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Abstract. In this paper, we present a possible implementation of the
Declarative Spatial Reasoning (DSR) framework into the logic of Here-
and-There with Constraints (HTc). The DSR framework enables spatial
reasoning by relying on techniques from analytic geometry, where ob-
jects are described by means of parameters, and relations are defined
through equations and inequalities involving these parameters. Recently,
the logic of Here-and-There, which provides a clear and easy characteri-
zation of the non-monotonic stable model semantics, has been extended
to capture constraints from external theories. Given the relevance of
non-monotonicity for spatial reasoning, it is natural to investigate the
implementation of DSR into HTc, as it would greatly simplify the formal
characterization of DSR in a non-monotonic setting, and facilitate the
application of the framework to any field involving spatial reasoning.
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1 Introduction

This article integrates the Declarative Spatial Reasoning framework within the
logic of Here-and-There with Constraints. The Declarative Spatial Reasoning
framework (DSR) [1] is an approach that enables qualitative and quantitative
spatial reasoning. It is generally considered as an interesting alternative to the
widely used Qualitative Spatial Reasoning framework [4] by allowing more flex-
ibility in the definition of relations, and more adaptability to real-world prob-
lems. DSR relies on techniques of analytic geometry for describing objects by
means of parameters and relations through constraints involving these param-
eters. In order to enable non-monotonic reasoning in DSR, the approach has
been implemented in the stable model semantics, and more specifically, within
the characterization of stable models by means of circumscription [8].

In fact, many characterizations of stable models exist besides those on cir-
cumscriptions [3]. The one in terms of Equilibrium Logic is a characterization
that offers a great simplicity, as it is based on the intuitionistic logic of Here-and-
There [5]. An additional advantage of this approach is its fully logical nature,
which means that additional features can be easily defined by extending the logic.
Recently, the logic of Here-and-There has been extended to tackle constraints
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of external theories, resulting in the logic of Here-and-There with Constraints
(HTc) [2]. It is therefore natural to investigate the implementation of DSR into
this extension, as it would provide a great clarity of the framework, and more-
over, an easy way to apply DSR techniques to other fields where non-monotonic
spatial reasoning is necessary.

We start in Section 2 by defining spatial domains in line with those de-
scribed in the DSR framework, with the additional specifications needed for our
purposes. In Section 3, we show how a constraint satisfaction problem structure,
as those used in HTc, can be constructed based on a spatial domain. Section 4
illustrates how spatial information can be processed in order to form a spatial
domain and a constraint satisfaction problem according to it. These structures
enable the formation of a theory that can be used to make inferences on the
spatial information given. The section ends by showing how the stable models of
a theory can be represented in a convenient and useful way. Section 5 concludes
the paper and outlines possible future work.

2 Spatial Domains

A spatial domain S defines all the object names, geometric shapes and relations,
as well as the space considered. Each object name is assigned a geometric
shape, and the relations receive their spatial meaning by means of polynomial
constraints. More formally, a spatial domain consists of the following structure.

Definition 1. A spatial domain is a structure S = ⟨O,G, f,R,S⟩ where

• O is a set of object names,
• G is a set of geometric shapes defined by means of pairs (g, {x, ..., z}),
• f : O → G|shape is a function mapping each object name to a shape,
• R is a set of relations defined by means of pairs

(rg1...gk , {{s1.1, s1.2, ...}, {s2.1, s2.2, ...}, ...}),
• S is the space considered.

We detail each of these elements in turn. Set O simply contains the object
names as symbolic constants. We will usually use the letters a, b, c, ... for the
object names.

Set G of geometric shapes contains pairs of the form

(g, {x, ..., z}) (1)

where g is the name of a geometric shape (e.g. point, circle, rectangle,...), and
{x, ..., z} is a finite set of variable names. Note that G is constructed such that
there is no pair (g,X) and (g, Y ) with X ̸= Y , that is, each shape is paired with
only one set of variables. A geometric shape will sometimes be abbreviated by a
single letter, such as ‘p’ for point, ‘c’ for circle and so on.

The construction of the set of variables {x, ..., z} for a geometric shape relies
on the way this shape can be characterized in an analytic geometrical way, that
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is, by means of parameters that allow the representation of the object in a
coordinate system. For example, it is possible to characterize

• a two dimensional (2D) point by the set of variables {x, y} for its coordinates,
• a circle on the plane by the set of variables {x, y, r} for the coordinate of its

center, and for its radius,
• a rectangle on the plane by the set of variables {xmin, ymin, xmax, ymax} for

the coordinates of the bottom left and top right points,
• a polygon on the plane by the set of variables {x1, y1, ..., xn, yn} with n points

for the vertices of the polygon.

