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Abstract. Metamodeling refers to scenarios in ontologies in which class-
es and roles can be members of classes or occur in roles. This is a desirable
modelling feature in several applications, but allowing it without restric-
tions is problematic for several reasons, mainly because it causes un-
decidability. Therefore, practical languages either forbid metamodeling
explicitly or treat occurrences of classes as instances to be semantically
different from other occurrences, thereby not allowing metamodeling se-
mantically. Several extensions have been proposed to provide metamod-
eling to some extent. Building on earlier work that reduces metamod-
eling query answering to Datalog query answering, recently reductions
to query answering over hybrid knowledge bases were proposed with the
aim of using the Datalog transformation only where necessary. Exper-
iments with hybrid reasoners showed that these methods are viable in
practice, but performance was not as good as one could have hoped for.
In this work we show that using a suitable plugin for DLV2, rather than a
dedicated hybrid knowledge base, can achieve much better performance.
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1 Introduction

Metamodeling helps in specifying conceptual modelling requirements with the
notion of meta-classes (for instance, classes that are instances of other classes)
and meta-properties (relations between meta-concepts). These notions can be
expressed in OWL Full. However, OWL Full is so expressive for metamodeling
that it leads to undecidability [13]. OWL 2 DL and its sub-profiles guarantee
decidability, but they provide a very restricted form of metamodeling [7] and
give no semantic support due to the prevalent Direct Semantics (DS).

Consider an example adapted from [6], concerning the modeling of biologi-
cal species, stating that all GoldenEagles are Eagles, all Eagles are Birds, and
Harry is an instance of GoldenEagle, which further can be inferred as an in-
stance of Eagle and Birds. However, in the species domain one can not just
express properties of and relationships among species, but also express proper-
ties of the species themselves. For example “GoldenEagle is listed in the IUCN
Red List of endangered species” states that GoldenEagle as a whole class is an
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endangered species. Note that this is also not a subclass relation, as Harry is
not an endangered species. To formally model this expression, we can declare
GoldenEagle to be an instance of new class EndangeredSpecies.

Eagle ⊑ Birds, GoldenEagle ⊑ Eagle, GoldenEagle(Harry)
EndangeredSpecies ⊑ Species, EndangeredSpecies(GoldenEagle)

Note that the two occurrences of the IRI for GoldenEagle (in a class position
and in an individual position) are treated as different objects in the standard
direct semantics DS 1, therefore not giving semantic support to punned2 entities
and treating them as independent of each other by reasoners. These restric-
tions significantly limit meta-querying as well, as the underlying semantics for
SPARQL queries over OWL 2 QL is defined by the Direct Semantic Entailment
Regime [5], which uses DS.

To remedy the limitation of metamodeling, Higher-Order Semantics (HOS)
was introduced in [10] for OWL 2 QL ontologies and later referred to as Meta-
modeling Semantics (MS) in [11], which is the terminology that we will adopt in
this paper. The interpretation structure of HOS follows the Hilog-style seman-
tics of [1], which allows the elements in the domain to have polymorphic char-
acteristics. Furthermore, to remedy the limitation of metaquerying, the Meta-
modeling Semantics Entailment Regime (MSER) was proposed in [2], which
does allow meta-modeling and meta-querying using SPARQL by reduction from
query-answering over OWL 2 QL to Datalog queries.

In [15] several methods were proposed that reduce query-answering over
OWL 2 QL to queries over hybrid knowledge bases instead. The idea there was
to split the input ontology into two parts, one involving metamodeling and one
that does not. The former is transformed to Datalog using the method of [2],
while the latter is kept as an ontology and linked to the Datalog program. The
precise bridge rules to be created were either all possible or just those relevant
to the query (using an established module notion). Experiments using HEXLite-
owl-api-plugin as a hybrid reasoner showed this to be a viable approach, even
if the observed performance was not as quick as hoped for. This appeared to
be due to internals of the hybrid reasoner and the lack of any query-oriented
optimisations such as the magic set technique. Indeed, results in [14] indicate
that absence of a query-oriented method is detrimental for performance.

