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1 Introduction

The declarative language Answer Set Programming (ASP; [1]) has been con-
stantly enriched in recent years to allow for various modeling capabilities, among
them the addition of temporal operators and constraints in the language [2, 3].
However to the best of our knowledge, those formalism were never combined
in the same framework. Inspired by the existent Linear Temporal Logics with
concrete domains [4], we present a combination of two very popular extensions
of Equilibrium Logic [5] such as Temporal Equilibrium Logic [2] (TEL) and
Here-and-There with constraints [3] (HTc). The new formalism, called Temporal
Here-and-There with Constraints (THTc) is presented in Section 2 together with
its equilibrium version. Moreover, we show the new features of this formalism
when describing temporal scenarios like the one presented in Example 1 below.
To conclude, we discuss some future lines of research and potential uses of this
logic in Section 3.

Example 1. Consider a radar located at km 400 on a road. The speed limit is 90
km/h. A car is traveling at 80 km/h, accelerates by 11.35 km/h at time 4, and
then slows down by 2.301 km/h at time 6. The question is to know whether the
car is going to get a fine or not.

2 Temporal Here and There with Constraints and its
Equilibrium Companion

A constraint satisfaction problem, which consists of a triple ⟨X ,D,A⟩ where
X corresponds to the set of variables; D stands for the domain and A cor-
responds to a set of temporal constraint atoms. In our (temporal) case, each
temporal constraint atom, or more simply constraint atom, is represented as
C(◦l1x1, · · · ,◦lnxn) where ◦l1x1, · · · ,◦lnxn is a sequence of n terms of the form

◦lixi where xi is a variable and ◦li corresponds to li consecutive occurrences of
the operator ◦ (“next”) and C is any n-ary relation on D. THTc formulas are
defined in terms of the following BNF grammar.

φ,ψ ::= C(◦l1x1, . . . ,◦lnxn) | ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ◦φ | φU ψ | φ R ψ.



where C(◦l1x1, . . . ,◦lnxn) is a constraint atom. The first building block of our
semantics is the notion of valuation, which is a (partial) function v : X → D∪{u}
which associates a value from D or the special symbol u ̸∈ D that stands for
undefined and it means that v does not have a value for a given variable.

A THTc trace, in symbols ⟨vh,vt⟩, is an infinite sequence of interpretations
vh = v0h · v1h · · · and vt = v0t · v1t · · · satisfying the relation: for all x ∈ X , d ∈ D,
and for all i ≥ 0, if vih(x) = d then vit(x) = d.

Given an THTc trace M = ⟨vh,vt⟩ and i ≥ 0, the satisfaction of formulas is
defined recursivelly as follows:

1. M, i |= C(◦l1x1, . . . ,◦lnxn) iff {(vi+l1
∗ (x1), . . . , v

i+ln
∗ (xn)) | ∗ ∈ {h, t}} ⊆ C

2. M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ
3. M, i |= φ ∨ ψ iff M, i |= φ or M, i |= ψ
4. M, i |= φ→ ψ iff for all ∗ ∈ {vh,vt}, ⟨∗,vt⟩, i ̸|= φ or ⟨∗,vt⟩, i |= ψ
5. M, i |= ◦φ iff M, i+ 1 |= φ
6. M, i |= φUψ iff it exists k ≥ i s.t. M, k |= ψ and M, j |= φ for all j ∈ [i..k).
7. M, i |= φRψ iff for all k ∈ [i..ω), M, k |= ψ or M, j |= φ for some j ∈ [i..k).

We denote by THTc the logic defined by means of the aforementioned seman-
tics. The minimal model selection criterion of equilibrium logic is extended to
the case of THTc in a very natural way: we say that an THTc trace of the form
⟨vt,vt⟩ is a temporal equilibrium model of a formula φ if (1) ⟨vt,vt⟩, 0 |= φ and
(2) there is no THTc trace ⟨vh,vt⟩, with vh ̸= vt s.t. ⟨vh,vt⟩, 0 |= φ.

Example 1 can be formalized in THTc by means of the following formulas:

p := 0. s := 80000. ◦4acc := 11350. ◦6acc := −2301.
□(rdlimit := 90000). □(rdpos := 400000). □(◦s := s+ acc). □(◦p := p+ s).
□(◦s := s← ¬(◦s ̸= s)).
□(fine← p < rdpos ∧ ◦p ≥ rdpos ∧ ◦s > rdlimit).

In the first line, we assign the position (p) and the speed (s) of the car at time
t = 0. We also state that it accelerates (acc) at t = 4 and decelerates at t = 6. In
the second line we declare that the position (rdpos) and speed limit (rdlimit) of
the radar is set and it does not change along time. We also say that the speed
evolves as a consequence of the acceleration while the position does it because
of the speed. The formula in the third line corresponds to the inertia rule and
the formula in the fourth line captures whether the car gets a fine or not. As can
be calculated, the only trace satisfying all the formulas is the one where the car
gets a fine at time point 5 since it passes the radar at 91,350 km/h.

3 Final Comments

In this extended abstract we have presented a new logic for temporal non-
monotonic reasoning with constraints. We remark that our definition of con-
straints is general enough to be adapted to many types of constraints such as
spatial [6], periodicity [7], Presburger [4] or Peano [8] constraints. However, in
many cases the resulting logic will be highly undecidable. As a consequence, it
will be necessary to identify decidable fragments that would lead to an imple-
mentation.
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