Any other type of geometric shape can be considered, as long as it receives
an unambiguous characterization in terms of parameters [6]. Additional shapes
can be found in [1].

For each geometric shape g, we define symbol g as the set of variables paired
with g in set G. For instance, circle = {x, y, r}. Finally, we construct set G|shape,
which only contains the names of the shapes in G, as follows.

G|shape = {g | (g, {x, ..., z}) ∈ G} (2)

Function f : O → G|shape maps each object name o ∈ O to a geometric shape
g ∈ G|shape. For example, an object a being a point is specified by f(a) = point.

Regarding set R of relations, it contains pairs of the form

(rg1...gk , {{s1.1, s1.2, ...}, {s2.1, s2.2, ...}, ...}) (3)

where the first element is the name of a relation and the second element is
a set of sets containing polynomial equations and inequalities. The sequence
g1...gk is used as an index of a relation r and corresponds to a tuple (g1, ..., gk) ∈
G|1shape× ...× G|kshape with k the arity of the relation. For the sake of succinctness,
we allow removing parenthesis and commas of these tuples, and abbreviate the
shape names to a single letter as mentioned above, with no letter similar for two
distinct geometric shapes. As a result, possible indexes are ‘pp’ for two points,
‘pr’ for point-rectangle, etc. These sequences are part of the relation names in
order to specify the geometric shapes the relation applies to, and moreover,
to distinguish homonym relations that apply to different shapes, e.g., insidepc
and insidecc . We will simply denote a relation by r instead of rg1...gk when the
sequence of shapes does not play a role in the formalism.

On the right hand of each pair in R is a set of sets containing polynomial
equations and inequalities. A polynomial equation or inequality s is constructed
by means of the usual symbols <,>,≤,≥,=, ̸=, and involves terms that are
formed by the usual operators +, -, *, **. The variables occurring in these terms
are those used to characterize the geometric shapes defined in the spatial domain.
More specifically, for a relation rg1...gk , the constraints paired with it will involve
variables among g1 ∪ ... ∪ gk = {x1, ..., z1, ..., xk, ..., zk}, where index i ∈ [1, k]
embeds the object order into the variable names while making them unique. As
an example, a binary relation over a point and a circle (i.e. with index ‘pc’) will
be paired with constraints where the variables are p1 ∪ c2 = {x1, y1, x2, y2, r2}.
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The idea for defining the spatial meaning of relations then follows the Declar-
ative Spatial Reasoning framework, that is, the possible configurations of objects
for a relation are described by means of constraints over the parameters of these
objects. More specifically, spatial relations are defined by a set of joint condi-
tions (or clauses), each of which corresponds to a single constraint or a disjunc-
tion of constraints. This is formally obtained by considering all the subsets in
{{s1.1, s1.2, ...}, {s2.1, s2.2, ...}, ...} conjunctively, whereas the constraints inside
each subset are considered disjunctively. This construction simply corresponds,
as will become clear, to the set-theoretic representation of a conjunctive normal
form. Whenever a subset is a singleton, we simply remove the braces around it,
i.e., {s1, s2, ...}.

Examples of relations that can be defined in R based on these ideas are
presented below (note the relation outsidepr for which a disjunction of constraints
is needed):

(leftpp , {x1 < x2}) (4)
(strict_leftpp , {x1 < x2 , y1 = y2}) (5)

(outsidepr , {{x1 < xmin
2 , y1 < ymin

2 , x1 > xmax
2 , y1 > ymax

2 }}) (6)
(disconnectedcc , {(x1 − x2)

2 + (y1 − y2)
2 > (r1 + r2)

2}) (7)

(insidecc , {r1 < r2 ,
(
(x1 − x2)

2 + (y1 − y2)
2 ≤ (r1 − r2)

2
)
}) (8)

Although only binary relations are presented, there is no limit to the arity of the
relations that can be defined. Additional relations can be found in [1].

In a similar way as above, we define symbol r as the set {{s1.1, s1.2, ...}, {s2.1,
s2.2, ...}, ...} associated with relation r. We also construct set R|name of all the
relation names occurring in R as

R|name = {rg1...gk | (rg1...gk , {{s1.1, s1.2, ...}, {s2.1, s2.2, ...}, ...}) ∈ R} (9)

Finally, a spatial domain is always defined for a specific space S (e.g. R2, R3,
etc), as the characterization of objects and relations depends on it. In our case,
we only consider the two dimensional Euclidean space R2 and make it implicit in
subsequent spatial domains. However, it is worth noting that there is no formal
limit to develop our approach in a three-dimensional space, and even with the
addition of time [7].