In this work, we use an extension of DLV2 referred to as Python external
atoms3 as a hybrid reasoner. The system does support the magic set technique
and our experiments show much better performance using this system.

In the following we recall the methods introduced in [15] and then turn to
the new evaluation using DLV2.

1 http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
2 http://www.w3.org/2007/OWL/wiki/Punning
3 https://t.ly/dlv2-python-external-atoms
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2 Preliminaries

This section gives a brief overview of the language and the formalism used in
this work.

2.1 OWL 2 QL

This section recalls the syntax of the ontology language OWL 2 QL and the
Metamodeling Semantics (MS) for OWL 2 QL, as given in [12].

Syntax
We start by recalling some basic elements used for representing knowledge in
ontologies: Concepts, a set of individuals with common properties, Individuals,
objects of a domain of discourse, and Roles, a set of relations that link individu-
als. An OWL 2 ontology is a set of axioms that describes the domain of interest.
The elements are classified into literals and entities, where literals are values
belonging to datatypes and entities are the basic ontology elements denoted by
Internationalized Resource Identifiers (IRI). The notion of the vocabulary V
of an OWL 2 QL, constituted by the tuple V = (Ve, Vc, Vp, Vd, D, Vi, LQL). In
V , Ve is the union of Vc, Vp, Vd, Vi and its elements are called atomic expres-
sions; Vc, Vp, Vd, and Vi are sets of IRIs, denoting, respectively, classes, object
properties, data properties, and individuals, LQL denotes the set of literals -
characterized as OWL 2 QL datatype maps denoted as DMQL and D is the set
of datatypes in OWL 2 QL (including rdfs:Literal). Given a vocabulary V of an
ontology O, we denote by Exp the set of well formed expressions over V . For the
sake of simplicity we use Description Logic (DL) syntax for denoting expressions
in OWL 2 QL. Complex expressions are built over V , for instance, if e1, e2 ∈ V
then ∃e1.e2 is a complex expression. An OWL 2 QL Knowledge Base O is a pair
⟨T ,A⟩, where T is the TBox (inclusion axioms) and A is the ABox (assertional
axioms). Sometimes we also let O denote T ∪ A for simplicity. OWL 2 QL is
a finite set of logical axioms. The axioms allowed in an OWL 2 QL ontology
have one of the form: inclusion axioms e1 ⊑ e2, disjointness axioms e1 ⊑ ¬ e2,
axioms asserting property i.e., reflexive property ref(e) and irreflexive property
irref(e) and assertional axioms i.e., c(a) class assertion, , p(a, b) object property
assertion, and d(a, b) data property assertion. We employ the following naming
schemes (possibly adding subscripts if necessary): c,p,d,t denote a class, object
property, data property and datatype. The above axiom list is divided into TBox
axioms (further divided into positive TBox axioms and negative TBox axioms)
and ABox axioms. The positive TBox axioms consist of all the inclusion and
reflexivity axioms, the negative TBox axioms consist of all the disjointness and
irreflexivity axioms and ABox consist of all the assertional axioms. For simplicity,
we omit OWL 2 QL axioms that can be expressed by appropriate combinations
of the axioms specified in the above axiom list. Also, for simplicity we assume
to deal with ontologies containing no data properties.
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Meta-modeling Semantics
The Meta-modeling Semantics (MS) is based on the idea that every entity in
V may simultaneously have more than one type, so it can be a class, or an
individual, or data property, or an object property or a data type. To formalise
this idea, the Meta-modeling Semantics has been defined for OWL 2 QL. In
what follows, P(S) denotes the power set of S. The meta-modeling semantics
for O over V is based on the notion of interpretation, constituted by a tuple
I = ⟨∆, ·I , ·C , ·P , ·D, ·T , ·I⟩, where

