1, r3}), (a, {r2})].

Minimal and compact witnesses of all sorts always exist, except compact β?-
and β-witnesses. It is intractable to tell whether such witnesses exist.
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Theorem 2. Deciding whether an answer set M of a logic program Π has a
compact β-witness (resp. compact β-witness) is Σp

2 -complete.

Extensive experiments of computing minimal β-witnesses on well-known bench-
marks of ASP and SAT solving show that many of them are in fact compact and
that in most cases, the local witness Πi consists of only a single rule.
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