In general, the definition of geometric shapes and relations will remain the
same among spatial domains defined with the same space S. What will change
from one structure to another is the set of shapes and relations that are consid-
ered, that is, the extensions of G and R. Set O of object names will also change
for each structure.

3 The Logic of Here-and-There with Constraints over
Spatial Domains

The logic of Here-and-There with Constraints (HTc) extends the intuitionistic
logic of Here-and-There in order to capture constraints expressed in one or more
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external theories. The syntax of HTc is based on a Constraint Satisfaction Prob-
lem (CSP), and its semantics is characterized through a denotational approach.

In this section, we first describe how to construct the CSP of a given spatial
domain S. As will be seen, this construction is straightforward in the sense
that each spatial domain S will always produce the same CSP. Formulas can
be formed based on the elements described in a CSP. Secondly, we describe how
these formulas can be evaluated.

3.1 Syntax

We recall that a Constraint Satisfaction Problem (CSP) is a structure ⟨X ,D, C⟩,
where X is a set of variables, D is the domain of the variables, and C is a set of
constraints that limit the values from D that can be taken by the variables in
X .

We also adopt a structure ⟨X ,D, C⟩, with the particularity of constructing
it based on the elements of the spatial domain. For doing so, it is first needed
to form the Herbrand Base and the set of parameters relatively to this spatial
domain.

The Herbrand Base A contains all the relations r ∈ R|name grounded with
elements o ∈ O that respect the geometric shapes of the relations. This corre-
sponds to construct set A as

A = {rg1...gk(o1, ..., ok) | rg1...gk ∈ R|name , o1, ..., ok ∈ O (10)
and f(o1)...f(ok) = g1...gk}

For instance, with R|name = {leftpp , insidepc}, the set of objects O = {a, b}, and
the function f defined as f(a) = point and f(b) = circle, we form the Herbrand
Base A = {leftpp(a, a) , insidepc(a, b)}.

Set P of parameters contains, for each object in the domain, the variables
associated with the shape of the object, but augmented with the name of
the object as an index. More precisely, considering a set of object names O
and a function f , the corresponding set P of parameters is constructed as follows.

P = {xo, ..., zo | o ∈ O and (x, ..., z) = f(o)} (11)

Note that f(o) combines the two functions defined so far, with priority given
to the function f that returns the geometric shape of object o. As an illus-
tration, consider a set O = {a, b} and a function f defined as f(a) = point
and f(b) = circle. The sets of variables once corresponds to f(a) = point =
{x, y} and f(b) = circle = {x, y, r}. The resulting set of parameters is
P = {xa, ya, xb, yb, rb}. Note that following the construction of set P, no two
parameters can receive the same name.

The Herbrand Base and the set of parameters constructed on a spatial domain
enable us to define the constraint satisfaction problem of this spatial domain as
follows.
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Definition 2. Given a spatial domain S, we construct the Constraint Satisfac-
tion Problem of S, noted ⟨X ,D, C⟩S, by forming the sets

1. X = A ∪ P containing the Hebrand Base and the set of parameters,
2. D = {t} ∪ S containing the special symbol t for true, as well as the base of

space S (here considered as R for simplicity)
3. C = A ∪ T composed by a set of regular atoms and a set of theory atoms.

The main specificity of a CSP in HTc, compared to a classical CSP, is that a
constraint C ∈ C is called an atom (or constraint atom), since it corresponds to
an atomic formula in the logic. More specifically for our approach, a constraint
atom C ∈ C is either a regular atom a ∈ A or a theory atom s ∈ T . We define
each of these atoms in turn.

The set of regular atoms is composed by all the atoms of the form (a =
t), where a is an element of the Herbrand Base. An example of regular atom
is (left(a, b) = t). We often abbreviate regular atoms by only conserving the
element of the Herbrand Base, that is, left(a, b). This abbreviation justifies why
set A can be used both in sets X and C of the CSP.