– ∆ is the union of the two non-empty disjoint sets: ∆ = ∆o ∪∆v, where ∆o

is the object domain, and ∆v is the value domain defined by DMQL;
– ·I : ∆o → {True, False} is a total function for each object o ∈ ∆o, which

indicates whether o is an individual; if ·C , ·P , ·D, ·T are undefined for an o,
then we require oI = True, also in other cases, e.g., if o is in the range of ·C ;

– ·C : ∆o → P(∆o) is partial and can assign the extension of a class;
– ·P : ∆o → P(∆o ×∆o) is partial and can assign the extension of an object

property;
– ·D : ∆o → P(∆o × ∆v) is partial and can assign the extension of a data

property;
– ·T : ∆o → P(∆v) is partial and can assign the extension of a datatype;
– .I is a function that maps every expression in Exp to ∆o and every literal

to ∆v.

This allows for a single object o to be simultaneously interpreted as an indi-
vidual via .I , a class via .C , an object property via .P , a data property via .D,
and a data type via .T . For instance, for Example 1, ·C , ·I would be defined for
GoldenEagle, while ·P , ·D and ·T would be undefined for it.

The semantics of logical axiom α is defined in accordance with the notion
of axiom satisfaction for an MS interpretation I. The complete set of notions is
specified in Table 3.B in [12]. Moreover, I is said to be a model of an ontology O
if it satisfies all axioms of O. Finally, an axiom α is said to be logically implied
by O, denoted as O |= α, if it is satisfied by every model of O.

2.2 Hybrid Knowledge Bases

Hybrid Knowledge Bases (HKBs) have been proposed for coupling logic pro-
gramming (LP) and Description Logic (DL) reasoning on a clear semantic basis.
Our approach uses HKBs of the form K = ⟨O,P⟩, where O is an OWL 2 QL
knowledge base and P is a hex program, as defined next.

Hex programs [3] extend answer set programs with external computation
sources. We use hex programs with unidirectional external atoms, which import
elements from the ontology of an HKB. For a detailed discussion and the seman-
tics of external atoms, we refer to [4]. What we describe here is a simplification
of the much more general hex formalism.

Regular atoms are of the form p(X1, . . . , Xn) where p is a predicate symbol
of arity n and X1, . . . , Xn are terms, that is, constants or variables. An external
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atom is of the form &g[X1, . . . , Xn](Y1, . . . , Ym) where g is an external predicate
name g (which in our case interfaces with the ontology), X1, . . . , Xn are input
terms and Y1, . . . , Ym are output terms.

Next, we define the notion of positive rules that may contain external atoms.

Definition 1. A hex rule r is of the form

a← b1, . . . , bk. k ≥ 0

where a is regular atom and b1, . . . , bk are regular or external atoms. We refer
to a as the head of r, denoted as H(r), while the conjunction b1, ..., bk is called
the body of r.

We call r ordinary if it does not contain external atoms. A program P containing
only ordinary rules is called a positive program, otherwise a hex program. A hex
program is a finite set of rules.

The semantics of hex programs generalizes the answer set semantics. The Her-
brand base of P, denoted HBP , is the set of all possible ground versions of atoms
and external atoms occurring in P (obtained by replacing variables with con-
stants). Note that constants are not just those in the standard Herbrand universe
(those occuring in P) but also those created by external atoms, which in our case
will be IRIs from O. Let the grounding of a rule r be grd(r) and the grounding of
program P be grd(P) =

⋃
r∈P grd(r). An interpretation relative to P is any sub-

set I ⊆ HBP containing only regular atoms. We write I |= a iff a ∈ I. With every
external predicate name &g ∈ G we associate an (n+m+ 1)-ary Boolean func-
tion f&g (called oracle function) assigning each tuple (I, x1, . . . , xn, y1 . . . , ym)
either 0 or 1, where I is an interpretation and xi, yj are constants. We say
that I |= &g[x1, . . . , xn](y1, . . . , ym) iff f&g(I, x1 . . . , xn, y1, . . . , ym) = 1. For a
ground rule r, I |= B(r) iff I |= a for all a ∈ B(r) and I |= r iff I |= H(r)
whenever I |= B(r). We say that I is a model of P, denoted I |= P, iff I |= r
for all r ∈ grd(P). The FLP-reduct of P w.r.t I, denoted as fPI , is the set of
all r ∈ grd(P) such that I |= B(r). An interpretation I is an answer set of P iff
I is a minimal model of fPI . By AS(P) we denote the set of all answer sets of
P. If K = ⟨O,P⟩, then we write AS(K) = AS(P) — note that O is implicitly
involved via the external atoms in P. In this paper, AS(K) will always contain
exactly one answer set, so we will abuse notation and write AS(K) to denote
this unique answer set.

