
Clinguin: Building User Interfaces in ASP

Susana Hahn

University of Potsdam, Germany

From education to industry, Answer Set Programming (ASP) plays a crucial
role in solving complex problems. Its effectiveness is amplified by tools that
facilitate the development of interactive applications. However, end users often
prefer graphical interfaces, leading to challenges in frontend development as it
requires skills in languages typically outside the expertise of ASP developers
and researchers. Clinguin addresses this gap by enabling ASP developers to
create interactive User Interface (UI) prototypes using ASP alone. Following the
workflow pattern of our visualization system clingraph[1], clinguin defines UIs as
sets of facts, and facilitates continuous interaction with ASP solvers based on
user-triggered events.

When it comes to creating interfaces tailored for specific problems, a PROLOG-
based approach was explored [2, 3] to design interfaces declaratively using the
XML dialect XUL. Additionally, the area of Automatic User Interface generation
[4] explored model-based UIs which was later extended with contextual informa-
tion and ASP [5]. However, creating problem-specific UIs with ASP remains an
open challenge. Nevertheless, the necessary tools to handle interactivity around
ASP solvers are already available. Interactivity in ASP was explored in [6], and
latter incorporated into clingo as multi-shot capablities [7], allowing for the
continuous solving of logic programs that undergo frequent changes. clingo, facil-
itated this through its API, enabling the implementation of reactive procedures
involving grounding and solving. Clinguin leverages these capabilities to create
user interfaces that interact with the solver.

Clinguin employs a Client-Server architecture, where communication occurs
via an HTTP protocol using JSON. In essence, the server is responsible for
executing clingo and computing the information required to define the UI. This
process unfolds in two distinct steps. Firstly, the domain-state is computed using
the domain-specific encodings, and it is defined by facts that differentiate between
user-selected atoms, potential selections, and inferred atoms. In the next step, the
server utilizes the provided UI encoding to generate atoms defining the layout,
style, and functionality of the interface, collectively referred to as the ui-state.

The workflow, depicted in Figure 1 (Appendix A), can be summarized as
follows: The server is started by providing domain files and a UI file as command-
line arguments. Using the domain files the server creates a clingo control object,
namely domain-control, which employs multi-shot solving. When the client is
launched, it requests the ui-state from the server. Upon receiving the ui-state in
JSON format, the client utilizes a front-end language 1 to render the corresponding

1 The project started with tkinter, an OS-dependent frontend, and has since transitioned
into a web-based frontend developed in Angular to enhance both functionality and
style.

https://orcid.org/0000-0003-2622-2632

UI. Subsequent user interactions with the UI generate new requests to the server,
providing details about the selected operations. The operations, defined by the
server, allow users to interact with the domain-control in different ways, such as
adding a selection as an assumption, setting the value of an external atom, or
obtaining the next solution. Once the server completes the selected operations, it
constructs a hierarchical structure of the updated ui-state and returns it to the
client for rendering.

Updating the ui-state stands as a key process on the server, involving three dis-
tinct solve calls on the domain-control to determine the brave consequences (atoms
considered as “possible”), cautious consequences (atoms considered as “required”),
and the first model. These outputs are combined to form the domain-state, pre-
sented as a set of facts, with the brave and cautious consequences represented in
predicates _b and _c, respectively. The domain-state is then expanded with atoms
representing contextual information (clinguin-state), including data collected
by the frontend _clinguin_context(K,V), as well as _clinguin_assume(A) for
each assumption A, and constants _clinguin_browsing and _clinguin_unsat

to determine clinguin’s current state. Subsequently, a separate control object
is utilized to generate the ui-state. Using the domain-state as input, the UI
encoding produces a single stable model containing the atoms of the ui-state.
The ui-state is defined by predicates elem/3, attr/3 and when/4, which are
used to specify the UI’s layout, style and functionality, respectively. These atoms
are mapped into Python classes using clorm2, a Python library that provides
an Object Relational Mapping interface to clingo. Specifically, an element X of
type T inside element X’ is defined by atom elem(X,T,X’). The attributes of an
element, such as position and style, are specified by attr(X,K,V), where K and
V denote the attribute’s name and value, respectively. The reactive aspect of the
UI is defined by when(X,E,T,P), interpreted as follows: when event E is triggered
on element X, it is followed by an action of type T. These actions can be of three
types: update, where P is a triple (E’,K,V) signifying that the value of attribute
K on element E’ is updated to V; context, where an internal context, defined
as a dictionary, is updated using a P as the key-value pair; and call where P