The set of theory atoms is composed by all the equations and inequalities
occurring in R, but where the parameters have been associated with the objects
from O. Note that similarly to the formation of the Herbrand base, these replace-
ments have to respect the geometric shapes the relations are about. We can give
a formal description of the construction of T by first describing the equations
and inequalities it would contain for a single relation rg1...gk , this set being noted
T |rg1...gk

. Considering a pair (rg1...gk , {{s1.1, s1.2, ...}, {s2.1, s2.2, ...}, ...}) ∈ R, a
set O of object names, and a function f mapping a geometric shape to each
object, the set of theory atoms constructed for rg1...gk is

T |rg1...gk
=

⋃
s∈A, A∈r

s [x1/xo1 , ..., z1/zo1 ]...[xk / xok , ...., zk/zok ] (12)

with o1, ..., ok ∈ O,
and f(o1)...f(ok) = g1...gk

Note that the subset relationship from r does not appear in the construction
of T |r, as it is formed with all s ∈ A and A ∈ r. As an example, consider the
relation (leftpp , {x1 < x2}) and the set O = {a, b, c} composed of the two points
a, b, and circle c. The four different theory atoms that can be formed for T |leftpp
are xa < xa, xa < xb, xb < xa and xb < xb.

The whole set of theory atoms is simply obtained by creating a set of theory
atoms for each relation in R, and then taking the reunion of all these sets.
Formally,

T =
⋃

r∈R|name

T |r (13)

It is clear that a CSP in our spatial approach is defined by means of two sub
CSPs, that is, ⟨A, {t},A⟩ and ⟨P,R, T ⟩. The interaction between these two sub
CSPs is made possible by constructing formulas, which can connect regular and
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theory atoms from C by means of the usual logical connectives ∧,∨,→ and ⊥.
The connectives ϕ↔ ψ

def
= (ϕ→ ψ)∧ (ψ → ϕ) and ¬ϕ def

= ϕ→ ⊥ are defined as
usual. Finally, a set of formulas is called a theory and is denoted Γ .

3.2 Semantics

Following the HTc semantics, we define a partial valuation v as a function v :
X → D ∪ {u} that assigns to elements of X , either an element of D respecting
the domain of the variable (i.e. A → {t} and P → R), or the specific symbol
u standing for "undefined". Note that symbol u ̸∈ D is not an element of the
domain.

A valuation can also be seen as a set that does not contain any two pairs
(x, d) and (x, e) with d ̸= e, where x ∈ X and d, e ∈ D. Also, a valuation as
a set does not include any pair (x, .) where v(x) = u. As an example, consider
valuation v1(xa) = 2, v1(xb) = u, v1(left(a, b)) = t. This valuation corresponds
to set v1 = {(xa, 2), left(a, b)} where no pair appears for the variable xb which
is undefined. Note that we also apply the abbreviation mentioned above for
writing regular atoms in valuations, that is, we simply write left(a, b) instead of
(left(a, b), t). Finally, we denote the set of all valuations for a CSP ⟨X ,D, C⟩S
as VX ,D and remove the subindices when clear from the context.

In order to decide the valuations that satisfy a constraint atom C, we use a
denotation function of the form J·K : C → 2V mapping each atom C to a set of
partial valuations. Examples of denotation for theory atoms s ∈ T are

Jxo1 < xo2K
def
= {v ∈ V | v(xo1) < v(xo2), v(xo1), v(xo2) ∈ R} (14)

J(xo1 − ro1) = zo2K
def
= {v ∈ V | (v(xo1)− v(ro1)) = v(zo2), (15)

v(xo1), v(ro1), v(zo2) ∈ R}

Jxo1 ≥ xo2K
def
= {v ∈ V | v(xo1) ≥ v(xo2), v(xo1), v(xo2) ∈ R} (16)

where every xoi , ..., zoi ∈ P. Note that a valuation can only satisfy a constraint
C if none of the variables occurring in this constraint are assigned the value u.
This restriction corresponds to the condition v(xoi), ..., v(zoi) ∈ R occurring for
each denotation. The relations <,>,≤,≥,=, ̸= used in the constraints follow
their usual mathematical semantics.

Regarding regular atoms in A, their denotations always have the same general
form

Jr(o1, ..., ok)K
def
= {v ∈ V | v(r(o1, ..., ok)) = t} (17)

where k is the arity of the relation, and r(o1, ..., ok) corresponds to an element
a ∈ A. As a general remark, note that the denotation of an atom lets valuations
vary freely on the variables not occurring in the atom.