We will also need the notion of query answers of HKBs that contain rules
defining a dedicated query predicate q. Given a hybrid knowledge base K and a
query predicate q, let ANS(q,K) denote the set {⟨x1, . . . , xn⟩ | q(x1, . . . , xn) ∈
AS(K)}.

3 Query Answering Using MSER

We consider SPARQL queries, a W3C standard for querying ontologies. While
SPARQL query results can in general either be result sets or RDF graphs, we



6 Haya Majid Qureshi and Wolfgang Faber

have restricted ourselves to simple SELECT queries, so it is sufficient for our
purposes to denote results by set of tuples. For example, consider the following
SPARQL query:

SELECT ?x ?y ?z WHERE {
?x rdf : type ?y.
?y rdfs :SubClassOf ?z

}
This query will retrieve all triples ⟨x, y, z⟩, where x is a member of class y that
is a subclass of z. In general, there will be several variables and there can be
multiple matches, so the answers will be sets of tuples of IRIs.

Now, we recall query answering under the Meta-modeling Semantics Entail-
ment Regime (MSER) from [2]. This technique reduces SPARQL query answer-
ing over OWL 2 QL ontologies to Datalog query answering. The main idea of this
approach is to define (i) a translation function τ mapping OWL 2 QL axioms to
datalog facts and (ii) a fixed datalog rule base Rql that captures inferences in
OWL 2 QL reasoning.

The reduction employs a number of predicates, which are used to encode
the basic axioms available in OWL 2 QL. This includes both axioms that are
explicitly represented in the ontology (added to the Datalog program as facts via
τ) and axioms that logically follow. In a sense, this representation is closer to a
meta-programming representation than other Datalog embeddings that translate
each axiom to a rule.

The function τ transforms an OWL 2 QL assertion α to a fact. For a given
ontology O, we will denote the set of facts obtained by applying τ to all of its
axioms as τ(O); it will be composed of two portions τ(T ) and τ(A), as indicated
in Table 1.

Table 1: τ Function
τ(O) α τ(α) α τ(α)

τ(T )

c1 ⊑ c2 isacCC(c1, c2) r1 ⊑ ¬ r2 disjrRR(r1,r2)
c1 ⊑ ∃r2−.c2 isacCI(c1,r2,c2) c1 ⊑ ¬ c2 disjcCC(c1,c2)
∃r1 ⊑ ∃r2.c2 isacRR(r1,r2,c2) c1 ⊑ ¬∃r2− disjcCI(c1,r2)
∃r1− ⊑ c2 isacIC(r1,c2) ∃r1⊑ ¬ c2 disjcRC(r1,c2)
∃r1− ⊑ ∃r2.c2 isacIR(r1,r2,c2) ∃r1 ⊑ ¬∃r2 disjcRR(r1,r2)
∃r1− ⊑ ∃r2−.c2 isacII(r1,r2,c2) ∃r1 ⊑ ¬∃r2− disjcRI(r1,r2)
r1 ⊑ r2 isarRR(r1,r2) ∃r1− ⊑ ¬ c2 disjcIC(r1,c2)
r1 ⊑ r2− isarRI(r1,r2) ∃r1− ⊑ ¬∃r2 disjcIR(r1,r2)
c1 ⊑ ∃r2.c2 isacCR(c1,r2,c2) ∃r1− ⊑ ¬∃r2− disjcII(r1,r2)
∃r1⊑ c2 isacRC(r1,c2) r1 ⊑ ¬ r2− disjrRI(r1,r2)
∃r1 ⊑ ∃r2−.c2 isacRI(r1,r2,c2) irref(r) irrefl(r)
refl(r) refl(r)