represents one or multiple operations on the server that will be executed.
Clinguin was designed in a modular fashion, allowing flexibility to cater to

diverse requirements. It offers the option to define and overwrite operations, as well
as customize how the UI is updated and the contextual information in the clinguin-
state. Currently, the system is actively used to create prototype UIs in various
domains, including areas such as Study Regulations [8], Product Configuration
and Job Shop Scheduling. Figure 2 (Appendix A), shows snapshots of prototype
UIs for the sudoku and graph coloring problems. For further reference, the
complete codebase and numerous examples are accessible in the Git repository3.

2 https://github.com/potassco/clorm
3 https://github.com/potassco/clinguin

https://github.com/potassco/clorm
https://github.com/potassco/clinguin

References

1. S. Hahn, O. Sabuncu, T. Schaub, and T. Stolzmann: clingraph: ASP-based Visual-
ization. In: G. Gottlob, D. Inclezan, and M. Maratea. Proceedings of the Sixteenth
International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’22). Lecture Notes in Artificial Intelligence, pp. 401–414. Springer-Verlag
(2022). doi: 10.1007/978-3-031-15707-3_31

2. C Schneiker, M. Khamis, and D Seipel: Prolog Server Faces–A Declarative Framework
for Dynamic Web Pages. (2010)

3. C Schneiker and D Seipel: Declarative Web Programming with PROLOG and XUL.
In: Proc. 26th Workshop on Logic Programming (WLP) (2012)

4. E Schlungbaum and T Elwert: Automatic User Interface Generation from Declarative
Models. In: CADUI, pp. 3–17 (1996)

5. J Zakraoui and W Zagler: A logical approach to web user interface adaptation. In:
Information Quality in e-Health: 7th Conference of the Workgroup Human-Computer
Interaction and Usability Engineering of the Austrian Computer Society, USAB
2011, Graz, Austria, November 25-26, 2011. Proceedings 7, pp. 645–656 (2011)

6. M. Gebser, P. Obermeier, and T. Schaub: Interactive Answer Set Programming: Pre-
liminary Report. In: S. Ellmauthaler and C. Schulz. Proceedings of the International
Workshop on User-Oriented Logic Programming (IULP’15) (2015)

7. R. Kaminski, J. Romero, T. Schaub, and P. Wanko: How to Build Your Own ASP-
based System?! Theory and Practice of Logic Programming 23(1), 299–361 (2023).
doi: 10.1017/S1471068421000508

8. S. Hahn, C. Martens, A. Nemes, H. Otunuya, J. Romero, T. Schaub, and S. Schellhorn:
Reasoning about Study Regulations in Answer Set Programming (Preliminary
Report). In: To appear in ASPOCP’23: 16th Workshop on Answer Set Programming
and Other Computing Paradigms (2023)

https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1017/S1471068421000508

A Appendix A

USER

LOAD

UI

CLIENT

GET
server

POST
server

Update
context

Update
attribute

Render UI

context
{k:v}

JSON
UI

SERVER

o
p
e
ra

ti
o
n
s

Execute
operation

domain-control
domain files

assumptions
externals
atoms

∗(multi-shot)

clinguin-state
clinguin assume/1
clinguin context/2
clinguin browsing
clinguin unsat

Update UI state

domain-state

brave consequences b/1

cautious consequences c/1

model

clinguin *

ui-control

ui files

ui-state
elem/3

attr/3

when/4

JSON
JSON
UI

event

call

context

up
da
te

solve

solve

POST

200

GET

Fig. 1: clinguin’s workflows for loading the UI and reacting user-triggered events.
Input files are shown in pink. Green sections are composed of ASP facts.

(a) Interactive gaph coloring, with
clingraph integration.

(b) Iteractive sudoku with values
leading to UNSAT in red.

Fig. 2: UIs using clinguin.

	Clinguin: Building User Interfaces in ASP