We define an interpretation as a pair ⟨h, t⟩ of partial valuations such that
h ⊂ t. The satisfaction relation is defined as follows.
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Definition 3. An interpretation ⟨h, t⟩ satisfies a formula ϕ, written ⟨h, t⟩ |= ϕ,
if:

1. ⟨h, t⟩ ̸|= ⊥
2. ⟨h, t⟩ |= C iff h ∈ JCK
3. ⟨h, t⟩ |= φ ∧ ψ iff ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4. ⟨h, t⟩ |= φ ∨ ψ iff ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5. ⟨h, t⟩ |= φ→ ψ iff for both v = h and v = t it holds: ⟨v, t⟩ ̸|= φ or ⟨v, t⟩ |= ψ

The definition of an equilibrium model follows in a straightforward way.

Definition 4. The equilibrium model of a theory Γ is an interpretation such
that:

1. ⟨t, t⟩ |= Γ
2. there is no h ⊂ t such that ⟨h, t⟩ |= Γ

In this case, valuation t will also be called a stable model of program Γ . We note
M the set of all the stable models for a theory Γ , that is, all the valuations that
satisfy the formulas of the theory.

4 Theories of Spatial Information

Spatial information can be represented by a set Π containing the pieces of infor-
mation π1, ..., πλ, where λ specifies the size of Π. Elements of Π can be seen as
the premises of a problem or the known facts about a situation. Each πi ∈ Π cor-
responds to a relational expression of the form ri(oi1, ..., o

i
k), where ri is the name

of a relation and oi1, ..., o
i
k are the names of the objects stated in the relation,

with k its arity.
As an example of spatial information, consider the description

" Circle A is inside Circle B,
Circle B is disconnected from Circle C,

Circle C is smaller than Circle B."

The formalized version of this description corresponds to the following set

Π1 = {insidecc(a, b), dccc(b, c), smallercc(c, b)} (18)

where dc stands for the relation disconnected. For some spatial information,
the choice for the geometric shapes of the objects or the exact relations stated
will not be as explicit as in our example. We do not cover such difficulties as it
would involve linguistic knowledge that would deviate us from the main goal of
this paper. For our purpose, we will only consider spatial information where the
geometric shapes of the objects and the relations are clearly specified.

Processing and reasoning on the spatial information in Π first requires to
define the spatial domain associated with it, which is presented next.
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4.1 The Spatial Domain of Spatial Information, and its CSP

Considering a set of spatial information Π = {π1, ..., πλ}, where each πi =
ri(oi1, ..., o

i
k), the spatial domain S = ⟨O,G, f,R⟩ is built as

• O = {o11, ..., o1k} ∪ ... ∪ {oλ1 , ..., oλk} containing all the object names occurring
in Π,

• G containing all the pairs that define the geometric shapes relevant for the
problem,

• f : O → G|shape associating each object name o ∈ O with a geometric shape
g ∈ G|shape,

• R containing all the pairs that define the relations, where R|name = {r1} ∪
... ∪ {rλ} contains all the relation names occurring in Π.

Note that most of the object names will appear several times in the spatial
information. Also, function f is entirely defined within Π, since the indexes of
the relations specify the geometric shape of the objects.

Considering the spatial description above and its formal version Π1, we con-
struct the following spatial domain S:

• O = {a, b, c}
• G = {(circle, {x, y, r})}
• f(a) = f(b) = f(c) = circle

• R =

{ (
dccc , {(x1 − x2)

2 + (y1 − y2)
2 > (r1 + r2)

2}
)
,(

insidecc , {r1 < r2, ((x1 − x2)
2 + (y1 − y2)

2 ≤ (r1 − r2)
2)}

)(
smallercc , {r1 < r2}

)
}

As explained in the previous section, once the spatial domain is defined, the
construction of the corresponding constraint satisfaction problem is straightfor-
ward. For a set of formalized spatial information Π and a spatial domain S, we
note the CSP constructed as ⟨X ,D, C⟩ΠS . For instance, the structure constructed
for spatial information Π1 is noted ⟨X ,D, C⟩Π1

S .
It is worth noticing that a structure ⟨X ,D, C⟩ΠS will always be determined

by set Π, since the latter enables the construction of a spatial domain in a quite
straightforward way, and that the CSP directly follows from this spatial domain.
It is now possible to construct a spatial theory based on this structure.

4.2 Spatial Theories

As a recall, a theory is simply a set of formulas Γ constructed over a structure
⟨X ,D, C⟩ΠS . To ease its presentation, we more specifically define a spatial theory
as a set Γ = Π ∪ E , where Π contains the formulas standing for the spatial in-
formation known and E is a set containing formulas defining the spatial meaning
of each relation.