τ(A)
c(x) instc(c,x) x ̸= y diff(x,y)
r(x, y) instr(r,x,y)
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The fixed program Rql can be viewed as an encoding of axiom saturation in
OWL 2 QL. The full set of rules provided by authors of [2] are reported in the
online repository of [14]. We will consider one rule to illustrate the underlying
ideas:

isacCR(C1,R2,C2) ← isacCC(C1,C3), isacCR(C3,R2,C2).

The above rule encodes the following inference rule:

O |= C1 ⊑ C3, O |= C3 ⊑ ∃R2.C2 ⇒ O |= C1 ⊑ ∃R2.C2

Finally, the translation can be extended in order to transform conjunctive
SPARQL queries under MS over OWL 2 QL ontologies into a Datalog query.
SPARQL queries will be translated to Datalog rules using a transformation τ q.
τ q uses τ to translate the triples inside the body of the SPARQL query Q and
adds a fresh datalog predicate q in the head to account for projections. In the
following we assume q to be the query predicate created in this way.

For example, the translation of the SPARQL query given earlier will be

q(X,Y,Z) ← instc(X,Y), isacCC(Y,Z).

Given an OWL 2 QL ontology O and a SPARQL query Q, let ANS(Q,O)
denote the answers to Q over O under MSER, that is, a set of tuples of IRIs. In
the example above, the answers will be a set of triples.

4 MSER Query Answering via Hybrid Knowledge Bases

We propose four variants for answering MSER queries by means of Hybrid
Knowledge Bases. We first describe the general approach and then define each
of the four variants.

4.1 General Architecture

The general architecture is outlined in Figure 1. In all cases, the inputs are
an OWL 2 QL ontology O and a SPARQL query Q. We then differentiate be-
tween OntologyFunctions and QueryFunctions. The OntologyFunctions
achieves two basic tasks: first, the ontology is split into two partitions O′

and
O′′

, then τ(O′′
) is produced.

The QueryFunctions work mainly on the query. First, a set N of IRIs is
determined for creating Interface Rules (IR, simple hex rules), denoted as π(N )
for importing the extensions of relevant classes and properties from O′

. In the
simplest case, N , consist of all IRIs in O′

, but we also consider isolating those
IRIs that are relevant to the query by means of Logic-based Module Extraction
(LME) as defined in [8]. Then, τ q translates Q into a datalog query τ q(Q).
Finally, the created hex program components are united (plus the fixed inference
rules), yielding the rule part P = Rql ∪ π(N ) ∪ τ(O′′

) ∪ τ q(Q), which together
with O′

forms the HKB K = ⟨O′
,P⟩, for which we then determine ANS(q,K),

where q is the query predicate introduced by τ q(Q).
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Fig. 1: The Overall Architecture of Hybrid-Framework
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Create Interface Rules
π(N )
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4.2 Basic Notions

Before defining the specific variations of our approach, we first define some aux-
iliary notions. The first definition identifies meta-elements.

Definition 2. Given an Ontology O, IRIs in (Vc ∪ Vp) ∩ Vi are meta-elements,
i.e., IRIs that occur both as individuals and classes or object properties.

In our example, GoldenEagle is a meta-element. Meta-elements form the
basis of our main notion, clashing axioms.

Definition 3. Clashing Axioms in O are axioms that contain meta-elements,
denoted as CA(O). To denote clashing and non-clashing parts in TBox (T ) and
ABox (A), we write AN = A\CA(O) as non-clashing ABox, AC = CA(O)∩A
as clashing ABox; and likewise T N = T \ CA(O) as non-clashing TBox and
T C = CA(O) ∩ T as clashing TBox.

The clashing axiom notion allows for splitting O into two parts and generate
O′

without clashing axioms.
We would also like to distinguish between standard queries and meta-queries.

