
On Establishing Robust Consistency in Answer
Set Programs (Extended Abstract)⋆

Andre Thevapalan1[0000−0001−5679−6931] and Gabriele
Kern-Isberner1[0000−0001−8689−5391]

Technische Universität Dortmund, 44227 Dortmund, Germany
{andre.thevapalan,gabriele.kern-isberner}@cs.tu-dortmund.de

1 Introduction

Knowledge bases of real-world applications are generally not static but rather
very dynamic in the sense that they are adapted to each individual case and can
also be prone to various updates. Imagine a system that outputs the possible
treatment plans for a given patient based on a suitable set of program rules.
For each patient, the application has to combine the general knowledge about
possible treatment plans (problem encoding) with the data regarding the pa-
tient (problem instance) [1]. However, at any point where such an application is
used, it has to be ensured that the respective program remains consistent when
merged with the patient data. In this paper, we show how to ensure the robust
consistency of a program in that it remains non-contradictory given any allowed
set of such input data.

2 Resolving potential conflicts

Let P be an extended logic program (ELP) as defined in [2]. Additionally, by an
extended literal L∗, we either mean a (classical) literal L or a default-negated
literal ∼L. We distinguish between the set PF of facts (input) and the set PC
of rules (program core). A valid input PF for PC is a consistent set of facts over
atoms that occur in the rule bodies but not in any rule head. We presuppose that
PC can only comprise rules with a head and a non-empty body. P is contradictory
if there is a set M of classical literals that contains complementary literals and
s. t. M is a minimal model of PM . The aim of our approach is to make the
program core PC of P uniformly non-contradictory, i. e., for every valid input
PF for PC , PC ∪ PF is not contradictory.

Causes for potential contradictions in a program are conflicting rules. Two
rules r, s ∈ PC , r ̸= s, are conflicting if H(r) and H(s) are complementary and
there exists a consistent set M of classical literals s. t. both B(r) and B(s) are
true in M [3]. We denote the set of rules that are conflicting with r by Adv(r).
For every pair (r, s) of conflicting rules, we add an extended literal to the body
of r that shares no atoms with the original body literals. Such an extension is
⋆ This extended abstract informally summarises the main contributions of [4].



2 A. Thevapalan and G. Kern-Isberner

called a λ-extension for r, λ(r). A λ-extension λ(r) for r is conflict-resolving
iff Adv(r′) = ∅ with r′: H(r)←B(r), λ(r). Thus, conflict-resolving λ-extensions
allow the resolution of multiple conflicts at once.

A main feature of our approach is that λ-extensions are informative in that
λ(r) only contains atoms that occur in the rule bodies of Adv(r). This means
that we explore the application-related structure of conflicts to come up with
a professionally adequate solution. We introduce the technical term of blankets
and apply suitable negations (N) to show our main result:

Corollary 3. All conflicts involving r are resolved simultaneously if r is replaced
by r′ ∈ {H(r)←B(r), λ(r). | λ(r) ∈ Nmin(blankets(Adv(r)))}.

Here, any λ-extension for r is conflict-resolving (blankets), informative (N), and
subset-minimal (Nmin). Consequently, any program core PC of an ELP P with
conflicting rules can be transformed to a uniformly non-contradictory core by
successively extending conflicting rules with suitable λ-extensions.

It may happen that a rule r does not have λ-extensions that resolves all of
its conflicts at once. In those cases the presented approach should be applied to
a subset of the conflicts of r or to a rule s ∈ Adv(r). Similarly, given multiple
rules r with head literal a that are in conflict with multiple rules s with head
a, λ-extensions can be computed by processing one rule r after another. A pro-
gram P with constraints ← a. can be handled by rewriting them to x← a,∼x.
beforehand, where x is an atom that does not appear in P.

3 Outlook and Summary

The presented approach constitutes crucial groundwork to allow program en-
codings to be used with any (valid) input data. A uniformly non-contradictory
program core guarantees that no contradictions can arise and we have shown
how any program core can be modified to a uniformly non-contradictory core by
using appropriate λ-extensions. Using informative λ-extensions we furthermore
present modifications that are based on the actual knowledge that is contained
in the program core and not purely technical devices to prevent contradictions.
In general, there can exist a vast amount of λ-extensions for a conflicting rule
r1. We therefore propose that this approach is used in a larger framework where
the knowledge expert is able to interactively resolve each conflict by choosing
the most suitable λ-extensions for r. In [5], we show how an order over the
conflicts of a program and their possible solutions can be computed to ensure
an efficient conflict resolution process. This results in a modified and uniformly
non-contradictory program core that contains knowledge that is professionally
adequate and consistent.

1 A detailed method on how to compute all informative extensions for a conflicting
rule can be found in [4].



On Establishing Robust Consistency in ASP 3

References

1. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan & Claypool Publishers (2012).
https://doi.org/10.2200/S00457ED1V01Y201211AIM019

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and
disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991).
https://doi.org/10.1007/BF03037169, https://doi.org/10.1007/BF03037169

3. Thevapalan, A., Kern-Isberner, G.: Towards interactive conflict resolution in ASP
programs. In: Martínez, M.V., Varzinczak, I. (eds.) 18th International Workshop on
Non-Monotonic Reasoning, Workshop Notes. pp. 29–36 (September 2020)

4. Thevapalan, A., Kern-Isberner, G.: On establishing robust consistency in an-
swer set programs. Theory and Practice of Logic Programming p. 1–34 (2022).
https://doi.org/10.1017/S1471068422000357

5. Thevapalan, A., Kern-Isberner, G.: Sorting strategies for interac-
tive conflict resolution in ASP. CoRR abs/2308.15889 (2023).
https://doi.org/10.48550/arXiv.2308.15889, https://doi.org/10.48550/arXiv.
2308.15889