We start by describing set E , as it contains the spatial meaning of all the
relations used in Γ . Set E contains, for each regular atom a ∈ A, an equivalence
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formula that connects this regular atom to one or more theory atoms s ∈ T .
The equivalence formula constructed for an atom a is noted εa and corresponds
to

a ↔
(
(s1.1 ∨ s1.2 ∨ ...) ∧ (s2.1 ∨ s2.2 ∨ ...) ∧ ...

)
(19)

where a = ro1,...,ok , each si,j = si,j [x1/xo1 , . . . , z1/zo1 ] . . . [xk/xok , . . . , zk/zok ],
and with si,j ∈ Ai and Ai ∈ r. As can be seen, these equivalence formulas are
the exact point where the two sub-CSPs of our approach become intertwined,
since the satisfiability of a regular atom becomes linked to the satisfiability of
theory atoms. For instance, with the structure ⟨X ,D, C⟩Π1

S defined above and
the ground relation insidecc(a, c) from A, the equivalence formula εinsidecc(a,c) is

insidecc(a, c) ↔ ra < rc ∧
(
(xa − xc)

2 + (ya − yc)
2 ≤ (ra − rc)

2
)

(20)

Set E is then simply obtained by creating an equivalence formula for each
regular atom a ∈ A, and combining all these formulas, that is,

E =
⋃
a∈A

εa (21)

It is worth noting that E is constructed based on all the relations occurring in
set A of the CSP, and not only those occurring in Π.

By integrating set E within a spatial theory, any valuation v assigning the
value t to a relation without satisfying its corresponding theory atoms, and vice
versa, is rejected as a potential stable model of the theory. Only valuations where
both a relation and its theory atoms are simultaneously true or not will be con-
sidered potential stable models. Moreover, the minimality conditions specific to
the stable model semantics will make the case where both sides of the equiva-
lence are false as the only possible stable model, at least when formulas of E only
are considered. As a result of this minimality, the formulas in E alone have no
direct effect on the regular atoms that can be deduced, and their single stable
models will always be the empty set where no value is assigned to any of the
variables.

Regarding setΠ in the definition of a theory Γ = Π∪E , it exactly corresponds
to the set constructed for the formalization of the spatial information, with the
difference that elements of Π now correspond to regular atoms of the structure
⟨X ,D, C⟩ΠS . Therefore, introducing Π into a theory Γ amounts to declaring that
all the corresponding elements of A must be satisfied. This integration repre-
sents the fact that the pieces of information given should be satisfied in the
stable models of the theory. In more general terms, for a set Π and a structure
⟨X ,D, C⟩ΠS constructed based on it, set Π will always represent a subset of all
the ground relations, that is, Π ⊆ A.

When Π is considered in combination with E in a theory Γ , all the equiva-
lences from E that involve the ground relations mentioned in Π can no longer be
satisfied by letting its elements undefined, since Π forces the regular atoms to be
true. As a result, all the parameters involved in the equations and inequalities
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of the corresponding relations must receive a value, and moreover, a value that
satisfy the equations and inequalities.

As an example, let us consider again theory Γ1 = Π1 ∪ E1, where Π1 =
{insidecc(a, b), dccc(b, c), smallercc(c, b)} and E1 contains the formulas for the
spatial meaning of relations as defined above. The stable models of theory Γ1

constructed over ⟨X ,D, C⟩Π1

S correspond to all the valuations v ∈ V where
v(insidecc(a, b)) = t, v(dccc(b, c)) = t and v(smallercc(c, b)) = t, and moreover,
where all the corresponding parameters have received a value that satisfy the
equations and inequalities of these relations. In a set-theoretic notation, this cor-
responds to all the valuations v where {insidecc(a, b), dccc(b, c), smallercc(c, b)} ⊆
v, and also containing the pairs (x, d) with x ∈ P and d ∈ R wrt the equations
and inequalities that must be satisfied. We continue by introducing a useful
distinction that will ease the presentation of stable models.

