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1 Introduction

Multi-Agent Pathfinding [9, MAPF] is the problem of finding paths for agents
in graphs while avoiding collisions. Agents may traverse a graph’s edges or wait
at vertices. All agents have a start vertex and must arrive at their goal vertex.
Furthermore, agents must not occupy the same vertex at the same time and must
not traverse the same edge in different directions at the same time.

Deciding whether a MAPF problem is satisfiable is a polynomial problem [6]
and there are efficient algorithms to find solutions [8]. However, putting bounds
on the number of moves of agents turns the decision problem into an NP-complete
problem [5]. This makes the task of finding optimal solutions for MAPF problems
much harder than finding an arbitrary solution. In this paper, we focus on finding
optimal solutions subject to two different cost functions. The first one optimizes
the length of the longest path among all agents (makespan) while the second one
optimizes the sum of the path lengths of all agents (sum-of-cost).

Different types of solvers for MAPF are available. Among them, there are
graph traversal-based algorithms such as Conflict-Based Search [2, CBS] or
reduction-based methods that, for example, encode MAPF problems as SAT
formulas [10]. Here, we focus on a reduction-based method using Answer Set
Programming [3, 7, ASP] to encode MAPF problems and their cost functions as
logic programs. We propose an ASP-based system using an improved algorithm
to calculate sum-of-cost optimal solutions and compare it to existing systems.

2 Solving MAPF Optimally

Reduction-based solvers, to find makespan optimal solutions, follow a straight-
forward iterative deepening-based approach [10]. Given a MAPF problem and
some initial value for a bound on the maximum path length of each agent, we
increment the bound until the MAPF problem becomes satisfiable. We adapt this
approach to our ASP-based system by encoding the bounded MAPF problem as
a logic program to obtain solutions corresponding to bounded plans.

Finding a sum-of-cost solution is more involved. There are two main aproaches [1];
the jump and the iterative method. The jump method starts by finding a makespan
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optimal plan. Using results from [1], we infer an upper bound on the maximum
path length for each agent; the plans of the bounded MAPF problem include at
least one sum-of-cost optimal plan. At this point, we can directly use ASP and
its inbuilt optimization facilities to obtain solutions corresponding to sum-of-cost
optimal plans.

The iterative method starts by putting individual bounds on the path lengths
of agents and an additional bound on the sum-of-cost. The bounds for the agents
are initialized with their shortest path lengths and the bound for the sum-of-cost
to the sum of the length of the shortest paths. The method then tries to find a
plan satisfying the individual bounds of the agents and the bound on the sum-of-
costs. If no such plan exists, it proceeds by incrementing all bounds by one until
a bounded plan is found. The first plan obtained in this manner corresponds to
a sum-of-cost optimal plan. As before, the bounded MAPF problem is solved by
a reduction to ASP.

A very important pre-processing step is to calculate the vertex/time point
pairs for agents from which the agent’s goal is still reachable given the current
bounds [10]. This allows us to reduce the size of the logic programs and speed
up solving. It is important to note that this optimization is especially effective
for the sum-of-cost objective because we can exploit the individual bounds of
agents to reduce the set of reachable vertices. In general, there are fewer reachable
positions under the sum-of-cost objective than under the makespan objective.

3 Refinements

In this section we consider a refinement to the jump method presented in the
previous section. We begin by noting that the first step to compute a makespan
optimal plan is unnecessarily hard. Since the purpose of this plan is just to get
an upper bound on the path length, it does not matter whether it is makespan
optimal or not. So, instead of finding a makespan optimal plan, we employ the
iterative method disregarding the bound on the sum-of-costs. This also allows
us to employ the reachability optimization to obtain an initial plan with less
computational effort as compared to computing a makespan optimal plan.

Finally, since we are not looking for an optimal solution in this first step,
we can also increase individual agent bounds by larger increments potentially
reducing the amount of solver calls needed to find that first model.

4 Benchmarks

We run benchmarks on a set of instances stemming from [4] of types random,
maze, room, and empty with sizes 32×32, 64×64 and 128×128. All experiments
were run with a timeout of 300s and a memory limit of 28GB. The results show
that the old jump method is fastest for the 32 × 32 instances, which follows the
results of [1]. However, for the larger instances, we observe that the old jump
method is slowest, while our new jump+2 method is fastest, where the +2 stands
for the increment discussed at the end of Section 3.
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