
clintest: Efficient off-the-shelf unit testing for
clingo programs

Extended abstract

Tobias Stolzmann[0000−0002−1436−0715]

University of Potsdam, Germany

Abstract. clintest is a test framework making it easy to write efficient
unit tests for clingo programs. While equipping the user with numerous
off-the-shelf tests for standard use cases, clintest is also easily extensible
to support non-standard ones. In order to guarantee an efficient test
execution, clintest monitors the test’s outcome while steering the solving
process.

Keywords: answer set programming · unit testing · framework.

1 Introduction

With the advent of Answer Set Programming (ASP; [6]) in industrial appli-
cations [3], the need to adapt classic software engineering methods to ASP is
steadily increasing. Among these methods is unit testing, an easy but powerful
approach to catch bugs in software systems. A unit test is a test conducted on
a minimal unit of source code to ensure its correct implementation. It provides
a carefully chosen input to the unit, executes it, and ensures that its output
satisfies a set of assertions [2]. In ASP, the unit is an answer set program, the
input is a set of facts, the output is the set of answer sets, and – of course – the
unit is not executed but solved. Even though unit testing for ASP was previously
discussed [5, 1, 7], there seems be no framework that make it easy to write tests
for standard use cases, is extensible to support non-standard ones, and guarantees
an efficient test execution. In this work, we present clintest , a test framework for
answer set programs written in the dialect of clingo [4] that aims to be just that.

2 Design principles of clintest

In order to make it easy to write tests for standard use cases, clintest provides
numerous off-the-shelf components that can be plugged together in various ways.
E.g., in order to ensure that all models of a program contain the atom a, one needs
to assemble the test t1 = Assert(All(), Contains("a")). If, in addition to
that, b should be in any model, one could to write t2 = And(t1, Assert(Any(),

Contains("b"))). Even though compositions of standard components like that
may support rather complex use cases, they will never support everything. To

2 Tobias Stolzmann

mitigate that, every component in clintest implements an abstract class that can
be implemented by the user as well. Assert and And are Tests. All and Any are
Quantifiers. Contains is an Assertion. There is a class Solver that allows to
customize the solver used for a test. If a necessary component is not there, the
user may just implement it and it will work along the others just fine.

To ensure an efficient test execution, clintest makes sure the solving process
is terminated once the outcome of a test is certain. This is implemented as
follows. Before searching for the next model, a Solver must query the Test for
the current outcome using the outcome-method. If the outcome is not certain,
the Solver must either notify the Test that the search was exhaustive using
on finish or provide the next model using on model. If the outcome is certain,
the solver must abort the search.

Efficiency considerations are also built into tests like And. And will not provide
further models to underlying tests once their outcome is certain. This is possible
because a certain outcome must (obviously) not change. Beyond that, the outcome
of And will become certainly false once the outcome of a single underlying becomes
certainly false. This is possible because x ∧ ⊥ = ⊥.

3 More features and future work

It goes without saying that the off-the-shelf components presented in the pre-
vious section are not exhaustive. There are more, even though the addition of
components is still ongoing. Among the most requested features is support for
optimization, e.g., it should be possible to write a test like Implies(Optimal(),
Contains("a")). Beside the ability to review stable models, clintest is capable to
assess the brace and cautious consequences. However, all artifacts must currently
be emitted by clingo. In the future, we would like to add an abstract class Model
that allows to reason about all kinds of sets of facts. Beyond adding features that
are directly necessary to assemble and run certain unit tests, we try to make
clintest as user-friendly as possible. It is already the case that each Test must
have a method providing human-readable string representation of their current
state.

clintest is freely available at https://github.com/potassco/clintest. The
current version is 0.1.0.

References

[1] G. Amendola, T. Berei, and F. Ricca. “Testing in ASP: Revisited Language
and Programming Environment”. In: Logics in Artificial Intelligence - 17th
European Conference, JELIA 2021, Virtual Event, May 17-20, 2021, Proceed-
ings. Ed. by W. Faber et al. Vol. 12678. Lecture Notes in Computer Science.
Springer, 2021, pp. 362–376. doi: 10.1007/978-3-030-75775-5_24.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge Uni-
versity Press, 2008. isbn: 978-0-521-88038-1. doi: 10.1017/CBO9780511809163.

clintest: Efficient off-the-shelf unit testing for clingo programs 3

[3] E. Erdem, M. Gelfond, and N. Leone. “Applications of Answer Set Program-
ming”. In: AI Magazine 37.3 (2016), pp. 53–68. doi: 10.1609/aimag.v37i3.
2678.

[4] M. Gebser et al. “Multi-shot ASP solving with clingo”. In: Theory and
Practice of Logic Programming 19.1 (2019), pp. 27–82. url: http://arxiv.
org/abs/1705.09811.

[5] A. Greßler, J. Oetsch, and H. Tompits. “Harvey: A System for Random
Testing in ASP”. In: Proceedings of the Fourteenth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’17). Ed. by
M. Balduccini and T. Janhunen. Vol. 10377. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2017, pp. 229–235.

[6] V. Lifschitz. Answer Set Programming. Springer, 2019. isbn: 978-3-030-
24657-0. doi: 10.1007/978-3-030-24658-7.

[7] J. Oetsch. “Testing for ASP – ASP for Testing”. PhD thesis. Technische
Universität Wien, 2022. doi: 10.34726/hss.2022.102508.