4.3 Classes and Instances in Stable Models

Let us consider a structure ⟨X ,D, C⟩ΠS and a theory Γ constructed based on it.
For a stable model t of theory Γ , we define the class of t as the set At = t ∩ A
containing only its regular atoms. It is relevant to notice that the class of a stable
model is always a subset of the Herbrand Base, that is, A ⊆ A. Similarly, we
isolate the assignments for parameters contained in a stable model t by defining
set It = t\A. For a stable model t, we call It an instance of class At, as it contains
the values of the parameters that satisfy all the theory atoms associated with
the elements of class A. It is clear that in our definition of a CSP, we have that
At ∪ It = t, and that At ∩ It = ∅, for any stable model t. For both symbols At

and It, we elude writing subscript t when clear from the context.
Considering set M containing all the stable models of a theory Γ over a

structure ⟨X ,D, C⟩ΠS , we collect all the different classes present in the different
stable models by means of set C = {At | t ∈ M }. Regarding instances, we will
be more interested in obtaining all the instances of a class, rather than all the
instances in M in general. Therefore, we construct the set of all the instances
contained in M for a class A ∈ C by the set AI = { It | t ∈ M, At = A}. We
denote a specific instance of a class A by means of AIi , where AIi ∈ AI , and
simply write AI when we refer to the first instance AI1 of a class.

We illustrate these concepts in Table 1 by showing the stable models con-
tained in M1 for theory Γ1. Each row corresponds to a stable model, with the
class Ai on the left separated from its instances AIj

i on the right. Classes are
written only once in order to distinct them more easily, and the premises stated
in Π are written in bold.

As can be seen, only three different classes compose the stable models of
theory Γ1, but an infinite number of instances exist for each of these classes, as
suggested by the ellipsis. In general, it is clear that any class A will always have
an infinite number of instances when working in dense spaces. On the contrary,
there will only be a finite number of classes.
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Table 1. The three classes and some of their instances for the stable models of theory
Γ1. The relations used in the set of premises Π are in bold. Those appearing in all the
classes, but not in the premises, are underlined.

# Classes Instances #

A1 inside(a,b), dc(b, c), smaller(c,b), xa = 3, ya = 4, ra = 1, xb = 3, yb = 4, AI1
1

dc(a, c), dc(c, b), dc(c, a), smaller(a, b) rb = 2.1, xc = 7, yc = 5, rc = 1.4

smaller(a, c)

xa = 3, ya = 4, ra = 1, xb = 3, yb = 4, AI2
1

rb = 2.1, xc = 7, yc = 5, rc = 1.5

· · · · · ·

A2 inside(a,b), dc(b, c), smaller(c,b), xa = 3, ya = 4, ra = 1, xb = 3, yb = 4, AI1
2

dc(a, c), dc(c, b), dc(c, a), smaller(a, b) rb = 2.1, xc = 7, yc = 5, rc = 0.7

smaller(c, a)

· · · · · ·

A3 inside(a,b), dc(b, c), smaller(c,b), xa = 3, ya = 4, ra = 1, xb = 3, yb = 4, AI1
3

dc(a, c), dc(c, b), dc(c, a), smaller(a, b) rb = 2.1, xc = 7, yc = 5, rc = 1

· · · · · ·

4.4 Reasoning within a Spatial Theory

In our example, each class contains at least the elements of Π1 as expected, but
also additional relations that were not stated in the premises. More interest-
ingly, some of these new relations appear in all the classes (i.e. the four relations
dc(a, c), dc(c, b), dc(c, a), smaller(a, b) that are underlined in Table 1). These
relations correspond to pieces of information that are logically implied by the
stated ones. Indeed, when a new relation appears in all of the possible classes of
the stable models of a theory, it means that regardless of the assignments that
have been found for the satisfaction of the premises, each of these assignments
have always satisfied the theory atoms of the new relation. In other words, the
values given to the parameters turn out to also satisfy the equations and inequali-
ties of other relations in A. This indicates that some pieces of spatial information
were implicit in the given set of premises, and that they logically follow from
them.

Formally, if we consider a theory Γ over a structure ⟨X ,D, C⟩ΠS and a set
C containing the different classes of the stable models of Γ , we form the set
Cons(Γ ) containing all the ground relations that are consequences of theory Γ
as

Cons(Γ ) = A1 ∩ ... ∩An \Π with Ai ∈ C (22)
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Note that Π is directly removed from Cons(Γ ), as the relations in it were explic-
itly given and do not reflect the idea of deduction. For each atom a ∈ Cons(Γ ),
we say that a is a consequential constraint of theory Γ under the structure
⟨X ,D, C⟩ΠS . Since the spatial domain suffices to fully characterize the structure
⟨X ,D, C⟩ΠS , and that Π is contained in Γ , a consequential constraint can alter-
natively be written as

Γ ⊢S a (23)

Regarding set M1 of stable models for theory Γ1, four new relations are common
to the three classes, namely, dc(a, c), dc(c, b), dc(c, a) and smaller(a, b). This
means that the spatial information in Π1 cannot be stated without making
these additional relations true.