A meta-query is an expression consisting of meta-predicates p and meta-variables
v, where p can have other predicates as their arguments and v can appear in
predicate positions. The simplest form of meta-query is an expression where vari-
ables appear in class or property positions also known as second-order queries.
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More interesting forms of meta-queries allow one to extract complex patterns
from the ontology, by allowing variables to appear simultaneously in individ-
ual object and class or property positions. We will refer to non-meta-queries as
standard queries. Moving towards Interface Rules, we first define signatures of
queries, ontologies, and axioms.

Definition 4. A signature S(Q) of a SPARQL query Q is the set of IRIs oc-
curring in Q. If no IRIs occur in Q, we define S(Q) to be the signature of O.
Let S(O) (or S(α)) be the set of atomic classes, atomic roles and individuals
that occur in O (or in axiom α).

As hinted earlier, we can use S(O′
) for creating interface rules (O′

being
the ontology part in the HKB), or use S(Q) for module extraction via LME
as defined in [8] for singling out the identifiers relevant to the query, to be
imported from the ontology via interface rules. We will denote this signature as
S(LME(S(Q),O′

)).
We next define the Interface Rules for a set of IRIs N .

Definition 5. For a set a of IRIs N , let π(N ) denote the hex program contain-
ing a rule

instc(C,X) ← &g[C](X).

for each class identifier C ∈ N , and a rule

instr(R,X, Y ) ← &g[R](X,Y ).

for each property identifier R ∈ N . Here &g is a shorthand for the external atom
that imports the extension of classes or properties from the ontology O′

of our
framework.

The rules in π(N ) are called Interface Rules (IR) and serve as the bridge
from O′

to P.

4.3 Variants

Now we define the four variants for the ontology functions, and two for the query
functions. Since for one ontology function O′

is empty, the two query functions
have the same effect, and we therefore arrive at seven different variants for
creating the hybrid knowledge bases (HKB).

The difference in the ontology functions is which axioms of O = ⟨A, T ⟩ stay
in O′

and which are in O′′
, the latter of which is translated to Datalog. We use

a simple naming scheme, indicating these two components:

A−T : O′
= A, O′′

= T .
NAT−CAT : O′

= ⟨AN , T ⟩, O′′
= ⟨AC , T ⟩.

NAT−CACT : O′
= ⟨AN , T ⟩, O′′

= ⟨AC , T C⟩.
E−AT : O′

= ∅, O′′
= O = ⟨A, T ⟩.

E−AT serves as a baseline, as it boils down to the Datalog encoding of [2].
E−AT is also the only variant for which the query functions will not create any
Interface Rules, i.e. π(N ) = ∅. We next describe and define each of the ontology
functions.
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A−T In this approach, O′
consists only of the ABox A of O and the TBox T of

O is translated into Datalog. Here the main difference to the Datalog encoding
of [2] is that the ABox is not translated to facts but stays in the ontology part
and can be accessed via Interface Rules.

Definition 6. Given O = ⟨A, T ⟩, let the A−T HKB be KA−T (O) = ⟨A,Rql ∪
τ(T )⟩.

NAT−CAT In this approach, the notion of clashing axioms (cf. Definition 3)
is used to separate the ABox into two parts, each of which is combined with
the same TBox. One of the resulting ontologies is clash-free and can therefore
be reliably treated by a standard ontology reasoner. The other ontology has
the meta-assertions and will be treated by the datalog transformation. The link
between the two will later be provided by the query functions in the form of
Interface Rules.

Definition 7. Given O = ⟨A, T ⟩, let the NAT−CAT HKB be KNAT−CAT (O) =
⟨⟨AN , T ⟩,Rql ∪ τ(⟨AC , T ⟩)⟩.

NAT−CACT This approach is similar to the previous one except that it does
not pair the same T with both AN and AC . Instead, it associates AN with
the original T as before, but associates only T C , the clashing part of T to AC ,
yielding a potentially smaller ontology to be translated to Datalog. Also here,
the linking Interface Rules will be added later by the query functions.