On the contrary, when no possible valuation can be found for the theory
atoms corresponding to the relations stated in Π, the theory is said to be un-
satisfiable. In such a case, set C of classes is simply empty, and no stable model
can be found. This can be written as

Γ ⊢S ⊥ (24)

4.5 Graph of a Class, Diagrams of its Instances

Each stable model t contains a class A and an instance I of this class, and both
of them can be represented in a more convenient way than by sets.

When only binary relations compose the spatial domain, we can represent
the class A of a stable model by means of a graph G = (O, A), where O is used
for the set of nodes and A contains all the pairs for the edges. For each relation
r(o1, o2) ∈ A, the name of the relation r is used as the label of an edge that
goes from o1 to o2. The graphs of the three classes in Table 1 are represented in
Figure 1 on the left.

Regarding the representation of instances, the parameters of objects can be
used to represent these objects in a coordinate system, as specified in the defi-
nition of spatial domains. We call this representation of an instance, a diagram.
The diagrams for the first instances of each class in Table 1 are represented in
Figure 1 on the right.

It may happen that some sets of spatial information Π create a theory for
which not all the parameters are assigned a value in the stable models. This
is the case, for instance, with the very simple set of spatial information Π =
{smallercc(a, b)}, where no value will be provided for xa, ya, xb and yb in the
stable models. These cases occur due to the minimality conditions combined
with the fact that the definitions of relations in E do not necessarily involve all
the parameters associated to the objects in the equations and inequalities.

From a semantic point of view, it does not create any problem because valu-
ations in HTc are defined as partial functions. However, one may want to obtain
a value for each parameter in order to construct the diagrams of the instances
occurring in the stable models. These values can be obtained by simply adding
to the spatial theory, an axiom of the form



14 F. Olivier and C. Schultz

a

b

c

inside, smaller dc
smaller, dc

smaller, dc

dc

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0
0

a

b c

x

y

a

b

c

inside, smaller

dc
smaller, dc

dc

smaller, dc

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0
0

a

b c

x

y

a

b

c

inside, smaller

dc
smaller, dc

dc

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0
0

a

b c

x

y

Fig. 1. Representations of the classes and instances of theory Γ1 by means of graphs
and diagrams.
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x = x for each x ∈ P (25)

By means of (25), we ensure that variable x cannot remain undefined in the
stable models, as the denotation of x = x requires x to have a value in order to
satisfy the constraint.

In fact, it is even possible to ground only a specific object o ∈ O if the
relation equal is defined in the spatial domain, and consequently, appears in set
E . Whatever the geometric shapes of the objects, the relation equal will always
generate equivalence formulas in E of the form

equal(o, o) ↔ xo = xo ∧ ... ∧ zo = zo (26)

where xo, ..., zo are all the parameters associated with object o. Each time the
relation equal is stated in set Π for a certain object, all the parameters of this
object will receive a value in the stable models. However, stating this relation
will never change the spatial information given.

5 Conclusion

In this article, we have investigated a possible implementation of the Declarative
Spatial Reasoning framework into the logic of Here-and-There with Constraints.
Given a set of spatial information, our approach formally describes how the con-
straint satisfaction problem can be constructed relatively to this spatial informa-
tion. This structure can then be used to define theories and apply the techniques
developed within the Declarative Spatial Reasoning framework in order to make
inferences about this spatial information.

As previously announced, one of the main goals of this implementation is to
embed the Declarative Spatial Reasoning framework into a clear and simple logi-
cal characterization that also allows non-monotonicity. Indeed, non-monotonicity
is essential to the field of spatial reasoning, as it allows expressing preferences,
setting default values, or declaring inertia rules. A possible application of the
current research is to add to a theory Γ , an additional subset that contains pref-
erences expressed by means of strong and default negations. This will allow some
models to be chosen over others (e.g. for modeling the psychology of diagram-
matic reasoning), without preventing any default relations from being falsified
by additional information.

Finally, it is worth mentioning that extending HTc with new syntactic con-
structions and possibilities is an active trend of research in the community. Any
formal extension of HTc will automatically also extend the expressive possibil-
ities of spatial theories presented here. An essential extension to consider for
future work is the combination of HTc with temporal logics, as it would provide
a convenient formalism for reasoning about spatiotemporal information.
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