Definition 8. Given O = ⟨A, T ⟩, let the NAT−CACT HKB be KNAT−CACT (O) =
⟨⟨AN , T ⟩,Rql ∪ τ(⟨AC , T C⟩)⟩.

E−AT This approach is the baseline, has an empty ontology part in the HKB
and translates the entire given ontology to Datalog, just like in [2]. Note that
here no Interface Rules are necessary.

Definition 9. Given O, let the E−AT HKB be KE−AT (O) = ⟨∅,Rql ∪ τ(O)⟩.

Next we turn to the query functions. As hinted at earlier, we will consider
two versions, which differ in the Interface Rules they create. Both create query
rules τ q(Q) for the given query, but one (All) will create interface rules for all
classes and properties in the ontology part of the HKB, while the other (Mod)
will extract the portion of the ontology relevant to query using LME and create
Interface Rules only for classes and properties in this module.

For notation, we will overload the ∪ operator for HKBs, so we let ⟨O,P⟩ ∪
⟨O′

,P ′⟩ = ⟨O∪O′
,P∪P ′⟩ and we also let ⟨O,P⟩∪P ′ = ⟨O,P∪P ′⟩ for ontologies

O and O′
and hex programs P and P ′.

Definition 10. Given an HKB ⟨O,P⟩ and query Q, let the All HKB be defined
as KAll(⟨O,P⟩,Q) = ⟨O,P ∪ τ q(Q) ∪ π(S(O))⟩.
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Definition 11. Given an HKB ⟨O,P⟩ and query Q, let the Mod HKB be defined
as KAll(⟨O,P⟩,Q) = ⟨O,P ∪ τ q(Q) ∪ π(S(LME(S(Q),O)))⟩.

We will combine ontology functions and query functions, and instead of
Kβ(Kα(O),Q) we will write Kα

β (O,Q). We thus get eight combinations, but

we will not use KE−AT
Mod , as it unnecessarily introduces Interface Rules. Also note

that KE−AT
All (O,Q) does not contain any Interface Rules, because the ontology

part of KE−AT (O) is empty.

5 Evaluation

In [15] we conducted experiments using HEXLite with the OWL-API plugin.
While it did show drastic improvements when using one of the hybrid approaches
with respect to the baseline E−AT and with using Mod rather then All, the
absolute performance was disappointing. In particular, with the larger ontolo-
gies considered, no answer could be obtained even after hours. This contrasts
sharply with the findings in [14], in which the best systems took only seconds
to answer queries even on the larger ontologies. The main reasons appeared to
be inefficiencies in the OWL-API plugin, paired with a lack of query-oriented
computation.

In the meantime we became aware of DLV2 with Python external atoms4.
The version of DLV2 that we obtained from the developers directly sup-

ports the Turtle format of ontologies, and one can use ontology IRIs directly as
predicate names. The rules of Definition 5 can then directly use class and role
identifiers:

Definition 12. For a set a of IRIs N , let π(N ) denote the DLV2 program
containing a rule

instc(C,X) ← C(X).

for each class identifier C ∈ N , and a rule

instr(R,X, Y ) ← R(X,Y ).

for each property identifier R ∈ N .

For transforming our ontologies to Turtle format, we have used a utility called
ont-converter5 that automatically transforms the source ontology in different
formats (RDF/XML, OWL/XML, N3, etc).

The experimental setting is the same as in [15]: we conducted two sets of
experiments on the widely used Lehigh University Benchmark (LUBM) dataset
and on the Making Open Data Effectively USable (MODEUS) Ontologies6. We

4 https://dlv.demacs.unical.it/home
5 https://github.com/sszuev/ont-converter
6 http://www.modeus.uniroma1.it/modeus/node/6
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only use the query function Mod, as it was evident in [15] that All has no
advantage over Mod.

The LUBM datasets describe a university domain with information like de-
partments, courses, students, and faculty. This dataset comes with 14 queries
with different characteristics (low selectivity vs high selectivity, implicit rela-
tionships vs explicit relationships, small input vs large input, etc.). We have also
considered the meta-queries mq1, mq4, mq5, and mq10 from [9] as they con-
tain variables in-property positions and are long conjunctive queries. We have
also considered two special-case queries sq1 and sq2 from [2] to exercise the
MSER features and identify the new challenges introduced by the additional
expressivity over the ABox queries. Basically, in special-case queries, we check
the impact of DISJOINTWITH and meta-classes in a query. For this, like in [2], we
have introduced a new class named TypeOfProfessor and make FullProfessor,
AssociateProfessor and AssistantProfessor instances of this new class and also
define FullProfessor, AssociateProfessor and AssistantProfessor to be disjoint
from each other. Then, in sq1 we are asking for all those y and z, where y is a
professor, z is a type of professor and y is an instance of z. In sq2, we have asked
for different pairs of professors.

The MODEUS ontologies describe the Italian Public Debt domain with
information like financial liability or financial assets to any given contracts [11].
It comes with 8 queries. These queries are pure meta-queries as they span over
several levels of the knowledge base. MODEUS ontologies are meta-modeling
ontologies with meta-classes and meta-properties.

We have done the experiments on a Linux batch server, running Ubuntu
20.04.3 LTS (GNU/Linux 5.4.0-88-generic x86 64) on one AMD EPYC 7601 (32-
Core CPU), 2.2GHz, Turbo max. 3.2GHz. The machine is equipped with 512GB
RAM and a 4TB hard disk. Java applications used OpenJDK 11.0.11 with a max-
imum heap size of 25GB. During the course of the evaluation of the proposed
variants we have used the time resource limitation as the benchmark setting on
our data sets to examine the behavior of different variants. If not otherwise indi-
cated, in both experiments, each benchmark had 3600 minutes (excluding the K
generation time). For simplicity, we have not included queries that contain data
properties in our experiments. We also have included the generation time of the
hybrid knowledge base K including the loading of ontology and query, τ trans-
lation, module extraction, generating IR and translating queries. All material of
experiments and results are available at https://gitlab.com/hmqq/hkb-dlv2.git.
In the figures, E−AT is labelled E-T.

In Figure 2 and 3, it can be seen that DLV2 shows regular performance across
all datasets and all variants of HKB with a slight increase in time depending on
the size of the dataset. There is one outlier, meta-query MQ5 on LUBM(1) with
NAT−CAT , which we were not expecting and might be a measurement error.
In any case, this a massive improvement over the performance with HEXLite,
where some of these queries required thousands of seconds to evaluate.

In Figures 4 to 7 the performance on MODEUS queries is reported. All the
variants show consistent performance; however, the behaviour of the NAT −



OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases 13

Fig. 2: LUBM(1) experiments with stan-
dard and meta queries

Fig. 3: LUBM(9) experiments with Stan-
dard and Meta Queries

Fig. 4: MODEUS(00) with Meta QueriesFig. 5: MODEUS(01) with Meta Queries

Fig. 6: MODEUS(02) with Meta Queries Fig. 7: MODEUS(03) with Meta Queries
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CACT variant seems to be usually best. These results are very satisfactory with
respect to the results observed with HEXLite, where none of these queries were
answered even after a few hours of runtime.

It should also be noted that NAT−CACT with DLV2 also outperforms non-
hybrid query answering using DLV2 as reported in [14], making it the fastest
known method on these ontologies and queries.

6 Discussion and Conclusion

This work shows that the methods introduced in [14] do not only have a positive
relative impact when using a hybrid reasoner, but that they can also yield the
best known performance when using a suitable tool for hybrid reasoning.

It seems clear from the result that there is a benefit of keeping some portions
in the ontology rather than transforming the entire ontology to facts. This is,
however, contingent of the availability of a query-aware method (in this case
magic sets). Among the variants, NAT−CACT showed best performance, which
is also the one that hybridizes most.

In the future, we hope to identify more hybrid reasoning systems that are
query aware.
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